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ABSTRACT In the 5G communication systems, polar code has been adapted as the control channel
coding solution in the enhanced mobile broadband (eMBB) scenario. Although different decoding schemes,
including belief propagation (BP) and successive cancellation (SC) based algorithms, have been proposed,
the decoding complexity as well as the latency are still significant. To address this critical issue, several
low-complexity schemes, e.g., the use of simplified decoding operation and stop the decoding operation in
earlier stage, have been proposed recently. However, conventional early stopping strategies have to check a
pre-defined metric in each iteration, and the associated decoding delay is significant. In this paper, to address
this challenge, we proposed a low-complexity BP based decoding scheme, which contains the decodability
detection stage and the early stopping prediction stage. The decodability detection stage can identify the
codewords in the deep channel fading environment and eliminate the unnecessary decoding operations to
reduce the decoding complexity, while the early stopping prediction stage can directly predict the required
number of iterations rather than checking the metric in each iteration to avoid the associated decoding delay.
Through the above two approaches, our proposed scheme is shown to achieve 71% decoding delay reduction
and maintain the same decoding performance as traditional BP, G-matrix,MinLLR schemes.

INDEX TERMS Polar codes, deep learning, BP decoding, decodability detection, early stop prediction.

I. INTRODUCTION
Polar code, invented by E. Arıkan in [1], has been regarded
as the first capacity achieving code for the binary discrete
memoryless channels. Due to the capacity achieving property,
polar code has been adopted as the channel coding scheme
for transmitting control signals in the fifth generation (5G)
wireless communication systems [2]. Although the encoding
delay and complexity for polar code is similar with traditional
turbo code [3] and low density parity check (LDPC) code,
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the decoding delay and complexity for polar code are in
general much more significant, which triggers a great amount
of research efforts recently [4]–[9].

Based on the existing literature, the decoding schemes
for polar code can be mainly divided into two categories,
i.e., successive cancellation (SC) based [1] and belief
propagation (BP) based decoding algorithms [10]. In the
SC based scheme, since the cancellation relies on the pre-
vious decoded information, the optimal detection strategy
needs to iterate bits by bits, which incurs significant decoding
delay. For example, successive cancellation list (SCL) and
cyclic redundancy check (CRC) aided SCL (CA-SCL) as
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proposed in [4], [11] require the decoding delay increases
exponentially with code length. To reduce the decoding delay,
successive cancellation stack (SCS) has been proposed in [5]
to reduce the searching depth of the potential trellis paths.
However, due to the serial decoding nature of all the above
SC based schemes, the decoding delay is still significant
and the practical hardware throughput is usually limited as
reported in [6], [7].

To address this issue, the BP based scheme utilizes a
parallel structure to achieve high throughput and low latency
as mentioned in [8]. Using the BP based decoding strategy,
log-likelihood ratios (LLRs) can be propagated and updated
stage by stage in the corresponding factor graph of polar
code, which can be easily implemented via a pipelined struc-
ture in very large scale integration (VLSI) design. How-
ever, the propagation and updating process in the BP based
decoding usually involves highly nonlinear operations as
shown later, and the decoding complexity is still significant.
To reduce the associated decoding complexity, min-sum (MS)
[8] and normalized min-sum (NMS) [9] decoding schemes
have been proposed to approximate the original nonlinear
operations using some basic operations. Another possible
solution is to stop the BP iterations at the earlier stage
instead of running the whole iteration processes [12]–[14].
For example, a matrix multiplication based method named
‘‘G-matrix’’ has been proposed in [12], which checks the
amplitude of LLR values after each iteration. In [13], [14],
the early stopping strategy has been improved to use the signs
and magnitudes of LLRs, and the corresponding checking
complexity can be reduced. To further reduce the decoding
complexity, the following two questions will be critical based
on the current investigation.
• Is it necessary to perform all the decoding process
at any time? If the transmitted polar codeword suffers
from a deep channel fading, the received side can not
recover the original information bits no matter how
many iterations are executed in the BP decoding pro-
cess. Therefore, a more reasonable policy is to eliminate
the whole decoding process and immediately ask the
transmitter to re-transmit again. With this in mind, if the
decodability of received codewords can be detected in
advance, we can minimize the associated complexity
as well as power consumption in the BP decoding
iterations and quickly generate a feedback signal for
re-transmission to minimize the potential delay. As far
as we are aware, the above questions for polar code are
still open.

• Can we directly predict the number of iterations
required for early stopping?Another interesting prob-
lem is whether it is possible to predict the number of iter-
ations in advance. Conventional early stopping strategies
as mentioned before, rely on checking the corresponding
stopping criterion during each iteration.1 As the criterion

1 In this paper, our main target is to figure out a low complexity decod-
ing scheme on top of the conventional BP decoding algorithms. Since the
convergence property of BP algorithms has already been proven in [10].

checking can be regarded as an interruption to the con-
tinuous BP iterations, the pipelined decoding flow in the
hardware implementation has to be paused during each
iteration, which causes significant delay overhead when
the number of iterations is not small.

Since the exact decoding function between the received
symbols and the decoded information bits is difficult to
characterize in general, it can be even more challenging to
describe the above problems using standard mathematical
frameworks. To solve this issue, a model free based decoding
technology has been proposed recently by applying the deep
learning based approaches. For example, a standard three-
layer perceptron has been proposed in [15], [16] to model
the decoding process for polar codes. In [17], [18], the sim-
ilar idea has been proposed to improve the performance of
traditional BP or MS algorithms by adjusting the weights
in the factor graph using stochastic gradient descent (SGD).
A unified decoding framework for polar and LDPC codes
has been proposed in [19], which utilizes the generalization
capability of neural networks.

Motivated by the aforementioned examples, we try to pro-
vide some preliminary answers to the above critical issues in
this paper. To be more specific, we propose a low-complexity
BP based decoding framework for polar codes by applying
the deep learning technology, which consists of the decod-
ability detection and the early stopping prediction procedures.
Nevertheless, as we will show later, to design and implement
themwithout domain knowledge in wireless communications
is never straight-forward, and a careful labelling mecha-
nism to reflect the wireless channel conditions is necessary.
With sufficient training data and carefully designed schemes,
the decodability detection stage is able to extract the intrinsic
features of LLRs and successfully predict the decodability
of received symbols.2 Meanwhile, the early stopping pre-
cidtion stage can estimate the required number of iterations
by learning the average/total improvment of LLRs during
BP iterations. Combine the above two stages, we can avoid
unnecessary decoding processes for polar codes in the low
signal-to-noise ratio (SNR) regime,such as deep fading chan-
nel.3 Based on the numerical experiments, we show that the
proposed low-complexity BP based decoding scheme can
achieve 10 times complexity reduction compared with BP [9]
in code length N = 1024 and per bit SNR Eb/N0 = 5 dB
while maintaining the same BLER performance.

The rest part of this paper is organized as follows. Section II
introduces some basic knowledge related to the BP based
low-complexity polar decoding scheme and the deep learn-
ing technology. In Section III, a low-complexity BP based

2As for the decodability detection, for those codewords in the deep fading
environments (e.g. the absolute values of LLRs are close to zero), the code-
word are likely to be undecodable, no matter which kind of code is applied.

3As for the early stopping prediction, since we only perform the numerical
simulations for polar codes, we cannot provide a concrete conclusion for
other ‘‘structured’’ codes and the extension to other coding schemes are still
unknown. However, we believe the proposed scheme can be extended to
linear block codes as the LLRs have strong correlations among neighboring
symbols/LLRs in general.
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FIGURE 1. An overview of polar encoding/decoding system.

decoding framework with decodability detection and early
stopping prediction is proposed and the corresponding com-
plexity analysis is provided in Section IV. The experimental
configurations and results are illustrated in Section V, respec-
tively. Finally, we draw the conclusion in VI.

II. BACKGROUND
In this section, we briefly describe the background informa-
tion for polar code and the deep learning technology.

A. POLAR CODE AND BP DECODING
Polar code is typically regarded as one type of linear block
codes, which is constructed on the basis of channel polar-
ization. Consider an (N ,K ) polar code with rate R = K/N
as shown in FIGURE 1, where N bits sequence u =

[u1, u2, . . . , uN ] consisting of K information bits and N −K
frozen bits are jointly encoded into x = [x1, x2, . . . , xN ].
Denote Gp to be the corresponding generation matrix and
the N -bit coded information x is generated at the transmitter
side through x = u · Gp, where Gp can be obtained via a
continuous Kronecker product of F, e.g.,

Gp = F⊗ log2 N , and F =
[
1 0
1 1

]
. (1)

In the above equation, F⊗n represents the n-th Kronecker
power of F. Without loss of generality, we assume binary
phase shift keying (BPSK) and the transmitted symbols
s = [s1, s2, . . . , sN ] can be generated through,

sj =

{
1, xj = 1
−1, xj = 0.

(2)

At the receiver side, the observed symbols, y, are cor-
rupted by the additive white Gaussian noise (AWGN) denoted
by n = [n1, n2, . . . , nN ], and the equivalent mathemati-
cal expression is given by y = s + n. To eliminate the
effect of different modulation schemes, per-bit LLRs, e.g,
b̂ = [b̂1, . . . , b̂N ] are often calculated before the decoding
process, which are defined as, b̂j = ln P(xj=0|y)

P(xj=1|y)
, for all 1 ≤

j ≤ N . In the conventional BP decoding process, two types
of LLRs, i.e., left-to-right messages, r(t)i = [r (t)i,1, . . . , r

(t)
i,N ],

and right-to-left messages, l(t)i = [l(t)i,1, . . . , l
(t)
i,N ], are uti-

lized, where i and t denote the stage and iteration indices,
respectively. As shown in FIGURE 2, the BP decoding
procedures rely on the bi-directional update of the left-to-
right and right-to-left messages according to the following

FIGURE 2. A factor graph of polar code with the block length N = 8. The
dashed block represents a basic processing element (PE).

recursive relations,

l(t)i,j = g
(
l(t)i+1,2j−1, l

(t)
i+1,2j + r

(t−1)
i,j+N/2

)
l(t)i,j+N/2 = g

(
r (t−1)i,j , l(t)i+1,2j−1

)
+ l(t)i+1,2j

r (t)i+1,2j−1 = g
(
r (t)i,j , l

(t)
i+1,2j + r

(t)
i,j+N/2

)
r (t)i+1,2j = g

(
r (t)i,j , l

(t)
i+1,2j−1

)
+ r (t)i,j+N/2,

(3)

where the function, g(a, b) = ln 1+ea+b

ea+eb , is usually approx-
imated as g(a, b) ≈ α · sgn(a)sgn(b)min(|a|, |b|) according
to [9].Where sgn(·) is sign function.We use this NMSmethod
as the BP decoding scheme in the rest of the paper. Denote
Ns = log2 N to be the total number of stages and the initial
condition for the above recursive update is given by,l

(0)
Ns+1
= b̂

r(0)1 = [r (0)1,1, . . . , r
(0)
1,j , . . . , r

(0)
1,N ],

(4)

where r (0)1,j equals to 0, if the jth bit is the information bit,

and equals to a large value otherwise. After Nmax (the pre-
set maximum number of iterations) rounds of BP iterations,
the decoded bits û = [û1, . . . , ûN ] are obtained via,

ûj =

{
0, if lNmax

1,j ≥ 0

1, otherwise.
(5)

B. EARLY STOPPING SCHEMES
In practical applications, the BP decoding scheme may not
need Nmax rounds of iterations before it can converge. There-
fore, a reasonable low-complexity decoding scheme is to
stop the iteration processes when the decoder can recover
the original transmitted sequence u. As proposed in [12],
two types of early stopping criteria, called G-matrix and
MinLLR, have been widely used, where both of them can
reduce the number of iterations during the BP decoding.
For the G-matrix early stopping scheme, the decoder esti-
mates the information sequence û(t) and the encoded bits
x̂(t) by manipulating the sum value of l(t)1 and r(t)1 as well
as l(t)Ns+1 and r(t)Ns+1, respectively, and checks the equality
û(t) · Gp = x̂(t) during each iteration. If the above equation
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FIGURE 3. An example of three-layer DNN used in [15] and [16]. This type
of neural network architectures generally includes the input layer, three
hidden layers, and the output layer.

holds, the decoding process is assumed to be successful, and
otherwise, the iteration process continues. For the MinLLR
scheme, most of the above procedures are identical except for
the early stopping criterion. During each iteration, MinLLR
computes the minimum absolute value of the output vector
{|l(t)1,j+ r

(t)
1,j|} and compares them with a predefined threshold.

BothG-matrix andMinLLR can reduce the number of iter-
ations in the BP decoding processes. However, the decoding
delay may still be quite significant when the required number
of iterations is large. This is because computing the early
stopping criterion during each iteration usually require com-
plicated matrix multiplication and comparison, and hence,
a novel approach to estimate the required number of iterations
is more desirable.

C. DEEP LEARNING FOR CHANNEL CODING
Deep learning [20] has been considered as a new approach
to describe nonlinear input and output relations and has
been widely applied to describe some challenging relations
in wireless communications. In the area of channel coding,
since there are many nonlinear relations among different
parameters, the deep learning techniques begin to play an
important role recently. For example, it has been applied
in [17] to optimize the scaling parameters in the BP decoding
processes, and in [21], a recurrent neural network (RNN)
based polar decoder has been invented to further quantize
those parameters for efficient hardware processing.

Instead of optimizing the decoding parameters, another
type of deep learning based scheme focuses on modeling the
entire nonlinear decoding functions, where [15], [16] adopts
three-layer DNN to achieve similar BER performance with
BP or SCL decoding as shown in FIGURE 3. In [19], a unified
polar-LDPC decoder using the deep learning based structure
has been proposed, which achieve similar decoding perfor-
mance for both polar and LDPC decoders simultaneously.

Although the above schemes provide several forward-
looking deep learning based approaches for efficient channel
decoding, the associated decoding complexities, especially
with the additional deep learning functions, have not been
carefully studied according to the existing literature.

III. LOW-COMPLEXITY BP BASED DECODING
In this section, a low-complexity BP based decoding frame-
work for polar code is presented, which includes the decod-
ability detection and the early stopping prediction.

A. OVERVIEW
To reduce the decoding complexity, a straightforward idea is
to minimize the decoding efforts when the coded packets are
suffering the deep channel fading. If we use the subscript k
to indicate the index of coded blocks and denote Tmin

k to be
the required minimum number of iterations for decoding the
k th block, a total number of NBL coded blocks can be classi-
fied as follows,

NBL =
NBL∑
k=1

(
I
(
uk = û

(Tmin
k )

k

)
+ I

(
uk 6= û

(Tmin
k )

k

))

=

NBL∑
k=1

(
I
(
uk = û

(Tmin
k )

k

)
︸ ︷︷ ︸

Correct Blocks

+ I
(
uk 6= û

(Tmin
k )

k |Tmin
k = Nmax

)
︸ ︷︷ ︸

Type I block errors

+ I
(
uk 6= û

(Tmin
k )

k |Tmin
k < Nmax

)
︸ ︷︷ ︸

Type II block errors

)
(6)

where I(·) denotes the indicator function, which equals to one
when the inner condition holds and zero otherwise. The corre-

sponding BLER, is defined as
∑NBL

k=1 I
(
uk 6= û

(Tmin
k )

k

)
/NBL .

As shown in Eq. (6), we can categorize the block decod-
ing errors into two types, where ‘‘Type I block errors’’ rep-
resent the decoding errors happened after Nmax rounds of
iterations, and ‘‘Type II block errors’’ occur when the early
stopping criterion is triggered. If the ‘‘Type I block errors’’
can be identified before the entire decoding process, we can
directly declare the block error and save the associated decod-
ing power without loss of the BLER performance. Mean-
while, if the required number of BP iterations, Tmin

k , can
be estimated in advance, we can minimize the associated
complexity for computing the early stopping criterion as
well.

Motivated by the above observations, we propose a
low-complexity BP based decoding framework as shown
in FIGURE 4, which includes the decodability detec-
tion and the early stopping prediction blocks. The decod-
abilty detection block is mainly targeting for identifying
‘‘Type I block errors’’ and directly declaring transmission
errors through a negative acknowledgement (NACK). With
this mechanism, the transmitters can perform re-transmission
immediately if needed. The early stopping prediction block
is cascaded afterwards, which estimates the number of iter-
ations required for BP iterations. As the early stopping
prediction is not perfect in general, we also propose a
compensation part after the predicted rounds of BP iter-
ations to avoid unnecessary decoding errors, which trig-
gers the compensation process when the CRC check is not
satisfied. The detailed descriptions are provided in what
follows.
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FIGURE 4. An overview of the proposed low-complexity BP based
decoding framework, which contains the decodability detection stage and
the early stopping prediction stage.

B. DECODABILITY DETECTION
In order to identify the ‘‘Type I block errors’’ based on the
observed symbols, yk , or the equivalent LLRs, b̂k , we need to
find a function fDD(·), which is able to model the behaviors
of decodability detection.Mathematically, it can be expressed
as the following non-convex optimization problem.
Problem 1 (BLE based Formulation):

minimize
θDD

NBL∑
k=1

∣∣∣fDD(b̂k;θDD)−I (uk 6= û(Nmax)
k

)∣∣∣ ,
subject to û(Nmax)

k = fBP(b̂k ;Nmax), |b̂k | ≤ εb, (7)

where fBP(·) denotes the BP decoding process, and εb reflects
the maximum LLR value supported by the practical systems.

By numerically generating different LLRs, b̂k , and the
corresponding ‘‘label’’, I

(
uk 6= û(Nmax)

k

)
, we can apply the

conventional machine learning approach in [19] to min-
imize the absolute value between fDD(b̂k ; θDD) and the
event I(uk 6= û(Nmax)

k ) to predict the ‘‘Type I block errors’’.
However, the above approach to solve Problem 1 may
not be a practical solution due to the following two rea-
sons. First, the indicator function is non-differentiable and
non-continuous, and a smooth sigmoid based activation
function [22], [23] at the output layer to model I(·) may
cause the inaccurate prediction. As we directly claim decod-
ing errors in the proposed scheme, the inaccurate predic-
tion can result in BLER performance degradation as shown
in FIGURE 5. Second, since the block error event, e.g.,
I
(
uk 6= û(Nmax)

k

)
may not be sufficient to describe different

FIGURE 5. BLER versus per-bit SNR Eb/N0 performance for different
decoding schemes under the polar coding length N = 1024. As shown in
this figure, the BE based formulation achieve the same BLER performance
with the original BP scheme; while the BLE based formulation has the
performance degradation due to the erroneous claim of
‘‘Type I block errors’’.

wireless fading environments, a more reliable scheme to
understand different block error events is desired.

In order to control the BLER performance degradation
under decodability detection schemes, a more reasonable
approach is to introduce an auxiliary variable γu to describe
the difference between the transmitted information bits uk
and the decoded bits û(Nmax)

k . Mathematically, we define γu =

1TN ·abs
(
uk − û(Nmax)

k

)
with abs(·) denoting the element-wise

absolute value of the inner vector, and by tuning the value
of γu, we can control the prediction accuracy as summarized
in the following lemma.
Lemma 1: The prediction accuracy,4 defined as the cor-

rectly predicted error blocks over the total number of pre-
dicted error blocks, has the monotonically non-decreasing
relation with respect to γu.

Proof: Please refer to Appendix A for the proof.
Based on the above lemma, we propose the bit error (BE)

based scheme by jointly considering the block error events
and the number of error bits in each block together, where
the mathematical formulation is given as follows.
Problem 2 (BE based Formulation):

minimize
θDD

NBL∑
k=1

∣∣∣∣fDD(b̂k ; θDD)−
I
(
1TN · abs

(
uk − û(Nmax)

k

)
≥ γu

) ∣∣∣∣,
subject to û(Nmax)

k = fBP(b̂k ;Nmax), |b̂k | ≤ εb, (8)

Based on the above BE based formulation, we can
obtain a more reliable decodability detection of the
‘‘Type I block errors’’ by tuning the threshold γu. By increas-
ing the value of γu, the neural networks are able to learn
the intrinsic features of block error events with more error
bits, and the decodability detection will be more reliable in

4The prediction accuracy in this paper is equivalent to the precision
concept in the machine learning area.
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FIGURE 6. Prediction accuracy versus per-bit SNR Eb/N0 relation for
different decodability detection schemes under the code length N = 1024
and the pre-defined threshold γu = N/2.

terms of the prediction accuracy. As shown in FIGURE 5,
the BE based approach can achieve the same performance
as compared with traditional BP detection, and provides
0.1 dB performance gain at BLER = 0.9 as compared
with the BLE based scheme. This is because the prediction
accuracy has been improved by increasing the value of γu
and the erroneous claim of ‘‘Type I block errors’’ diminishes
accordingly.5

In FIGURE 6, we compare the detection accuracy under
different per-bit SNR values to obtain a better understanding
of the proposed schemes. As shown in this figure, if the value
of γu exceeds half of the block length, e.g.,N/2, the BE based
formulation can provide a more reliable prediction accuracy
than the BLE based scheme, which is thus adopted in the
following evaluations.

C. EARLY STOPPING PREDICTION
After the decodability detection process, most of the remain-
ing decoding blocks require less than Nmax BP iterations, and
therefore, another possible method to reduce the decoding
complexity on top of the conventional early stopping schemes
is to eliminate the possible computation of early stopping
criteria, such as G-Matrix. Motivated by this goal, we for-
mulate the non-convex optimization problem to predict the
minimum required number of BP iterations, fTP(·), as well as
fTP(b̂k ; θTP), as follows.
Problem 3 (Tmin

k Prediction):

minimize
θTP

NBL∑
k=1

∣∣∣fTP(b̂k ; θTP)− Tmin
k

∣∣∣p ,
subject to Tmin

k =

{
argmin
t∈[1,Nmax]

fBP(b̂k ; t) = uk

}
,

|b̂k | ≤ εb. (9)

5By increasing the value of γu, the probability of miss detection will
be increased, since the condition, 1TN · abs

(
uk − û(Nmax)

k
)
≥ γu, is more

difficult to be satisfied. However, those miss detected blocks will go through
the conventional BP decoding process, which only increases the decoding
complexity and does not affect the BLER performance.

FIGURE 7. Histogram of (fTP (b̂k ; θTP )− T min
k ) for the coding length

N = 1024 and SNR = 5 dB under different values of p. As shown in this
figure, p = 2 provides the best prediction accuracy.

FIGURE 8. Histogram of (fTP (b̂k ; θTP )− T min
k ) for the coding length

N = 1024 and p = 2 under different per-bit SNR values. As shown in this
figure, insufficient BP iterations due to inaccurate predictions (red bar)
may still happen under different SNR cases.

In the above formulation, we introduce an auxiliary vari-
able p instead of choosing p = 1 in the decodability detection
stage. This is because the decodability detection is a typical
binary classification problem where the potential loss due
to error prediction is equal to 1, while the early stopping
prediction belongs to a multi-classification task. In this case,
we need to use the auxiliary variable p to control the inter-
class losses as illustrated in the following parts.

FIGURE 7 and FIGURE 8 illustrate the prediction accu-
racy under different values of p and per-bit SNR Eb/N0 by
accumulating the histogram of (fTP(b̂k ; θTP) − Tmin

k ). Once
the predicted results, fTP(b̂k ; θTP), are greater than or equal to
the minimum required number of iterations, Tmin

k , we can still
decode the block without errors. However, if (fTP(b̂k ; θTP)−
Tmin
k ) is less than zero, we will suffer from the block

decoding errors due to insufficient BP iterations. As shown
in FIGURE 7 and FIGURE 8, p = 2 provides the best predic-
tion accuracy when the per-bit SNR Eb/N0 equals to 5 dB,
and the proposed Tmin

k estimation strategy still suffer from
inaccurate prediction in different per-bit SNR cases.

VOLUME 7, 2019 159813
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FIGURE 9. BLER versus per-bit SNR Eb/N0 performance for different early
stopping prediction schemes under the polar coding length N = 1024.
As shown in this figure, the early stopping prediction with a BP based
compensate part can achieve the same BLER performance with the
original BP scheme, while the non-compensated scheme results in a BLER
error flow.

FIGURE 10. Number of block decoding errors for the coding length
N = 1024 under different per-bit SNR values. As shown in this figure,
insufficient BP iterations due to inaccurate T min

k prediction lead to
significant BLER performance degradation as shown in FIGURE 9.

In order to have an end-to-end performance point of
view, we plot the BLER versus per-bit SNR curves for the
traditional BP scheme with only Tmin

k prediction (denoted
as ‘‘non-compensated’’) and with compensated method as
shown in FIGURE 9. As we can conclude from this figure,
the major drawback of this scheme is the significant
BLER performance degradation when Eb/N0 exceeds 2 dB.
In FIGURE 10, we provide an in-depth analysis on the block
decoding errors. As we have explained before, the block
decoding errors can come from conventional BP decoding
errors (blue bar), directly claimed errors due to incorrect
decodability detection (green bar),6 and insufficient BP iter-
ations due to inaccurate Tmin

k prediction (yellow bar), and
according to FIGURE 10, the last one becomes the major
issue.

To deal with this issue, we propose some compensations as
shown in FIGURE 11. First, by setting the label of the neural

6There are almost no directly claimed errors at these SNRs.

FIGURE 11. An overview of the entire early stopping prediction
procedures with a BP based compensate part.

network as Tmin
k , we can obtain a trained DNN and then

using the network to predict an iteration number fTP(b̂k ; θTP).
The detailed parameters of the neural network is shown in
Appendix B. As can be seen in FIGURE 7, many ‘−1’ exist
which does not meet the minimum required iteration number.
Thus, the predicted iteration number can be added by one
to ensure the decoding performance without significant over-
head. Specifically, after fTP(b̂k ; θTP) rounds of BP iterations,
CRC is then performed to understand the decoding result.
If it fails to pass the CRC check, a compensation process is
initiated, which contains (Nmax − fTP(b̂k ; θTP)) rounds of BP
iterations. Through this compensation process, an entireNmax
rounds of BP iterations are offered to decode this block, and a
final round of CRC check is then used to complete the decod-
ing process. We summarize the proposed low-complexity
BP based decoding algorithm in Algorithm 1, and as shown
in FIGURE 9, it eventually provides limited performance loss
as compared with the traditional BP decoding performance
with Nmax rounds of iterations.

IV. COMPLEXITY ANALYSIS
In this section, we compare the decoding complexity of the
proposed low-complexity BP based decoding scheme with
three reference systems, including the traditional BP decod-
ing [9] with Nmax iterations, the G-matrix based scheme as
well as the MinLLR based scheme [12]. We denote NG, NM ,
and Np as the actual numbers of BP iterations required for the
G-matrix based, the MinLLR based, and the low-complexity
BP based decoding schemes, respectively. Also, as for the
networks for the decodability detection and Tmin

k prediction,
we denote NH as the number of nodes in the first hidden
layer, whose number satisfies the empirical formula as shown
in [24]. Although obtaining a closed-form expression for

159814 VOLUME 7, 2019



Y. Wang et al.: Low-Complexity BP Based Decoding Scheme for Polar Codes - Decodability Detection and Early Stopping Prediction

TABLE 1. Complexity comparison for different decoding schemes.

Algorithm 1 Overall Procedures for the Proposed Scheme
Input:

Initial LLRs b̂;
Predefined maximum iteration number Nmax.

Output:
Decoded bits û;

1: Use b̂ to do the decodability detection fDD(·) to obtain the
decodability detection result.

2: Use the decodability detection result to do the Tmin pre-
diction fTP(·) to obtain the predefined iteration number:
fTP(b̂k ; θTP);

3: for t = 1, 2, . . . , fTP(b̂k ; θTP) do
4: Update l(t)i and r(t)i based on Eq. (3);
5: end for
6: Use CRC criterion to check whether the decoding is

successful;
7: if CRC check is met then
8: Decoding is assumed to be successful and output û;
9: Send ACK to the transmitter.

10: else
11: for t = fTP(b̂k ; θTP)+1, fTP(b̂k ; θTP)+2, . . . ,Nmax do
12: Update l(t)i and r(t)i based on Eq. (3);
13: end for
14: Output û based on l(t)1 ;
15: Do another CRC check and determine send

ACK or NACK to the transmitter;
16: end if

them is mathematically intractable,7 we provide the overall
complexity in terms of addition, comparison and multipli-
cation for the proposed scheme in the following lemma and
compare with other decoding schemes in TABLE 1.8

7It has been reported in [12] that even for given observed LLR b̂k ,
the actual number of BP iterations for the G-matrix and MinLLR based
schemes are difficult to obtain.

8 In TABLE 1, the total computational complexity scales with the highest
order of addition, multiplication, and comparison operations.

Lemma 2: The overall complexity9 of the proposed low-
complexity BP based decoding scheme is given by,

((7/2+ N )NH + 5/8N 2
H )(2− ψ)

+(10NpN (log2N − 1)+ 1+ Nmax)(1− ψ) (10)

where ψ is the percentage of undecodable blocks predicted
after decodability detection and (1 − ψ) is the percentage
that actually needs to be decoded after decodability detection.
Note that fTP(b̂k ; θTP) ≤ Np ≤ Nmax and the complexity
scales with the order of O(NpN log2N ).

Proof: Please refer to Appendix B for the proof.
From Lemma 2, we can observe that the complexity reduc-

tion of the proposed schememainly comes from the following
two parts. The first part consits of directly claiming decoding
errors without performing Nmax rounds of BP iterations, and
the second part is by eliminating the early stopping crite-
ria computation for each round of BP iteration. It is worth
mentioning that the size of neural networks in terms of the
number of neurons for both decodability detection and Tmin

k
prediction does not scale with the block length N as well
as the required number of BP iterations Np. As summarized
in TABLE 1, the early stopping criteria computations actually
scale with the order of O(NGN 2) and O(NMN log2N ) for
G-matrix and MinLLR [12] schemes, respectively, which
grows significantly with the increase of the block length N
and the required numbers of BP iterations, i.e, NG and NM .
For our proposed low-complexity scheme, since the addi-
tion, multiplication, and comparison operations scale with the
same order of O(NpN log2N ), we conclude that the overall
computational complexity scales withO(NpN log2N ) as well.

9In the complexity derivation, we treat the addition, multiplication, and
comparison operations to be the same for simplicity, since the incurred
delays of the above three operations in our evaluation environment (e.g.,
Matlab2016a) are nearly the same, and we believe the extension to the
scenario when three operations incur different computational complexities
is straight forward.
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FIGURE 12. The decoding delay comparison for different low-complexity
decoding scheme. As shown in this figure, the proposed scheme achieves
more than 70% delay reduction if compared with other baseline schemes.

Based on the above analysis, we now compare the decod-
ing delays10 for different schemes in FIGURE 12, where
N = 1024 and Eb/N0 = 3 dB. The average decod-
ing delay can be classified as follows, e.g., the normalized
BP operation, G-matrix, and MinLLR operations, as well as
the operations for the decodability detection and the early
stopping prediction. As shown in FIGURE 12, in terms of BP
operations, the delay of the original BP algorithm contains the
whole BP operation and leads to a high decoding delay. The
G-matrix method requires relative fewer BP iterations but it
takesmore time to calculate thematrixmultiplication and also
results in a high decoding delay. The MinLLR needs more
BP iterations and leads to a high decoding delay. However,
our proposed low-complexity method only needs the opera-
tions for the decodability detection and the Tmin

k prediction
and Np times of BP iterations, which shows a lower decoding
delay compared with other methods. Note that the DNN has
a highly parallelized structure, the delay for fDD(·) and fTP(·)
is very low. More details on decoding delay will be presented
in Section V.

V. EXPERIMENTAL RESULTS
In this section, we provide several numerical examples
to demonstrate the effectiveness of the proposed low-
complexity BP based decoding scheme. TABLE 2 lists
the detailed experiment setup.11 In the following evalua-
tion, we introduce the empirical results from three differ-
ent aspects, including the effect of decodability detection,
the effect of early stopping prediction, and the overall decod-
ing delay compared with traditional methods.

A. EFFECT OF DECODABILITY DETECTION
The prediction accuracy φ of the decodability detection by
our proposed scheme is plotted in FIGURE 13 under different
code lengths and SNRs.

10 In the following evaluation, we directly use the decoding delay as the
complexity measure since the processing delays for additions, multiplica-
tions, and comparisons in our evaluation environment are nearly the same
with less than 10% variations.

11 We use default settings in Keras platform and did not apply other early
stopping techniques in the training stage.

TABLE 2. Detailed experiment setups.

FIGURE 13. Prediction accuracy versus per-bit SNR Eb/N0 performance
for different coding length N = 1024 and 2048. The pre-defined
threshold γu is chosen to be N/2 and the BE based formulation is
adapted.

We use the BE based method mentioned in section III-B
to understand the performance as well as the suitable code
length of the decodability detection and the results are shown
in FIGURE 13. It is shown that with the relative large code
length, the accuracy φ of decodability detection can be very
high. The reason is that the number of b̂ is relative sufficient
so that enough information can be well learned to get the
mapping relationship between b̂ and I

(
uk 6= û

(Nmax)
k

)
. On the

contrary, we find that when the code length is relatively small
(≤ 1024), the accuracy φ of the detection is relatively low due
to the insufficient information bits for the neural network to
learn.

In our experiment, we also find that not all situations are
suitable for decodability detection. For example, when the
SNR increases, the average BER in each block decreases so
that there is not many labeled undecodable blocks when using
BE based decodability detection method. So, the relative
low SNR (lower than 1dB in this paper) is suitable for the
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FIGURE 14. Prediction accuracy versus per-bit SNR Eb/N0 performance
under different coding length N = 16,128 and 1024. As shown in this
figure, the prediction accuracy improves as the per-bit SNR increases.

decodability detection. And when the SNR goes higher we
don’t need this step at all.

B. EFFECT OF EARLY STOPPING PREDICTION
After the decodability detection process, we use the early
stopping prediction part to predict the iteration number of the
remaining blocks and give a compensate method if necessary.
The accuracy and BLER performance of the early stopping
prediction are given as follows.

1) ACCURACY
FIGURE 14 shows the accuracy of the Tmin

k prediction, which
is defined as the ratio of the number of blocks correctly
judged by the CRC check to the total number of simulated
blocks NBL by using the Tmin

k prediction.
From FIGURE 14, we can observe that the accuracy

increases as SNR increases given the code length N . This
is because with a small SNR, the number required for early
stopping fTP(b̂k ; θTP) increases and the fluctuation of Tmin

k
increases. On the other hand, at low SNR region, the code-
word may not be decoded no matter how many iterations
the BP operates. With a large SNR, the DNN can predict
the number of correct iterations Tmin

k with a large probability
as Tmin

k is small and uniform in this case.

2) BLER
BLER is an important indicator to show system reliability.
FIGURE 15 compares BLER of different methods under
different SNRs. It can be seen from FIGURE 15 that our
proposed scheme can achieve a similar BLER performance
comparedwith traditional BP [9],G-matrix, andMinLLR [12]
when the code length is 16, 128, and 1024. Specifically,
in the case of N = 1024 and SNR = 1 dB, the decodability
detection can correctly identify ‘‘Type I block errors’’ with
no performance degradation if compared with the conven-
tional BP decoding method.

The reason of this phenomenon is as follows. First, in the
decodability detection stage, we apply the BE based formu-
lation to achieve a highly reliable decodability prediction

FIGURE 15. BLER versus per-bit SNR Eb/N0 performance for different
low-complexity decoding schemes under different coding lengths
N = 16,128 and 1024. As shown in this figure, the proposed scheme
achieves the similar BLER performance as the conventional
BP scheme [9] and the other low-complexity decoding schemes,
including G-matrix, and MinLLR [12].

FIGURE 16. Decoding delay about our scheme and conventional BP [9],
G-matrix, and MinLLR [12] decoders, N = 16.

result with marginal performance degradation as explained in
Appendix A. Second, in the early stopping prediction stage,
we propose to use the compensation mechanism as explained
in Section section III-C to deal with the incorrect prediction
cases. Therefore, combining the above two effects, the pro-
posed scheme can achieve a similar BLER performance if
compared with traditional BP decoding algorithms.

C. OVERALL DECODING DELAY
FIGURE 16, FIGURE 17, and FIGURE 18 depict the decod-
ing delay of different methods.

We can see that our method can realize a lower decoding
delay compared with other three methods. Note that when
N = 1024 and Eb/N0 = 1 dB, the ψ in TABLE 1 created by
the decodability detection is about 0.01 and can save around
1% of decoding delay. The time consumed by fDD(b̂k;θDD)
and fTP(b̂k ; θTP) is ignorable since they are executed by the
highly parallelized neural network.
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FIGURE 17. Decoding delay about our scheme and conventional BP [9],
G-matrix, and MinLLR [12] decoders, N = 128.

FIGURE 18. Decoding delay about our scheme and conventional BP [9],
G-matrix, and MinLLR [12] decoders, N = 1024.

It can be concluded that the proposed method can not
only guarantee the performancewithout deterioration but also
achieve similar or lower time consumption compared with
existing decoding methods.

VI. CONCLUSION
In summary, we proposed a low-complexity belief propaga-
tion based decoding scheme for polar codes. By detecting
the decodable codewords and predicting the iteration number
from the received signal, we can claim error directly and
decode using the predicted number directly without any judg-
ment, and the performance loss is compensated by BP prop-
erly. Results show that the decodability detection can detect
some error blocks accurately and the BLER performance of
our method is the same compared with traditional methods.
Meanwhile, the overall decoding delay is lower than that of
traditional methods.

FIGURE 19. An example (K = 7) of different hyperspaces with the
intersecting space represents their same LLR distribution, where γu = 6
for V2 and γu = 1 for V1.

APPENDIX A
PROOF OF LEMMA 1
To prove Lemma 1, we use K -dimensional hyperspaces to
represent the LLR distribution in the training stage. As illus-
trated in FIGURE 19, we denoteVn as a set ofK -dimensional
hyperspaces, as given by

{Vn ∈ RK
|rVk ,ok < rmax}(0 < n < 2K ) (11)

Here, where Vn := {V0,V1, . . . ,V2K },K = 1, 2, · · · ,
denotes the set of all possible LLR hyperspaces with infor-
mation bits of K . ok is the center of Vk , which represents the
possible codeword in the noise-free state. Due to the influence
of noise, the hyperspace Vk expands from the center ok and
reforms to a sphere with radius rVk ,ok , which cannot exceed a
maximum value rmax. Note thatVn is the space that the neural
networks can recognize.

Suppose that the center o0(1, 1, 1, 1, 1, 1, 1) of V0 is the
correct codeword to be decoded, see FIGURE 19. The centers
of hyperspaces V1 and V2 beside V0 are o1(1, 1, 1, 1, 1, 1, 0)
and o2(1, 0, 0, 0, 0, 0, 0), respectively. We denote the inter-
secting spaces of V0 and the other two hyperspaces as{

S1 = V0 ∩ V1

S2 = V0 ∩ V2.
(12)

S1 and S2 represent the similar LLR distribution between the
correct codeword o0 and wrong codeword o1 or o2. We can
conclude that the more space V0 intersects with V1 or V2,
the lower prediction accuracy of the neural networks is. Note
that for V1, the number of different bits of the codeword
from V0, denoted as γu, is 1. It means the centers of the
two hyperspace is very close and the probability of wrong
prediction is υ(S1)

υ(V0)
(denote υ(·) as the volume function).

For V2, as γu increases to 6, the distance of the centers of V0
and V2 increases. In turn the probability of wrong prediction
decreases to υ(S2)

υ(V0)
. In other words, the prediction accuracy

of the neural network shows a monotonically non-decreasing
relation with respect to γu.
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TABLE 3. DNN for both strategies.

APPENDIX B
PROOF OF LEMMA 2
In the training part, both decodability detection and
Tmin
k prediction use a three-hidden layer DNN to repre-

sent the non-linear relationship of decodability detection and
Tmin
k prediction. We illustrate the two networks parameters

in TABLE 3, where NH is set to 128.
In the fully-connected networks, since the output of

one neuron can be formulated as σ (
∑
widi + wb), where

σ,wi, di,wb denote the activation function, network weight,
input and bias, respectively. This function needs several add,
multiplications and comparison operations. In our experi-
ment, we use three hidden layers (NH ,NH/2,NH/4) to map
the two tasks fDD(b̂k ; θDD) and fTP(b̂k ; θTP).

For the add and multiplication operations, as is shown
in the output of neuron, the multiplication will be executed
several times and the bias will be added after every neuron.
Thus, the total number of the add operation is 7/4NH + 1
for the fDD(b̂k ; θDD) and 7/4NH +Nmax for fTP(b̂k ; θTP). For
the multiplication, both the two methods need 5/8N 2

H +NNH
times.

For the comparison operation, since the activation function
of the hidden layers of the two networks is Rectified Linear
Unit (ReLU) whose output can be formulated as max{0, x}
and this function can be treated as a comparison. Thus,
the total number of comparison operation is 7/4NH for both
two methods.

Through the above calculation, the total operation numbers
of the proposed method can be written as Eq. (10) by adding
the corresponding BP operations.
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