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ABSTRACT As a fundamental capability of mobile robots, path planning highly relies on the accurate
localization of the robot. However, limited consideration for the localizability (which describes the capability
of acquiring accurate localization) has been made in path planning. This brings a high risk of choosing a
path that is optimal but results in the robot easily getting lost. There exist two key challenges to address this
problem: 1) How to evaluate the localizability of a path and its impact on path planning. 2) How to balance
the localizability of a path and the standard path planning criteria (e.g., shortest travel distance, obstacle-free
path, etc.. To overcome the two challenges a new path evaluation method is required. So we first analyzed
the uncertainty that comes from dead-reckoning and map matching. Then the localizability was estimated by
the fusion of the uncertainty coming from both of them. Based on that, the impact of the localizability on the
path planning task has been evaluated by an evaluation function. By combining the localizability evaluation
function with traditional criteria (e.g., shortest length, obstacle-free path, etc.), a new path evaluation function
for path planning is established. Both simulation and experimental studies show that the new path evaluation
function can offer a balance between the localizability and the traditional criteria for path planning.

INDEX TERMS Path planning, localizability, map matching, mobile robot.

I. INTRODUCTION
As one of the fundamental functions of mobile robots, path
planning provides the capability to find an optimal path in
complex environments from a given start point to the desti-
nation, so that many kinds of missions can be carried out.
For decades, path planning has attracted plenty of attention
with most existing research focused on finding the opti-
mal path according to various criteria including the shortest
length, least time [1] or least energy consumption [2], path
smoothness, obstacle-free path, ease of implementation, bet-
ter adaptability to dynamic environments [3], [4], smallest
amount of environmental information requests, etc. How-
ever, to the best of our knowledge, the localizability of a
path has been less of a consideration. This poses a critical
challenge for path planning that the planning result may not
applicable.
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A. BACKGROUND OF PATH PLANNING
The existing path planning research can be divided into three
categories: global path planning, local path planning, and
hybrid path planning.

Global path planning attempts to find an optimal path with
a global view of the environment. They generally employ
the path evaluation criteria as described above. Traditional
graphic search approaches (e.g., A∗, D∗, D∗ lite) are a group
of commonly used global path planning algorithms. One
of the most recent improvements to the A∗ algorithm was
proposed by Guruji et al. [5], where the heuristic function’s
value was only calculated before the collision phase for better
efficiency. Sampling-based algorithms are another widely
accepted group. Zhang H et al. have recently proposed an
enhanced RRT (Rapidly-Exploring Random Tree) algorithm,
which has incorporated a regression mechanism for better
efficiency. Gao et al. developed an online global path plan-
ning algorithm for dynamic environments, which models the
global optimal path as a dynamically changing state and
employs Particle Filters to track it [3]. Intelligent algorithms
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based global path planning methods, such as Neural Network
based group, Ant Colony algorithm based group, Particle
Swarm Optimization algorithm and Genetic Algorithm based
groups also attracted great attention due to their superior
performance. Some of their most recent developments can be
found in [6]–[9] where efforts have been made in improving
the pheromone diffusion approach, the initializing process,
and better neural network for better performance separately.
Other than those, Seyedhadi Hosseininejad et al. employed a
cuckoo optimization algorithm to get a short, safe and smooth
path in a dynamic environment [10]. Andrey V. Savkin pro-
posed an efficient method to construct a low-risk aircraft path
which can balance the requirements of the low threat level and
the short path by employing a geometric procedure to find
the shortest path among threat fields [11]. However, most of
the exiting researches ignored the influence of localizability,
which is this paper mainly focused on.

Local path planning generally relies on local environ-
mental information and provides mapping from that to the
behavioral command. The potential field approach, VFF
(Virtual Force Field) and VFH (Vector Field Histogram)
approaches are three widely known local path planning algo-
rithms that help the robot move along the gradient of a
potential field or gaps between obstacles. Their most recent
developments can be found in [12], [13], where time variant
environments and trap problems have been considered. Ulises
Orozco-Rosas proposed a membrane evolutionary artificial
field path planning method where a Genetic Algorithm and
APF is blended through a membrane structure, to provide
feasible and efficient paths in both static and dynamic envi-
ronments [14]. Farhad Bayat assigned a potential function
for each obstacle and integrating all scattered obstacles in a
scaler potential surface to obtain an optimal and robust path,
which can trade-off between traversing the shortest path and
avoiding collisions [15]. Artificial intelligence methods like
fuzzy logical control and neural network are also employed
in local path planning. Some of their most recent develop-
ments can be found in [16] and [13]. Ashanie Gunathillake
et al. proposed a navigation algorithm for source seeking
in a sensor network environment where the robot is local-
ized in a topology coordinates system based on a packet
reception probability function and a packet reception binary
matrix [17]. Local path planning approaches are generally
efficient enough to be executed online and are capable of
dealing with time variant situations. This group of methods
generally employ motion evaluation criteria instead of the
path evaluation criteria. The most common criteria include:
the angle difference or distance between the robot and the
target, the angle difference or distance between the robot
and the obstacles and these criteria also do not take into
consideration the localizability issue either.

Hybrid path planning combines both the global and local
path planning approaches, thereby avoiding their drawbacks
while retaining their benefits. Li et al. proposed a hybrid
approach where a genetic algorithm is used for global path
planning and a local rolling optimizer is employed to optimize

the global planning results [18].Madjid andMoussa proposed
another representative hybrid approach which employs a ran-
dom profile approach (APF) for global path planning and a
fuzzy-logic approach for local path planning [19].

Two more recent surveys of path planning research can
also be found in the papers proposed by Mac et al. [20] and
Tzafestas [21]. The first survey mainly focuses on heuristic
approaches and the second offers broader coverage to almost
all related research topics.

B. BACKGROUND OF LOCALIZABILITY IN PATH
PLANNING
Localizability was first studied in the field of coastal
navigation by Roy et al. [22]. Recently, localizabil-
ity was studied extensively in the field of localization
in wireless network [23]–[25]. But, in this paper we
mainly focus on the generally used map based localiza-
tion method where the robot matches the environmen-
tal information with the given map combined with dead-
reckoning results to localize itself [26]. The early research
of this was proposed by Censi, which first offered a the-
oretical limit to the precision of map matching based
localization methods based on Cramér–Rao Bound, while
binary map and differentiable obstacles were assumed [27].
From that, a series of localizability researches were then
developed. Qian et al. proposed a localizability estimation
method by introducing a factor of influence of dynamic
obstacles [26], while the localizability matrices in use were
derived from the work of Wang et al. [28]. A more recent
effort on localizability was proposed by Ruiz-Mayor et al.
where a probabilistic model of the indistinguishability for
perception with different kinds of range sensors was proposed
to estimate the perceptual ambiguity [29]. Weikun Zhen et al.
also proposed a new method to evaluate the localizability of
a given 3D map [30].

Most of the existing path following algorithms highly rely
on localization results of the robot. With the consideration
of localizability or the uncertainty in localization, much
of research in path planning or motion planning has been
made [31]. Wang Y et al. proposed an effort in developing
better motion selection mechanisms to improve localization
accuracy [28]. Chen et al. presented an algorithm of path
planning for a mobile manipulator based on localizability.
They used the theory from Censi [27] to evaluate the local-
izability. Then an evaluation of the localizability of a path
was done by accumulating the fisher matrix, multiplied with
the derivatives along the path [32]. Robert S et al. proposed
a path planning algorithm considering the uncertainty of the
localization of the path by accumulating a special designed
uncertainty evaluation along the path [33]. Behnam Irani et al.
proposed a LM (localizability measure) method to exclude
poorly located areas based on a manual threshold, but only
map matching based localizability was considered [34].
Li GQ et al. proposed a method to integrate the path
planning algorithm with Simultaneous Localization and
Mapping (SLAM) algorithm where path length and map
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utility are leveraged to reduce the uncertainty in state
estimation [35].

To the best of our knowledge, current research in localiz-
ability is mostly done for one specific pose only, rather than
for that of a path, and ismostly concernedwith the uncertainty
that comes from map matching or environment observation
only. This ignores the influence of dead-reckoning that is
generally used in the localization methods as well. Moreover,
in most existing research, the uncertainty or localizability is
incorporated directly, while their impact on the path planning
task has not been incorporated. So, this paper focuses on two
key challenges to bridge the gap between localizability and
path planning: 1) How to characterize the localizability of a
path and its impact on path planning and 2) How to balance
the path localizability and the standard path planning criteria
(e.g., shortest travel distance, obstacle free).

In this research, we focused on a differential driven robot
equipped with LIDAR and encoder. Firstly, we will analyze
the localizability that comes from dead-reckoning and map
matching. Secondly, commonly used localization method
will be analyzed to fuse the results from dead-reckoning
and map matching. Thirdly, an impact evaluation function of
uncertainty of the localization of any one pose on the path
will be introduced. This will be analyzed in detail in another
paper. Finally, we will propose a new evaluation function for
a path to bridge the existing localizability research and the
path planning.

This paper is organized as follows: Section 2 dis-
cusses the localizability and its impact. Section 3 offers
a new path evaluation function considering localizability.
Section 4 offers a series of simulations to prove the perfor-
mance. Section 5 offers an experiment running in a closed
environment. Finally, conclusions are drawn in Section 6.
Table 1 shows the symbols used in this paper.

II. THE LOCALIZABILITY AND ITS IMPACT
A. THE UNCERTAINTY IN LOCALIZATION
In practice, a robot generally needs to localize itself while
following a path R. The final localization result and the
uncertainty of the localization come from the fusion of two
localization results: the dead-reckoning and the map match-
ing. A Kalman filter is generally employed in the information
fusion task as well as in the localization task. So, the local-
ization task may also be treated as a fusion task. Fusing the
pose estimation comes from both the dead-reckoning and the
map matching.

The research in [31] has offered a theoretical analysis for
the uncertainty which comes from the dead-reckoning. But
here we offer a simplified version instead for better efficiency.
As it is shown in table 1, let Sk (xk , yk , θk−1) be the cur-
rent pose of the robot and the current state of the Kalman
filter as well. Its estimation after the fusion of both dead-
reckoning and map matching is Sf_k ∼ N (Sk , δf_sk ). Then
formula (1) shows the dead-reckoning formula used in the
Kalman filter where f () is the motion model of the robot,
ek ∼ N (0, δe) is the 0 mean Gaussian noise, which comes

TABLE 1. Symbols in use.

with the dead-reckoning, uk is the motion of the robot. For
differential robot uk is the motion information, then f () can
be obtained from the motion model of differential robot as
shown in formula (2)-(3) [36]. Fig.1 also shows the motion
model. Assume the estimation of Sk based on dead-reckoning
is Sd_k ∼ N (Sk , δd_sk ). Then according to formula (1),
δd_sk can be obtained as shown in formula (4). Moreover,
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FIGURE 1. The uncertainty in localization.

based on formula (2)- (3), ∂f
∂s can be gotten by formula (5).

Sk = f (Sk−1, uk )+ ek (1)

xk = xk−1−Rd sin θk−1+Rd sin(θk−1 + ωk−11t)

yk = yk−1+Rd cos θk−1−Rd cos(θk−1 + ωk−11t) (2)

θk = θk−1+ωk−11t

Rd =
vk−1
ωk−1

(3)

δd_sk =
∂f
∂s
δf_sk−1

∂f
∂s

′

+ δe (4)

∂f
∂s
=


∂f
∂x
∂f
∂y
∂f
∂θ

=


1−
∂Rd
∂xk−1

(sin θk−1 − sin(θk ))

1+
∂Rd
∂yk−1

(cos θk−1 − cos(θk ))

1+
∂1θ

∂θk−1

 (5)

Here, Rd is the turning radius of the robot in path following
at pose(xk−1, yk−1, θk−1).

∂Rd
∂xk−1

, ∂Rd
∂yk−1

can be safely treated
as a derivation of the curvature of the path along X and
Y axis separately, by ignoring the inaccurate motion in the
path following. Then the impact of ∂Rd

∂xk−1
, ∂Rd
∂xk−1

, ∂1θ
∂θk−1

is
roughly ignored here. The deviation from the real value of
the uncertainty caused by that ignorance is big only while
both the Rd and θ changed sharply. So that formula (4) can
be simplified to formula (6).

δd_sk = δf_sk−1 + δe (6)

The theory of localizability proposed by Censi [27],
Wang et al. [28] has in fact proposed a good method to
estimate the uncertainty, which comes from map matching
based localization. WANG Wei et al extended it to the prob-
abilistic grid map and proposed Static Localizability as the
formula (7), which offers a mathematically way to describe
the influence caused by environmental information and map
noises [37]. So, we simply employ the theory to estimate the
uncertainty that comes from map matching. In formula (7),
riE is the expected distance between the LIDAR and obstacle
measured by the ith ray. Assume the estimation S based on
the map matching is Sm ∼ N (S, δm_s). Then according
to [27], [28] we can get the lower bound of its covariance δm_s

as shown in formula (8), which represents the localizability
at S with map matching using LIDAR.

I (S) =
1
δp

n∑
i=1

[
∂riE
∂S

T ∂riE
∂S

]

=
1
δp

n∑
i=1



1r2iE
1x2

1r2iE
1x1y

1r2iE
1x1θ

1r2iE
1x1y

1r2iE
1y2

1r2iE
1y1θ

1r2iE
1x1θ

1r2iE
1y1θ

1r2iE
1θ2

 (7)

δm_s ≥
1
I (S)

(8)

B. THE LOCALIZABILITY OF THE LOCALIZATION WITH
BOTH DEAD-RECKONING AND MAP MATCHING
As Sf ∼ N (S, δf_s), δf_s defines an ellipsoid shape probability
distribution space of the pose of the robot. Let δf_xy denotes
the covariance of the estimation of the X-Y coordinates of the
robot, δf_θ denotes the variance of the estimation of θ , then
δf_s can be expressed as (δf_xy, δf_θ ). Similarly, δf_xy defines
an ellipse shape probability distribution area. In fig.1, the tri-
angles denote the poses of the robot, while the dashed ellipse
around each of them shows the ellipse of δf_xy and the solid
line denotes the given path. To tolerate the inaccurate motion
and localization, all obstacles are generally inflated by a safe
radius rs. Similarly, the destination is also generally inflated
by ra to tolerate the inaccurate localization. Fig.1 shows the
obstacles in black, the destination in red, and the inflated
regions of them in dashed lines around them.

According to the data fusion theory, the covariance δf_s
could be simplified to formula (9) if a Kalman filter is
employed. Moreover, δf_s would satisfy formula (10), which
means that the fusion result cannot be worse than the dead-
reckoning estimation and the map matching one either.

δf_s = (δ−1d_s +δ
−1
m_s)
−1 (9)

δf_s ≤ min(δd_s, δm_s) (10)

Let
∥∥δf_D∥∥ denotes the half length of the longer axis of

the ellipse of δf_xy. According to the knowledge of bivariate
normal distribution, one can easily see that if 1 −α is the
probability that the robot is located inside the ellipse of δf_xy,
then

∥∥δf_D∥∥ can be gotten by formula (11). Here χ2
2 (α) is the

upper (100α)th percentile of a χ2 distribution with 2 degrees
of freedom and λmax is the biggest eigenvalue of δf_xy. In this
paper we simply choose χ2

2 (α) = 1. So, in terms of the
risk of inaccurate localization, δf_xy can be represented by its
ellipse while the probability that the robot is located outside
the ellipse is α. Note that the impact of the localizability to
path planning mainly comes from the inaccurate localization
result. As we cannot predict the relationship between the
obstacle and the ellipse, it would be difficult to evaluate the
impact of the ellipse to path planning. On the other hand,
to cover the ellipse of δf_xy, we can define a circle region
whose radius is

∥∥δf_D∥∥ with the center at (xk , yk ) as the red

162586 VOLUME 7, 2019



Y. Gao et al.: New Path Evaluation Method for Path Planning With Localizability

dashed circle showed in fig.1. This circle defines a region that
the robot is most likely located inside and would be easier
to be used in evaluating its impact to path planning. Like the
ellipse of δf_xy, the probability that the robot is locating inside
this circle region, is no less than 1 – α. So, in terms of the risk
of inaccurate localization, the risk defined by δf_xy can be
safely covered by the circle region, which can be measured
by
∥∥δf_D∥∥. Then we can say that the impact of δf_s can be

measured by (
∥∥δf_D∥∥, δf_θ ).∥∥δf_D∥∥ = √χ2

2 (α)λmax (11)

C. THE IMPACT OF THE LOCALIZABILITY OF A POSE ON
PATH PLANNING
Here we offer a brief analysis on the impacts of

∥∥δf_D∥∥ and
δf_θ , while the detailed analysis was proposed in another
paper [38].

1) THE IMPACT OF
∥∥δf_D

∥∥
In path planning, the optimal path is generally close to
obstacles for shorter length. So, a pose with bigger

∥∥δf_D∥∥
will bring a bigger risk of collision with the obstacles due
to inaccurate localization result. This means the bigger the∥∥δf_D∥∥ of the pose is, the worse the path that contains the
pose will be. Furthermore, to reduce the risk of collision,∥∥δf_D∥∥ should satisfy formula (12). Formula (12) means the
uncertainty of localization should be within the tolerance
provided by both rR and rs. To reduce the risk that the robot
cannot reach the destination due to the inaccurate localization
result, formula (13) should also be satisfied, which means the
uncertainty of the localization should not exceed the given
tolerance range ra.

rs >
∥∥δf_D∥∥+ rR (12)∥∥δf_D∥∥ < ra (13)

2) THE IMPACT OF δf_θ
The motion control algorithms of the robot always try to
reduce the difference between the orientation of the robot
and the destination (or the current target). Let1θT denote the
angle difference between the orientation and the destination
(or the current target), then the motion control of the robot
towards the orientation can be simplified as formula (14).
Fig.1 shows the1θT and the current target as the blue dot. The
parameter γ may differ in different control policies. As we
ignore the limited turning capability of the robot here, then
γ = 1.

θk = θk−1 − γ1θT (14)

As the estimation of θk−1 is θf_k−1 ∼ N (θk−1, δf_θk−1),
according to the knowledge of variance, with the probability
at about 0.683 we have θk−1 − δf_θk−1 ≤ θf_k−1 ≤ θk−1 +
δf_θk−1. Assuming the estimation error of θf_k−1 always
reaches δf_θk−1, then we can set θf_k−1 = θk−1 + δf_θk−1.
So, we can get the estimation Sf_k (xf_k , yf_k , θf_k ) using the
motion model of the robot as formula (15). Here v is the

FIGURE 2. L
X0

and δf_θ with different X0, Eθ (δf_θ ) and δf_θ with
different k2.

moving speed of the robot in following the path and 1t is
the time step.

xf_k = xf_k−1 + v1t cos(θf_k )

yf_k = yf_k−1 + v1t sin(θf_k ) (15)

θf_k = θf_k−1 + δf_θk−1 −1θT

Assuming the robot starts at S0(X0, 0, 0) and ra = 5, then
according to formula (15), we can get the path from S0 to
the destination. The three solid lines in blue, red and black
shown in fig.2 describe the relationships between L

X0
and δf_θ

with X0 =(50cm,100cm, 200cm) separately. It can be found
that if δθ ≥ π

2 , the path will never reach the destination.
By adjusting the X0, it can also be found that there is a similar
relationship between L

X0
and δf_θ .

D. EVALUATION FUNCTION FOR THE IMPACT OF
∥∥δf_D

∥∥
An evaluation function is generally required in path planning
in order to map the impact to a limited value domain. Mean-
while, a differentiable evaluation function may be preferred
by some path planning approaches. So, according to the prior
impact analysis, a sigmoid function is employed to evaluate
the impact of

∥∥δf_D∥∥ of pose S.
Our evaluation function E(

∥∥δf_D∥∥) represents the evalua-
tion of

∥∥δf_D∥∥ as formula (16) while the smaller the value
of E(

∥∥δf_D∥∥) is the better. Here ru is the lowest limitation
defined by formula (17), which comes from the relationship
defined in formulas (12) and (13). Parameter k1 defines the
raising ratio of the evaluation value. Fig. 3 shows 6 dashed
curves representing the relationship between

∥∥δf_D∥∥ and
E(
∥∥δf_D∥∥) with k1 = 0.2, 0.6, 1, 2, 3, 4 separately. Moreover,

k1 should be set to make E(ru) ≈ 1. In this paper, we set
k1 = 1, rs = 50cm, rR = 30cm, ra = 50cm.

E(
∥∥δf_D∥∥) = sig(

∥∥δf_D∥∥) = 1

1+ e−k1(‖δf_D‖−
ru
2 )

(16)

ru = min(rs − rR, ra) (17)

E. EVALUATION FUNCTION FOR THE IMPACT OF δf_θ

As shown in fig.2, δf_θ shows a negative impact on the path.
So the evaluation function Eθ (δf_θ ) as shown in formula (18)
is created, while the smaller the value ofEθ (δf_θ ) is, the better.
Here, θu2, the manually adjusted parameter, comes from the
truth that the robot can never reach the destination with
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FIGURE 3. Different evaluation E(
∥∥δf_D

∥∥) with different k1 and
different

∥∥δf_D
∥∥.

δθ ≥
π
2 and Eθ (

θu2
2 ) = 0.5. Parameter k2 defines the raising

ratio of the evaluation value and should be manually adjusted.
The dash curves in fig.2 show the relationships between
Eθ (δf_θ ) and δf_θ , using the right vertical axis, with θu2 = 2,
k2 is set to 6.1, 10.1 and 14.1 separately. In this paper we set
k2 = 14.1, θu2 = 2 so that Eθ (1) = 0.5 and Eθ (1.4) ≈ 1.

Eθ (δf_θ ) = sig(δf_θ ) =
1

1+ e−k2(δf_θ−
θu2
2 )

(18)

III. PATH EVALUATION CONSIDERING LOCALIZABILITY
A. PATH DESCRIPTION
Ferguson splines are employed to describe the path for the
robot due to their smoothness and the convenience in path
following as it has been done in our prior research [3]. So path
R is described as n smoothly connected Ferguson splines
ri(i = 1 . . . n) that are defined by several points and tangent
vectors. As a result, R is defined by a set of points and tangent
vectors like R{P0, P0’. . .Pn, Pn’}. Here Pi−1 and Pi are the
start point and the end point of the Ferguson spline ri which
is a part of R. Pi−1’ and Pi’ are the tangent vectors at Pi−1
and Pi respectively.

B. NEW EVALUATION FUNCTION CONSIDERS
LOCALIZABILITY FOR PATH PLANNING
For a path R, an evaluation function E(R, MC) is created
in [3], which represents the traditional requirements for paths
that are shorter and further away from the obstacle. To reduce
the impact of the localizability, the E(R, MC) is enlarged
to a new path evaluation function Ep(R, MC) as shown in
formula (19). It can be found that only ELmax(R) has been
added into the E(R, MC) to introduce the localizability
requirement into path planning. Here MC is the map of the
environment, L is the length of R defined by formula (22),
lmin is theminimumpath length between the start pointP0 and
the destination Ta. dmin, defined by formula (23), is the min-
imum distance from R to obstacles, α1 is a weight parameter.
Xi (T ) and Yi (T ) are the coordinates X and Y of spline i
respectively.X ′i (T ) and Y

′
i (T ) are the derivations ofXi (T ) and

Yi (T ) to parameter T ∈ [0, 1], respectively. objx and objy in
formula (23) are the coordinates X and Y of the closest obsta-
cle point. ELmax(R) is the maximum localizability evaluation
value in all the poses along R as shown in formula (20)
where Es(S), shown in formula (21), is the localizabil-

FIGURE 4. The flowchart of path planning with our evaluation function.

ity evaluation of a given pose S. α1, α2, α3 are the
three weights for the influences of dmin,

∥∥δf_D∥∥ and δf_θ ,
respectively.

Ep(R,MC)=


L
lmin
+

α1

dmin
+ ELmax(R) R is feasible

Emax otherwise

(19)

ELmax(R) = max(ES (S))| ∀S ∈ R (20)

ES (S) = α2E(
∥∥δf_D∥∥)+ α3Eθ (δf_θ ) (21)

L =
n∑
i=1

1∫
0

√
X ′i (T )

2 + Y ′i (T )
2dT (22)

dmin= min
T∈[0,1].
i=1...n

(
√
(Xi(T )−objx)2+(Yi(T )−objy)2)

(23)

The left block of fig. 4 shows the flow chart of the mathe-
matic calculation of the new path evaluation function and the
formulas involved. As it shows, a path R can be discretized
into K poses Sk=1...K along the path. For each pose Sk , the
Fisher’s information matrix I (Sk ) can be obtained according
to formula (7) and then the localizability with map matching
δm_s can be obtained by formula (8) accordingly. On the
other hand, the localizability with dead-reckoning δd_sk can
be obtained according to formula (6) given Sk−1 is the prior
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pose along R. Thus, the localizability after fussing both dead-
reckoning and map matching δf_sk can be obtained according
to (9). From δf_sk , δf_θk and

∥∥δf_Dk∥∥ can be obtained to
calculate their evaluations Eθ (δf_θk ) and E(

∥∥δf_Dk∥∥) sepa-
rately according to formulas (11), (18) and (16) respectively.
So that, as the evaluation of localizability for Sk , Es(Sk ) can
be obtained according to formula (21) while ELmax(R) can
be obtained according to formula(20). Finally the new evalu-
ation of R, which is Ep(R,MC), can be obtained according to
formula (19).

The computational burden of our evaluation function
mainly comes from two source. The first is the computation
of the δm_s whose computational burden is O(Nfn) where
Nf is the number of grids along one laser ray and n is the
number of laser rays in each scan. Thus, this computation
burden for a path R is O(NfnK ). The second is the compu-
tation of

∥∥δf_Dk∥∥, which requires a Cholesky factorization
for each pose Sk . Thus, this computational burden for R
is O(K ). Fortunately, the computation of the δm_s can be
computed in advance in a static environment. As a result,
the computational burden of our evaluation function for R
is O(K ).

IV. SIMULATION RESEARCH
To prove the effect of the proposed approach, two compar-
isons of simulations were run using MATLAB in a typical
indoor environment as shown in fig.6, where the black dots
show the edges of objects. As a popular intelligent global
path planning approach with excellent optimization ability,
traditional Genetic Algorithm(GA) was employed. The right
block of fig. 4 shows the key steps of GA. It can be found
that the new path evaluation function is employed as a fitness
evaluation function in the Fitness Evaluation step of GA.
Then in each comparison, two different evaluation functions
were employed as the fitness function for GA separately.
In each comparison the first path planning algorithm has
employed the new evaluation function Ep(R, MC) as shown
in formula (19), while the second path planning algorithm
has employed the traditional evaluation function E(R, MC)
as shown in [3]. For better comparison of the different eval-
uations, the Genetic Algorithm and Direct Search Toolbox
of MATLAB was employed in both series of simulations
with the same parameter settings. These parameters have
included the same path description, which was composed of 4
Ferguson splines, the same population size, which was 4000,
the same maximum iteration time, which was 100. Some
other default genetic operators suggested by the toolbox
have been accepted in both series, which included: stochastic
uniform selection, scattered crossover etc. Detailed descrip-
tions of these operators are found in the documentation of
the toolbox. The three weights α1, α2, α3 were set to 4,
1, 1 respectively. The diagonal elements of δe were set to
(0.1, 0.1, 0.05) respectively. In the following simulations and
experiments, maps of E(

∥∥δm_D
∥∥) and Eθ (δm_θ ) are shown

separately, where the LIDAR used by the robot is assumed
to have a 360◦ field of view. The grids in those maps show

FIGURE 5. Two groups of paths and their fitness values around simple
wall.

the evaluation values in all the sample positions whose size
are 0.05m. The darker the grid is, the higher evaluation value
it has.

Figure. 5 shows the performance of our algorithm when
facing the local minimal problem. In this situation the start
point and the destination are separated by a simple wall,
which is represented by the black rectangle. Then with our
algorithm, two groups of paths as shown in figure 5, would be
found after 100 iterations. In figure 5, each curve represents
a path connecting the start point and the destination while the
color of the curve represents its normalized evaluation using
our new path evaluation function. It can be found that the
darker the curve is, the better the path is. So, the group of
paths concentrated beside the right side of the wall contains
a local minimal which is a sub optimal path. As the capa-
bility of dealing with this situation mainly relies on the path
planning algorithm adopted to combine with our path evalu-
ation function, GA has successfully found the global optimal
path.

A. COMPARISON 1 WITH 3M MAXIMUM OBSERVE
RANGE
In this simulation, the maximum observation range of the
LIDAR is limited to 3m. The so-called traditional optimal
path, which is the path planning result using the traditional
evaluation function, is shown as the blue solid line in fig.6.
It is also shown as a blue solid line in fig.7, where the evalua-
tion map of E(

∥∥δm_D
∥∥) is also included. It can be easily found

that with the traditional evaluation function, the path planning
algorithm seeks for the shortest safe path regardless of the
localizability. If we calculate all the four key localizability
evaluations

∥∥δf_D∥∥, δf_θ , E(∥∥δf_D∥∥), Eθ (δf_θ ) for all the poses
along the traditional optimal path, then the localizability
evaluations along the path are shown in fig.8. In fig.8(a),
the solid red and solid black curves, show the

∥∥δf_D∥∥ and the
δf_θ along the path respectively while the

∥∥δf_D∥∥ using the
right vertical axis and the δf_θ using the left one. In fig.8(b),
the dash red and dash black curves, show the E(

∥∥δf_D∥∥)
and the Eθ (δf_θ ) along the path respectively. Note that in all
the following figures, the cross in path represents the start
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FIGURE 6. The two optimal paths using different evaluation functions.

FIGURE 7. The two optimal paths in the map of E(
∥∥δm_D

∥∥).

point of the path, the circles with cross inside represent the
connecting points of different Ferguson splines, the circle
without the cross inside represents the destination. All the
following figures that describe the localizability evaluations
will show four curves that represent the same values as they
did in fig.8 and the horizontal axis shows the indices kp of the
sample positions along the path.

By employing the new evaluation function in path plan-
ning, the localizability is considered and then a so-called new
optimal path is gotten, which is also shown in fig.6 using a
red curve. Fig.7 shows the two optimal paths coupled with
the map of E(

∥∥δm_D
∥∥). It can easily be found that with the

help of the new evaluation function, GA has avoided the low
localizability area, which has been represented by the dark
grids, so that the evaluation to the path has been successfully
limited. Fig.9 shows all the four localizability evaluations
along the new optimal path, where it can be found that the
localizability evaluation has been successfully limited to a
small value. By comparing fig.8 and fig.9, it can also be found
that the localizability is mainly refined by E(

∥∥δm_D
∥∥), which

is much higher than Eθ (δm_θ ) and the tail parts of the two
optimal paths show great differences, where the traditional
one endures a much higher localizability evaluation close to
0.6. Finally, with our new evaluation function, the traditional
optimal path gets a new evaluation value 2.8863, while,

FIGURE 8. (a)δf_θ and
∥∥δf_D

∥∥ along the traditional optimal path.
(b) Eθ (δf_θ ) and E(

∥∥δf_D
∥∥) along the traditional optimal path.

FIGURE 9. (a) δf_θ and
∥∥δf_D

∥∥ along the new optimal path. (b) Eθ (δf_θ )
and E(

∥∥δf_D
∥∥) along the new optimal path.

in contrast, the new optimal path gets a much lower new
evaluation value 2.3543.

B. COMPARISON 2 WITH 2M MAXIMUM OBSERVATION
RANGE
A smaller maximum observation range brings more chal-
lenges to the robot due to its lessened capability to capture
sufficient references for the localization task. So, as shown
in fig.10, the red curve shows a more complex new opti-
mal path than the blue one, which is the traditional opti-
mal path. Fig.11 shows the two optimal paths with the map
of E(

∥∥δm_D
∥∥). The new optimal path seems more complex

because it makes more adjustments to avoid moving too
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FIGURE 10. The two optimal paths using different evaluation functions.

FIGURE 11. The two optimal paths in map of E(
∥∥δm_D

∥∥).

long a distance in the dark area of E(
∥∥δm_D

∥∥) map, which
would bring sustained raising of the localizability evaluation.
As a result, the localizability evaluations of the new optimal
path in fig.12 show that the E(

∥∥δf_D∥∥), which is the biggest
localizability evaluation, has been limited to less than 0.14.

In comparison, the traditional optimal path endures worse
localizability for its lack of consideration to the localiz-
ability. As the localizability evaluations in fig.13 showed,
the E(

∥∥δf_D∥∥) of the traditional optimal path reaches 1, which
means the robot probably cannot keep safe in path following
due to the too big uncertainty in localization. Taking the
E(
∥∥δf_D∥∥) for instance, according to fig.11 to fig. 13, it can

be found that the traditional path brings sustained raising
of E(

∥∥δf_D∥∥) when it traverses through the black region in
fig. 11 for too long a distance.

On the other hand, the new optimal path moves out of the
black region when the E(

∥∥δf_D∥∥) and Eθ (δf_θ ) have risen too
much in cost of a longer length. Finally, evaluated by the
new evaluation function, the new optimal path gets a new
evaluation value of 2.69 while the traditional path gets a new
evaluation value of 4.3.

V. EXPERIMENT STUDY
In this section, we first introduced the experimental platform
that was used in two indoor experiments, which included one
simple environment and one complicated environment. In the

FIGURE 12. (a) δf_θ and
∥∥δf_D

∥∥ along the new optimal path. (b) Eθ (δf_θ )
and E(

∥∥δf_D
∥∥) along the new optimal path.

FIGURE 13. (a) δf_θ and
∥∥δf_D

∥∥ along the traditional optimal path.
(b) Eθ (δf_θ ) and E(

∥∥δf_D
∥∥) along the traditional optimal path.

two experiments, we added the LMMethod proposed in [34]
for comparison. Because the LM Method has also employed
the theory proposed by Censi to evaluate the localizability
while the evaluation is considered in path planning. In all
situations, GA was employed in path planning.

A. EXPERIMENTAL PLATFORM
In the two experiments, the Pioneer 3-DX robot, equipped
with a UTM-30LX laser scanner, as shown in fig.14, was used
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FIGURE 14. The Pioneer 3-DX robot.

to follow the planning result. The experiment’s set of param-
eters were based on prior simulations, with the exception that
the maximum observation range, was limited to 2m. To fur-
ther verify the performance, we used the robot to follow all the
path planning results. Here, an AMCL localization package
was employed to localize the robot and a Virtual Vehicle path
following algorithm [40] was employed to follow the given
path. Note that the localization and the covariance were all
generated by the AMCL. The localizability evaluations along
the tracks, shown in fig.18-20 and fig.24-25, were calculated
from the covariance.

B. SIMPLE INDOOR EXPERIMENT
To prove the performance of the proposed evaluation func-
tion, an experiment was first carried out in a simple indoor
environment as shown in fig.15a. Note that generally the
simpler the environment is, the worse the localizability
might be.

Fig.15b shows the occupancy map drawn by the robot
using a Simultaneous Localization and Mapping technology.
In Fig.15b, we also show the three path planning results
where the solid blue curve describes the new optimal path,
the solid red curve describes the traditional one and the solid
cyan curve describes the LM path, which was planned by the
LM Method. Note that the LM Method highly relies on a
manual parameter Tbin ∈ [0, 1] to distinguish the traversable
region from the environment, according to the localizability.
Fig.15 shows the localizability map used in LM Method
after applying a Tbin equal to 0.1. Here, the white region,
accepted as a traversable region in path planning, indicates
the high localizability region where the localizability is better
than Tbin. On the other hand, the black region, accepted as an
impassable region in path planning, indicates the low local-
izability region where the localizability is worse than Tbin.
By balancing the risk of too small traversable region and the
risk of path planning failure we choose the Tbin equal to 0.1.
Then we get the path planning result as the cyan curves in
both fig.15(b) and fig.16 show.

Fig.17a and fig.17b show the 3 optimal paths in the eval-
uation maps of E(

∥∥δm_D
∥∥) and Eθ (δm_θ ) respectively. It can

FIGURE 15. (a) The experiment environment (b) The occupancy grid map,
paths and tracks.

FIGURE 16. The localizability map used in LM method and the LM path.

easily be found that with our new evaluation function, the new
optimal path has made a detour around the dense and black
area in both the Eθ (δm_θ ) map and the Eθ (δm_θ ) map. How-
ever, the new optimal path has traveled through some black
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FIGURE 17. (a) The optimal paths in the map of E(
∥∥δm_D

∥∥). (b) The
optimal paths in the map of Eθ (δmθ

).

FIGURE 18. (a) δf_θ and
∥∥δf_D

∥∥ along the new optimal path. (b) Eθ (δf_θ )
and E(

∥∥δf_D
∥∥) along the new optimal path.

but sparse area of the maps to find a shorter path. By using
the interspace inside the black area of the maps, the new
optimal path can restrain the raising of the evaluation of
the localizability by fusing the localization results from both
dead-reckoning and map matching. In contrast, with the tra-
ditional evaluation function, the traditional optimal path is
straighter and shorter in cost for traversing the low localiz-
ability areas in both theE(

∥∥δm_D
∥∥) map and theEθ (δm_θ ) map

for a long distance. As a result, the traditional optimal path
most probably makes the robot gets lost in path following.
LM path avoided the low localizability area in its localiz-
ability map shown in fig.4 as well. However, it can be found
that the LM path is much longer than the new optimal path.
This is because of two reasons. Firstly the localizability map
used by LM method is a combination of our E(

∥∥δm_D
∥∥) map

FIGURE 19. (a) δf_θ and
∥∥δf_D

∥∥ along the traditional optimal path.
(b) Eθ (δf_θ ) and E(

∥∥δf_D
∥∥) along the traditional optimal path.

FIGURE 20. (a) δf_θ and
∥∥δf_D

∥∥ along the LM path. (b) Eθ (δf_θ ) and
E(

∥∥δf_D
∥∥) along the LM path. (b) The optimal paths in the map of Eθ (δm_θ ).

and Eθ (δm_θ ) map, so that after the Tbin has been applied as
a threshold, the traversable region may be differ than that
in our method. Secondly, the LM method avoids traveling
through any low localizability area because it has not taken
into account the benefits from dead-reckoning.
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FIGURE 21. (a) The experiment environment (b) paths and tracks in the
map.

FIGURE 22. The localizability map for LM method.

Fig.15b also shows the actual track of the robot in exper-
iment where the dotted curves close to the paths denotes
the actual tracks of the robot in following the optimal paths.
By following the traditional optimal path, the robot has lost
itself after it has bypassed the lower obstacle in the pic-
ture. Getting lost happened at about 78s after the experiment
began. By following the LM path, the robot successfully
achieved the destination in 141s after it traveled about 15.2m.
On the other hand, by following our new optimal path,
the robot successfully achieved the destination in 130s after
it traveled about 13.8m. Some divergences from the optimal
paths have been observed in the three cases. These were
mainly caused by two reasons. Firstly, the path following
error comes from the Virtual Vehicle algorithm that makes an
imperfect track. Secondly, the bad localizability region may
bring bigger errors in localization and makes the actual track
diverge from the given path.

FIGURE 23. The paths and tracks in the map of E(
∥∥δm_D

∥∥).

FIGURE 24. (a) δf_θ and
∥∥δf_D

∥∥ along the new optimal path. (b) Eθ (δf_θ )
and E(

∥∥δf_D
∥∥) along the new optimal path.

Fig.18 shows the four localizability evaluations along the
track by following the new optimal path. It can be found
that the four localizability evaluations all appeared to be very
low, which made the robot follow the path to its destination
safely. Fig.19 shows the four localizability evaluations along
the track by following the traditional optimal path. In con-
trast, in the 75th location, a very big

∥∥δf_D∥∥ was observed.
As a result, the robot got lost and a big divergence from
the given road was found. The robot could not escape from
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FIGURE 25. (a) δf_θ and
∥∥δf_D

∥∥ along the traditional optimal path. (b)
Eθ (δf_θ ) and E(

∥∥δf_D
∥∥) along the traditional new path.

the random movements caused by the inaccurate localization
result until the 115 th location. Fig.20 shows the localizability
evaluations along the track of following the LM path. It can
be found that LM path has also shown a good localizability
along the path.

C. COMPLICATED INDOOR EXPERIMENT
To further investigate the performance of the proposed eval-
uation function, a more complicated experiment was con-
ducted in a more complicated indoor environment. The envi-
ronment’s image and the occupancy map are given in fig.21.
The distance between the two pillars in the figure is more than
two meters which would cause big localization error in this
experiment. As in the prior experiment, Fig.22 has shown a
localizability map for the LM method after applying a Tbin
equal to 0.00001. Unfortunately, the destination, shown as
the circle in fig.22, is located inside a region with very bad
localizability due to the simple surroundings. As a result,
no matter how small the Tbin is, the LM method could not
find an applicable path.

Fig.21 has also shown the actual track of the robot in
experiment as the black dashed curve. Fig.23 has shown
the paths and tracks in the map of E(

∥∥δm_D
∥∥). We haven’t

shown the paths in the map of Eθ (δm_θ ) because that map
is mostly covered by the map of E(

∥∥δm_D
∥∥). From fig.21

and 23, it can be found that the new optimal path, shown
as the blue curve, is longer than the traditional path, shown
as the red curve. However, fig.23 shows that the traditional
path traveled through the black region for a long distance

within the yellow dashed circle. As a result, by following
the traditional path, the robot collided with the upper pillar
in fig.21 due to localization error. The four key localiz-
ability evaluations, shown in fig.25, have also shown that
the evaluation of the localizability had almost reached 1.
In contrast, our new optimal path has made a detour to
avoid traveling in the black region for too long a distance.
The four key localizability evaluations, shown in fig.24, also
showed that the new optimal path successfully brought a good
localizability for the robot. As a result, the robot success-
fully achieved the destination after traveling about 20.44m.
It can be found that when the destination is located inside a
low localizability area without sufficient landmarks, the LM
method could not find any applicable path while our method
was capable to find an optimal one. The difference comes
from two points. Firstly, the LM method avoids traveling
through any low localizability area, while our method allows
that. Secondly, the LM method employs Censi’s theory to
estimate the localizability which is only designed for map
matching based localization. In contrast our method estimates
the localizability not only from map matching but also from
dead-reckoning. This means the low localizability area for
LM method may not reflect the reality accurately. The tail
part of the curves in fig.24 prove that the localizability may
not be as bad as the black region in the map of E(

∥∥δm_D
∥∥)

shows.

VI. CONCLUSION
This paper mainly focused on the path planning for mobile
robots while considering the impact of localizability. In our
research, the uncertainty of localization has been stud-
ied by fusing the uncertainties that come from both map
matching and dead-reckoning. Two models have been pro-
posed to evaluate the negative impact of ‖δD‖ and δθ on
path planning. Based on the two models a new evalua-
tion function for path planning has been proposed. Both
simulations and experiments have proved that compared
with the existing research, our new evaluation function can
offer better balancing among the localizability requirement,
the traditional shorter path requirement and the safer path
requirement.
The proposed approach employed the theory proposed by

Censi [27] to estimate the localizability from map matching.
However, this brings a time-consuming calculation of the
upper bound of the localizability. So, a simpler and more
direct way to estimate the localizability would be included
in our future research. Moreover, this paper focuses on the
localizability issue in a static environment only, which is
based on the reality that for most localization methods, mov-
ing objects are generally excluded from the map. However,
moving objects do bring impacts on localizability, so evaluate
the localizability in a dynamic environment would be another
challenge in our future research. Finally, many simplifica-
tions have been made in the analysis of the uncertainty in
localization and its impact evaluation. So, a more accurate
research about that would also be in our future interest.
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