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ABSTRACT Although structure entropy is a useful method to measure the complexity of complex networks,
there exist shortcomings, such as the limits of network scales and network types. By combining structure
entropy and the absolute density of network, a method is improved to effectively measure the complexity of
complex networks. For the improved measure, not only the topology of network is considered, but also the
scales of network are considered, and the measurement of network complexity is not affected by the network
scales and types. Moreover, the complexity of small-world networks, BA scale free networks, Sierpinski
self-similarity networks, Erodös-Rényi (ER) random networks and six real networks (i.e., the 9/11 terrorist
network, Celegans network, a USAir network, the USA Political blogs network, a collaboration network in
science of networks (NetScience) and yeast protein interaction (YPI) network) are measured by employing
the method. The results show that the improved method is effective and feasible to measure the complexity
of complex networks.

INDEX TERMS Complex network, structure entropy, absolute density.

I. INTRODUCTION
With the extensive study on complex network, such as small-
world network model [1], Newman and Watts proposed the
NW network model [2], BA scale free network model [3],
self-similarity network model [4] and ER random network
model [5] etc., the complexity of complex network was
researched by many scholars [6]–[10]. There is not a stan-
dard model for representing the complexity of network.
However, some researchers were tried to define a measure-
ment of the complexity of networks from different fields.
In Ref. [11], the entropy of a canonical network ensem-
bles was defined based on the log-likelihood function L =
−
∑

i<j logπij
(
aij
)
and the Shannon entropy of the ensemble

was given on the basis of the entropy of canonical network
ensembled to measure complexity of network. In addition
to these two entropies, by considering the Laplacian matrix
of network, the Neumann entropy of a network ensemble is
also introduced to measure the complexity of network [11].
To accurately measure the structure heterogeneity of complex
networks, an entropy was defined based on automorphism
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partition by considering the number of nodes in the vertex
set [12]. Then, the degree sequence of in and out degrees of
directed networks was considered to measure the complexity
of network [13]. Moreover, the complexity of real networks
were measured. For example, the complexity of public trans-
port networks [14] and social network [15] were studied.

Network connectivity, as a measure of network stability
and complexity, was applied to study the complexity of
the real networks [16]–[18]. The complexity and stability
of small-world networks have been studied based on the
connectivity [17]. The connectivity in airline networks and
complexity analysis of Lufthansa’s network were studied by
Reggiani et al. [18]. For the network connectivity, network
minimum cutting edges were considered. In the same way,
from the perspective of considering network edges, the total
number edges of networkwere taken into account for network
density [19].

Network density was a useful method to measure the
complexity of network by considering the degree of network
intensiveness, which has been widely studied for the real
networks [20]–[22]. For example, analysis of Japanese water
supply organizations based on network density revealed that
the economies of network density existed [23]. The density
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of the mobile network was perceived, and the base station
density adaptive algorithm was designed to improve the
throughput of a mobile network [24]. In 2006, a density
metric was proposed to measure the complexity of business
process models on the basis of a social network [25]. The
relationship between traffic density and spatial distribution in
cellular networks has been studied [26]. Analysis of network
complexity by density only considers the edges of network
simply, and the density of different sizes network cannot be
compared. The concept of absolute density was proposed in
the social network [27], the problem of network densities of
different sizes being incomparable was avoided. However,
the network connectivity and absolute density only consider
the complexity of network from the perspective of the net-
work edges, except for the edges, some information contained
in the topology of the network is ignored.

Besides the connectivity and density of network, entropy
is a good tool for studying network information and topology
uncertainty [28], which has been widely applied to mea-
sure the complexity of network [29]–[32], especially for the
structure entropy. The degree and betweenness of network
are considered in structure entropy. Based on the degree
centrality, local structure entropy was used to identify the
network centrality by Zhang et al. [33]. The degree was
considered to define the structure entropy which was used
to measure the heterogeneity and resilience of network [34].
At the same time, in order to measure the structure prop-
erties of the weighted network, the betweenness structure
entropy has been proposed [35]. On the basis of Tsallis
entropy [36], an improved structure entropy was applied
to measure the complexity of network. In addition, for the
Tsallis structure entropy, which was modified by consider-
ing the degree of nodes to measure the complexity [37].
Meanwhile, the Tsallis entropy was combined with fractal
dimension to define new structure entropy for measuring
network complexity [38]. The complexities of real networks
were also discussed by structure entropy. The complexity of
the associated domains of genes in cells can also be reflected
by structure entropy [39]. The structure entropy of an auto-
morphism partition was used to measure the heterogeneity of
the network [12]. Only one indicator was considered in these
entropies, therefore, a modified structure entropy is given
based on nonextensive statistical mechanics, which combined
the betweenness and degree [40].

The complexities of some special structure networks were
effectively measured by the modified structure entropy in
Ref. [40]. However, for the different density and no weighted
spacial structure network, the complexities of these networks
could be not measured by the modified structure entropy in
Ref. [40]. Meanwhile, the network complexity of different
scales cannot be measured by the existing structure entropy.
An improved method is proposed to measure the complex-
ity of network in this paper. For the proposed method, not
only the structure entropy of network is considered, but also
the absolute density of network is considered. The degree
and betweenness are considered in the structure entropy.

Using absolute density, the problem that network with differ-
ent scales cannot be compared is avoided. For the proposed
method, when the betweenness of network is equal to zero,
the structure entropy degenerates into the degree structure
entropy [34]. The structure entropy proposed in Ref. [40] is
the special case of the proposed method. Moreover, seven
constructed small-world networks, BA scale free networks,
Sierpinski self-similarity networks, ER random networks,
and six real networks are used to illustrate the proposed
method. These results show that the proposed method is
effective and feasible.

The paper is organized as follows: some basic concepts
are introduced in Section 2. In Section 3, a new method is
proposed to measure the complexity of complex networks.
In Section 4, seven constructed small-world networks, BA
scale free networks, Sierpinski self-similarity networks, ER
random networks, and six real networks are used to illustrate
the feasibility and effectiveness of the proposed method.
Section 5 is the conclusion.

II. PRELIMINARIES
In this section, some basic concepts including the entropy and
structure entropy of complex network are described.

A. ENTROPY OF NETWORK
Entropy is applied to measure the degree of uncertainty in an
event. The value of the entropy increases, and the uncertainty
of the event increases. The complexity of more and more
events could be measured by the entropy. Some definitions
of entropy are given to measure the complexity of complex
networks.

1) TSALLIS ENTROPY
In 1988, based on the Boltzmann-Gibbs entropy [41] and
Shannon entropy [42], a more general entropy was given by
Tsallis [36]:

Sq = k
N∑
i=1

pi lnq
1
pi
, (1)

where pi is the probabilities associated with an event, q is the
entropy index and denotes the different relationships among
those subsystems.N is the total number of nodes, k represents
the Boltzmann universal constant. The logarithmic function
in equation (1) is expressed by

lnq pi =
p1−qi − 1

1− q
, (2)

or

lnq
1
pi
=

1
pi

1−q
− 1

1− q
=
pq−1i − 1

1− q
. (3)

where pi > 0, q ∈ < and the logarithmic function is ln1 pi =
ln pi in equation (2) while q equal to 1. From equations (1)
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and (2), the Tsallis entropy was rewritten as [40]

Sq = k
N∑
i=1

pi
pq−1i − 1

1− q
,

Sq = k
N∑
i=1

pqi − pi
1− q

,

Sq = k

1−
N∑
i=1

pqi

q− 1
. (4)

The second formation of equation (4) is improved by
Zhang et al. and it will be introduced in the next subsection.

B. STRUCTURE ENTROPY
Inspired by entropy, structure entropy is applied to measure
the complexity of network. In this subsection, the degree
structure entropy [34], betweenness structure entropy [35]
and an improved Tsallis structure entropy by consider-
ing nonextensive statistical mechanics [40] are introduced,
respectively.

1) DEGREE STRUCTURE ENTROPY
The degree structure entropy was defined as follows [34],

Edeg = −k
N∑
i=1

pi log pi, (5)

where pi is defined based on degree and given by [43],

pi =
degree (i)

N∑
i=1

degree (i)

. (6)

2) BETWEENNESS STRUCTURE ENTROPY
Inspired by the degree structure entropy, the betweenness is
also used to define the structure entropy. The betweenness
structure entropy was defined as follows [35],

Ebet = −
N∑
i=1

p′i log p
′
i, (7)

where p′i is defined on the basis of betweenness b(i) [44],
the definitions of p′i and b(i) are given in the following,
respectively.

p′i =
b(i)
N∑
i=1

b(i)

, (8)

bi =
∑
1≤i≤N
s6=i 6=t

σst (i)
σst

, (9)

where σst is the total shortest paths between node s
and t , σst (i) denotes the number of shortest path through
node i.

3) STRUCTURE ENTROPY BASED ON
DEGREE AND BETWEENNESS
Based on the Tsallis entropy, the degree entropy and
betweenness entropy were combined with the nonextensive
statistical mechanics, a structure entropy was defined by
Zhang et al. [40]:

S ′Q = −k
N∑
i=1

pqii − pi
1− qi

, (10)

where pi is defined by equation (6),

qi = 1+ (b(max)− b(i)),

b(max) = max[b(i), (i = 1, 2, 3, . . . ,N )].

When all the qi is equal to 1, i.e.,

q = {q1, q2, . . . , qi, . . . , qN } = {1, 1, . . . 1, . . . , 1},

That is the special case of equation and the base of the
logarithmic function is 1, the entropy is degenerated to the
degree structure entropy.

The structure entropy is used to measure the complexity of
network, the values of S ′Q of different network are different.
The entropy index q is defined by the betweenness, the degree
is also considered in the entropy. The structure entropy could
deal with the complexity of some special structure networks
effective. However, there is a disadvantage of this entropy
for measuring the complexity of network, which will be
introduced in the next section.

C. ABSOLUTE DENSITY OF NETWORK
In order to describe the intensity of interconnection among
nodes in network, an important concept, named as density,
is introduced. The network density characterizes the com-
plexity of edges connection in network. The density of net-
work is generally defined as ‘‘the ratio of the number of
edges actually present in network to the number of edges that
are theoretically the most likely to be produced in network’’,
the density of network G(V ,E) was defined as follows [45]

d(G) =
2L

N (N − 1)
, (11)

where L denotes the total number of edges of network.
Density is an important measure and easy to calculate.

However, the simple definition of density makes it vulnerable
to the size of network and properties of the relationship in
network, it can not measure the density of different scale
networks. Therefore, the absolute density by defined to make
the comparison of network density unaffected by the network
scale, which was denoted by [27]:

d ′(G) = L/(4lR3/3D), (12)

where l, R, D are the network circumference, network radius,
and diameter, respectively. Network circumference l is the
maximum of all paths in the network. Network diameter D is
the maximum value of the shortest path of network, the value
of network radius R is half of network diameter D.
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III. THE PROPOSED METHOD
In this section, a new method is proposed to measure the
complexity of network. Not only the structure entropy of net-
work is considered, but also the absolute density of network
is considered.

A. THE DISADVANTAGE OF THE STRUCTURE ENTROPY S ′

Q
The structure entropy of network combined with degree and
betweenness was improved based on the Tsallis entropy [40].
The structure entropy has a disadvantage, i.e., it is not effec-
tive to measure the complexity of some networks. On the one
hand, when the betweenness of the network is all equal to
zero, that is, qi = 1, the structure entropy degenerates into
the degree structure entropy at this time. If the degree of each
node of the network is the same as shown in figure 1, then the
structure entropy is invalid, the complexity of the network is
unable to be measured by this method. On the other hand,
in reference [40], when the nodes had the same degree and
betweenness, the complexities of the network are not also
measured.

FIGURE 1. Four constructed networks. Networks (a) and (b) have 6 nodes,
networks (c) and (d) have 5 nodes. All the nodes of networks (b) and (c)
are connected, networks (a) and (d) are the ring network.

In figure 1, networks (a) and (d) have the same structure,
which are the ring networks. The qi of each node is equal in
the same network. For the networks (b) and (c), they are glob-
ally coupled networks. The values of degree and betweenness
of each node are also equal in the same network. Compared
network (a) with (b), the structures of the two networks are
different, the structures of the network (c) and (d) are also
unlike.When the complexity of the four networks ismeasured
by the structure entropy proposed in reference [40], the values
of S ′Q of network (a) are equal to the network (b), network
(c) equal to the network (d). The complexity of network is
measured by equation (10), we have

S ′Q(a) = S ′Q(b) = 1.7918, S ′Q(c) = S ′Q(d) = 1.6094.

The results shows that the complexity of the four networks is

Network(a) = Network(b),Network(c) = Network(d).

From figure 1, the structure of the network (a) and net-
work (b), network (c) and network (d) are not the same.
Although the degree and betweenness of the four networks
are different, the complexity of network (a) and network (b)
are the same, the values of structure entropy of network (c)
and network (d) are the same. For the situation the same as
the four networks, the structure entropy of equation (10) can
not measure the complexity of these networks.

B. A NEW METHOD TO MEASURE THE
COMPLEXITY OF NETWORK
On the one hand, the structure entropy is proportional to the
complexity of the network. The larger the network structure
entropy S ′Q, the more complex the network. On the other
hand, the density of network reflects the degree of association
among nodes. The more connections among network nodes,
the greater the density of the network. Absolute density not
only reflects the connection of nodes within network but also
the measurement is not limited by the size of the network.
The structure entropy is proportional to the complexity of the
network. In this section, a newmethod is proposed tomeasure
the complexity of network. Not only the structure entropy of
network is considered, but also the absolute density of net-
work is taken into account. In the proposed method, the total
number edges, radius R and circumference l of the network
are used to calculated the absolute density of the network.
Moreover, the degree and betweenness are considered in this
method. The definition of network complexity is given as
follows:
Definition 1: In arbitrary network G(V ,E), the complex-

ity of network C is measured by the product of absolute
density d ′(G) and structure entropy S. The absolute density
d ′(G) of network is denoted by the D, R, l, and L. Where D, R
is the diameter and radius of network, l is the circumference
of network, and L is the total number of edges.
The mathematical expression is given by,

C = d ′(G) · S (13)

where d ′(G), is the absolute density of network defined in
equation (12) [27]. S denotes the structure entropy of net-

work [40], that is S = −k
N∑
i=1

p
qi
i −pi
1−qi

. The pi is defined in

equation (6), and qi is denoted in equation (10). k denotes
the Boltzmann universal constant.

If the betweenness of all nodes are equal to zero, i.e.,

q = {q1, q2, . . . qi . . . qN } = {1, 1, . . . 1 . . . 1}.

The structure entropy degenerates degree structure
entropy [34] and for the arbitrary one node the betweenness
is equal to zero, its entropy value is also replaced by the
degree structure entropy. There are the isolated nodes whose
structure entropy is assumed to be 0.0001. The structure
entropy in reference [40] is the special case of the proposed
method, that is, the absolute density of network is equal to 1.

For example, using the proposed method, the complexity
of four networks in figure 1 could be measured. For figure 1,
using the proposed method and equation (10) to measure
the complexity of the four networks, the results are shown
in table 1.

From table 1, the values C of the networks are different,
so the complexities of different networks can be measured.
The complexity of network (a) and network (b) are different,
the values of the complexity of network (c) and network (d)
could be measured. The complexity of the four networks
in figure 1 is not effectively measured by equation (10),
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TABLE 1. The values of complexity of networks in figure 1.

TABLE 2. The complexities of constructed small-networks.

while the complexity of the four networks can be effectively
distinguished by the proposed method.

From figure 1 (a) and (b), their structures are differ-
ent, while when using the equation (10) to measure their
complexity, the results are the same. Similarly, for the net-
works (c) and (d) in figure 1 the structures are different,
the values of structure entropy S ′q are also equal, that is,

S ′Q(a) = S ′Q(b) > S ′Q(c) = S ′Q(d).

However, by using the proposed method to measure
the complexity, their complexity can be effectively identi-
fied, i.e.,

C(a) < C(b), C(d) < C(c).

The complexity of networks (a) and (b), networks
(c) and (d) in figure 1 are different, they are effectively
distinguished for the networks which have the same nodes
while the structure is different. In addition, for the networks
with the same structure but the different number of nodes,
the proposedmethod is also effective tomeasure the complex-
ity. Form the first row of table 1, the values of the complexity
of networks (a) and (d), networks (b) and (c) are different,
that is

C(a) < C(d), C(b) < C(c).

From figure 1, the edges of networks (b) and (c) are more
than networks (a) and (d). The values of complexity of
networks (b) and (c) are big. Because the absolute density
of network is considered, the proposed method is effective to
measure the complexity of network. Once a network is given,
the proposed method could measure the complexity of the
network which is not affected by the network scale and type.

IV. APPLICATION TO NETWORKS
In this section, the constructed small-world networks,
BA scale free networks [3], self-similarity networks

(Sierpinski self-similarity network [46]), ER random net-
works [5] and six real networks are used to illustrate the
feasibility of the proposed method.

A. SMALL-WORD NETWORKS
With the further study of the network, the small-world prop-
erty of complex networks has been discovered [1], and there
exists small world property in the real network. The small-
world network has short average distances and large cluster-
ing coefficients. The small-world network is very similar to
the real network. In order to illustrate the effectiveness of
the proposed method, seven small-world networks are con-
structed. The construction steps of the small-world network
are as follows [1], [47],
1) Start with the regular network. Consider the nearest

coupled network with N nodes, these nodes constituted a
ring in which each node is connected to its neighboring K/2
nodes, K is an even.
2) Randomize reconnection. Each edge in the regular net-

work is randomly reconnected with probability p, that is,
one endpoint of the edge remains unchanged, and the other
endpoint becomes a randomly selected one of the remaining
N − K − 1 nodes in the network with probability p. Among
them, there can be at most one edge between any two different
nodes.

According to the constructed method, seven small-world
networks are produced, one of them is shown in figure 2 (a).
Using the proposed method to measure the complexity of
seven small-world networks, the results are shown in table 2.

From table 2, although the seven networks are all the
small-world networks, the values of C are different after
the complexity is measured by the proposed method. And
the values of the proposed measure are different from the
structure entropy S ′Q, the reason is that not only the structure
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TABLE 3. The complexity of constructed BA-networks.

TABLE 4. The complexity of different Sierpinski self-similar networks.

entropy is considered in the proposed method, but also the
network absolute density is taken into account.

From table 2, the values of complexities C of the seven
constructed small-world networks are small, the interval of
complexity values is smaller and the results are divided more
finely. The values of structure entropy S ′Q increase with
the increase of network nodes. In fact, for these networks,
although the nodes of network increase, the edges of network
is fluctuating. Thus, the complexity of these networks are
fluctuate. For the proposed method, the complexity C of the
seven networks are fluctuating. The measure is not affected
by the network size and type. Once a network is given,
the complexity can be measured by the proposed method.

B. BA SCALE FREE NETWORKS
To explain the power law generation mechanism, the BA
scale-free model was proposed by Barabási and Albert [3].
The network is characterized by increasing network size and
has heterogeneity (i.e., nodes generated in the network tend
to connect to the big degree nodes). The BA network has
similar characteristics of many practical social networks and
can explain many practical social phenomena [48]. In order
to verify the feasibility of the proposed method, we con-
struct seven BA networks with different nodes and measure
their complexity. The algorithm construction process is as
follows [3], [49]:

1) Assume that the system has m0 nodes, add a node with
degree m and connect the m edges to the existing m0 nodes.
2) The relationship between the connection probability

5(ki) of a new node with an existing node i and assumed
that the connection probability 5(ki) is proportional to the
degree ki of the node i, where5(ki) = ki/

∑
j kj. After t time

interval, a network with mt edges and N = m0 + t nodes is
formed.

The nodes, edges and other information of seven con-
structed BA scale free networks are shown in table 3. The
complexity of seven constructed BA scale free networks is
measured, the results are shown in table 3. From table 3,
the complexity C of different networks are different. Com-
pared with the structure entropy S ′Q, because the absolute
density is considered in the proposed measure, the values of
complexitiesC are small and the interval is small, the result is
more subdivided. For example, network 1, network 2 and net-
work 3 have a high probability of edges connection, the values
of complexity C of these networks are big.

C. SELF-SIMILARITY NETWORKS
With the study of self-similarity network, many networks
with the self-similar property are found. In reality, although
many network structures are still unclear, according to the
self-similarity of network, the subnetwork is studied to esti-
mate the characteristics of the whole network. In this section,
to further verify the feasibility of the proposed method, two
self-similar iterative networks are constructed. The initial net-
works with different numbers of nodes and average degree of
these networks are simple after occurring different iterations.

The iterative network is strictly self-similar network.
By taking a given center and then iterating to generate nodes,
the detailed steps are summarized in the following steps [50].

1) Select a basic graph as the iteration center and use it as
the initial network.

2) Iterate the replication center network centered on each
node of the central network.

3) Set the number of iterations m and the number of nodes
to increase f , copy the center network graphics.
Using the iterative network generation step to make seven

self-similarity networks, one of them is shown in figure 2 (b).
The complexities of these seven networks are measured by
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FIGURE 2. Four constructed networks, the degree of nodes is equal, the nodes have the same color. (a). An constructed small-world network with
100 nodes. (b). An constructed Sierpinski self-similar network with 44 nodes. (c). An constructed ER random network with 100 nodes and the probability
of connected edges is 0.1.

TABLE 5. The complexity of constructed ER random networks.

the proposed method and equation (10). The corresponding
results are shown in table 4.

From table 4, the values of complexity C are bigger than
structure entropy S ′Q and the complexity of different net-
works is different. For the structure of the self-similarity
networks is special, the heterogeneity is obvious. The con-
nection probability between network nodes is small, resulting
in the low absolute density of the network, thus values of
complexities C of network are small. The reason is that not
only the structure entropy is considered, but also the absolute
density of network is considered in the proposed method.
The values of complexity C of the different network sizes
are different. Once a network is given, the complexity can
be measured by the proposed method. The results shown that
the proposed measure is effective and feasible identification
network complexity.

D. ER RANDOM NETWORKS
ER model has been proposed by Erodös and Rényi, the ER
random networks are widely studied. Due to the random-
ness of large scale networks with complex topologies and
unknown connection rules, ER random networks are often
used to study the properties of complex networks. In this
section, seven constructed ER random networks are applied
to test the feasibility of the proposed method, one of them
is shown in figure 2 (c). The construction process is as
follows [51],

1) Initialization. Give N nodes and the probability p of the
connected edges.

2) Randomly connect edges. Select a pair of nodes without
edges and generate a random r . If r < p then the pair of nodes
are connected, otherwise the edges are not connected.

3) Repeat the process of connecting edges until all node
pairs have been selected.

For these constructed ER random networks, the complexi-
ties are measured by the proposed method and equation (10),
the results are shown in table 5. From table 5, the values of
complexity C are bigger than structure entropy S ′Q for the
same network. The values of complexity C are not the same
for different networks. For the ER random network, internally
connected edges are random and do not increase with the
increase of network nodes. Because both absolute density
and structure entropy are considered, the measure of network
complexity of the proposed method is not affected by the size
of the network.

E. REAL NETWORKS
In order to verify the feasibility of the proposed method,
the complexity of six real networks are respectively cal-
culated by this method, the complexity results are shown
in the table 6. The six networks that are the 9/11 terrorist
network [52], Celegans network [1], a USAir network [53],
the political blogs network [54], a collaboration network in
science of networks (NetScience) [43] yeast protein inter-
action YPI network [53]. These networks include the social
networks and biological networks, these networks are close
to our lives and can reflect the practicality of the proposed
method.
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TABLE 6. The complexity of different real networks.

From table 6, the values of the complexity C are different
for the different networks. The number of nodes of the six
actual networks is different, the structures of these networks
are also different. Using the equation (10), when the network
nodes increase the values of S ′Q are different. When using
the proposed method to measure the complexity of these
networks, the changes of the values of complexity C of the
corresponding networks are different as the scale of networks
are different. In addition, the values of complexity C are
bigger than S ′Q for the same network. The reason is that not
only the structure entropy is considered, but also the absolute
density of network is taken into account, the results showed
that the proposed method is effective. The proposed method
is not affected by the size and types of networks. When the
network is given, its complexity can be measured by the
proposed method.

V. CONCLUSION
Measuring the complexity of complex network is an open
issue. This paper proposed a method to measure the com-
plexity of the network by improving structure entropy. For the
proposed method, not only the structure entropy of network
is considered, but also the absolute density of network are
taken into account. In the structure entropy, the degree and
betweenness are combined. The network radius and circum-
ference are considered in the absolute density. In the proposed
method, while the betweenness of network is equal to zero,
the structure entropy degenerates into the degree structure
entropy.When a network is given, the proposedmethod could
be applied to measure the complexity of the network. The
measure is not affected by network size and types. The pro-
posed method is illustrated by seven constructed small-world
networks, BA scale free networks, self-similarity networks
and ER random networks. Moreover, six real networks are
also used to verify the feasibility of the proposedmethod. The
results show that the proposed method is feasible to measure
the complexity of network.
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