
Received September 9, 2019, accepted October 10, 2019, date of publication October 31, 2019,
date of current version November 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950656

Platforms for Smart Environments and Future
Internet Design: A Survey
ANTONIO MARCOS ALBERTI 1, MATEUS A. S. SANTOS2, RICARDO SOUZA2,
HIRLEY DAYAN LOURENÇO DA SILVA2, JORGE ROBERTO CARNEIRO1,
VITOR ALEXANDRE CAMPOS FIGUEIREDO1, AND
JOEL J. P. C. RODRIGUES 3,4 (Senior Member, IEEE)
1National Institute of Telecommunications, Santa Rita do Sapucaí 37540-000, Brazil
2Ericsson Research, Indaiatuba 13330-050, Brazil
3Department of Electrical Engineering, Federal University of Piauí, Teresina 64049-550, Brazil
4Instituto de Telecomunicações, 1049-001 Lisboa, Portugal

Corresponding author: Antonio Marcos Alberti (alberti@inatel.br)

This work was supported in part by the Empresa Brasileira de Pesquisa e Inovação Industrial (EMBRAPII) through the
PINA-1607.0001 Project, in part by the Brazilian National Council for Research and Development (CNPq) under Grant 309335/2017−5,
in part by the National Funding from the Fundação para a Ciência e a Tecnologia (FCT) through the UID/EEA/500008/2019 Project,
in part by the RNP with resources from MCTIC, under Grant 01250.075413/2018-04, through the Radiocommunication Reference Center
(Centro de Referência em Radiocomunicações-CRR) Project of the National Institute of Telecommunications (National Institute of
Telecommunications), Brazil, in part by the Modelo de Referência para a Rede Operativa de Dados da CEMIG Project D0640 under Grant
FAPEMIG/CEMIG, and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES), under Grant
Finance Code 001.

ABSTRACT Internet of things (IoT) is pushing the integration of physical and virtual worlds. Sensor
devices provide rich sensory information to context-aware services. Actuators implement in the physical
world application needs. The role of software is increasing as more and more resources become virtualized
and software-defined. Smart environment is an emerging concept that has the potential to address many of
the humanity problems. In this context, what are the promising tools for building the smart environments
of the future? This paper provides a review of platforms, middleware, and frameworks that can help in
this big challenge, discussing their architectures, service life-cycling, digital twins, cloud-based operation,
virtualization, security, privacy, communication model, support for AI and machine learning, among other
aspects. The proposed revision innovates by employing previous work on future Internet key enablers as
parameters for qualitative comparisons. The idea is to determine the degree of alignment among current
initiatives for smart environments and the ones emerging from future Internet research. Among the main
conclusions are: (i) heterogeneity come to stay; (ii) many contemporary proposals do not cover important
aspects raised in future Internet research; (iii) publish/subscribe model is largely employed; (iv) many
proposals are stuck to the limitations of current Internet model (another reason to explore the relationship
among current platforms and previous future Internet research for IoT); (v) devices interoperability is
a problem solved; (vi) ingredients from future Internet research, such as SDN/NFV, ICN and SCN are
systematically being adopted for smart environments design. Many others are to come; (vii) AI, machine
learning, and big data support are missing not only in TCP/IP-based approaches, but also in future
Internet-based.

INDEX TERMS Internet of Things, middleware, platform virtualization, wireless sensor networks, clouds,
information-centric networking.

I. INTRODUCTION
Two billion people around the world already use the Inter-
net to read e-mail, interact in the social networks, surf the
Web and several other applications. The wide employment

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

of the Internet has opened space to aggregate new informa-
tion sources: objects and machines also can be connected
to this big data network. In this context, the Internet of
things (IoT) is being defined as to connect all things to the
Internet, including aspects as connectivity, data handling, and
services [1]. Another technology in the current panorama of
IoT is cloud computing, which is a collection of computers

165748 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0947-8575
https://orcid.org/0000-0001-8657-3800
https://orcid.org/0000-0003-4868-5726


A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

dynamically grouped in servers to provide virtual compu-
tation resources to any consumer [2]. Cloud computing is
providing the infrastructure for IoT information processing
and services. More recently, a debate about placement of
computational resources in smart cities has emerged [3]. Fog
or edge computing paradigm is being employed when delays
are too big due to far distant data centers.

When considering the urban topic, cities are at 2% of
the earth surface and already consume 75% of the world
available resources [4]. The mashup of both technological
paradigms, IoT and cloud computing, is an option for efficient
applications development while managing cities resources,
a perspective called smart cities [5]. Since 2012, 35 projects
of North Americans smart cities and 47 European are in
progress. They look for solving problems related to the
energy, traffic congestion, inadequate urban infrastructure,
and others [6].

Beyond cities, the Internet of things promises to rev-
olutionize various sectors of the economy, ranging from
Industry 4.0 to rural areas. Virtually, any physical space
can become smart – what is being called a smart environ-
ment. A smart environment is a physical space that employs
technology to connect things to the virtual world, aim-
ing to increase the level of awareness of what happens in
physical environments and with people (using randomized
information). It offers everything as a service (XaaS) by
means of digital twins, allowing data analytics to deter-
mine trends and reversing changes of the virtual world
back to the physical by means of IoT actuators. It inte-
grates IoT, software platforms/middleware/firmware, ser-
vices, artificial intelligence (AI), machine learning (ML),
big data, cloud computing, heterogeneous connectivity,
virtual/mixed realities, gamification, and hundreds of other
technologies to improve people’s quality of life, reduc-
ing environmental impact, optimizing the use of physical
resources. Smart environments add value to people, busi-
nesses, improving sustainability, making efficient and effec-
tive use of resources.

A huge set of requirements need to be observed when
designing smart environments (or smart cities, as a especial
case) [1-80]. Due to the convergence of so many technologies
and non-technical aspects, designing smart environments is
a quite big challenge. It has been the subject of research
not only with current Internet technologies (and cloud com-
puting), but also with new architectures, especially the ones
behind future Internet (FI) research [1], [7]–[16]. In this
context, future Internet can be defined as alternative architec-
tures for the Internet. Given that the current Internet protocol
stack is part of the majority of smart environment propos-
als and their software platforms/middleware/firmware today,
to explore contributions coming from these novel designs
(specially from future Internet research) will certainly help
on designing the smart environments of the future. This paper
aims to contribute to this effort by relating both research paths
in a survey of proposals, which are compared accordingly to
a common set of aspects.

When compared to the previous work on surveying smart
environment proposals, this article offers a unique perspective
on the extent to which key future Internet ingredients are
adopted in contemporary smart environment technologies.
It also includes some proposals originated from FI research
to contrast with popular solutions based on current Internet
technologies. As it will be discussed in Section III, pre-
vious surveys covered specific aspects of proposals (mid-
dleware, connectivity, design choices, protocols, etc.). This
survey covers the degree of support initiatives offer for smart
environment requirements, problems, and limitations. The
research questions behind this survey are: (i) how can future
Internet contribute in a better design of smart environments?
(ii) how smart environments (from current and future Inter-
net) do compare each other from the standpoint of a common
set of aspects?

Given that future Internet proposals aim to solve prob-
lems of today’s Internet, this article reviews the gaps of
current smart environment technology from a FI research
point of view. Aspects include dynamic composition of
IoT services, naming and name resolution, interoperabil-
ity of data and architectural entities, smart objects (digital
twins) and their relation to services, cloud-based operation,
data forwarding and routing, support for artificial intelli-
gence (AI) and machine learning (ML), and communica-
tion models as will be explored in Section IV. Therefore,
the main contributions of this article can be summarized
as follows:
• It provides an unprecedented analysis of existing archi-
tectures, platforms, and middleware for smart environ-
ments from the unique perspective of FI requirements.

• It presents and discusses previous smart environments’
survey articles, pointing their scopes, methodologies,
comparison metrics, contributions, and missing aspects.
Previous surveys on FI for smart environments are also
explored.

• A novel set of key aspects for qualitative comparison of
smart environments is provided.

• A detailed comparison of twenty approaches is given
considering this mixed set of key aspects, including
some proposals from FI research. Open research issues
are also presented, accordingly.

The remaining of the paper is organized as follows.
Section II defines future Internet, presents its main ingre-
dients, and clarifies its relationships to smart environment
design. Section III summarizes related surveys, pointing the
existing gaps in literature and the contributions of this article.
Section IV provides a brief description of the methodol-
ogy employed in this paper. Section V presents a number
of platforms/middleware, offering a discussion in terms of
their architectures, cloud-based operation, communication
model, services life-cycling, AI and data analytics, repre-
sentation of physical devices, security, privacy and trust.
Section VI provides a summary and comparison of proposals
discussed in the manuscript. Finally, Section VII concludes
the paper.

VOLUME 7, 2019 165749



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

II. FUTURE INTERNET RESEARCH
Future Internet (FI) can be defined as ‘‘any Internet-like net-
work that could emerge in the future’’ [1]. Or, alternatively,
novel architectures and protocols for post-IP Internet stacks.
The idea of rethinking the Internet from scratch can be traced
back to what is popularly referred as clean-slate design.
Future Internet research emerged with dozens of initiatives
funded by National Science Foundation in the United States,
New Generation Network Program in Japan, and 7th Frame
Programme in the European Union.

In addition to smart cities/environments and IoT support,
FI research integrated many other important ingredients,
such as: software-defined networking (SDN) [15], [17],
service-centric networking (SCN) [1], [15], information-
centric networking (ICN) [1], [12], [15], [18], service-
oriented architecture (SOA) [1], [15], self-organizing
network (SON) [1], [15], network function virtualiza-
tion (NFV) [1], [17], self-verifying naming [15], [18], [19],
identifier/locator (ID/Loc) splitting [1], [15], [19], and dis-
tributed name resolution. These FI ingredients relate to smart
environments requirements and help evaluating the gaps
among platforms and middlewares developed with TCP/IP to
the ones developed with new approaches. As an example, the
ICN research group (ICNRG) of the Internet research task
force (IRTF) is thoroughly investigating the relationship of
ICN with IoT and smart environments.

Previous work in smart cities goes back to the European
future Internet assembly created in 2008 [12]. From 2009 up
to 2013, research on smart environment/city related issues
has been performed by many EU FI projects, correlated by
future Internet assembly working groups, and published in a
series of FI books [7]–[11]. This effort has produced a number
of requirements and key aspects to be supported by smart
environment platforms, middleware, and frameworks from
the future Internet research point of view: (i) components
architecture and their communication model; (ii) naming,
name resolution, and unique global identification; (iii) data
contextualization, context-based information delivery, and
semantic interoperability; (iv) dynamic service exposition,
discovery, contracting, composition, etc.; (v) entities repre-
sentation in software layer; (vi) security, privacy and trust
network formation; (vii) heterogeneity, resilience, manage-
ability; (viii) name-based forwarding and routing; (ix) iden-
tifier and locator splitting; (x) software-defined control and
operation; (xi) in-network caching; (xii) build-in security;
(xiii) self-verifying naming for security; (xiv) control of IoT
sensors/actuators and gateways; among many others. Note
that these issues were raised considering smart cities as an
important application of future Internet [13].

III. RELATED SURVEY PAPERS
The discussion on previous surveys is divided into two por-
tions: (i) proposals that adopt the current host-centric net-
working technologies; (ii) initiatives that employ other FI
paradigms, including ICN, SCN, SDN/NFV, SOA, etc.

A. HOST CENTRIC APPROACHES
In 2012, Miorandi et al. [14] covered technologies, appli-
cations, and open challenges to realize IoT with current
host-centric technologies. A historical perspective has been
given, covering from devices up to services and applica-
tions. In 2013, Sheng et al. [20] provided a survey on
IETF protocols for IoT, covering IEEE 802.15.4, 6Low-
PAN, RPL, and CoAP. However, discussed topics were
restricted to connectivity of nodes and gateways. In 2014,
Zanella et al. [21] covered technologies, protocols and
architecture for Padova smart city. The discussion is more
broad, going from sensors to applications, but compari-
son to other approaches is very limited. Also in 2014,
Fortino et al. [22] provided a comprehensive overview of
middleware for smart objects (a software that represents a
thing) and environments (or places). Middleware are com-
pared according to: (i) abstractions they provide; (ii) support
for heterogeneity; (iii) management, flexibility, extendability
and evolution of smart objects. In 2016, Razzaque et al. [23]
provided a survey of middleware for IoT. A detailed
analysis of requirements has been provided. Middleware
have been grouped accordingly to their design approaches,
i.e. event-driven, service-oriented, virtual-machine-based,
agent-based, tuple-spaces, database-oriented and application
specific.

Cruz et al. [24] analyzed a reference architecture model for
IoT middleware. The differences between the current Internet
stack and IoT protocols have been explored, discussing chal-
lenges and open issues for IoT middleware. Requirements
for IoT platforms have been classified as functional (resource
discovery and management, data and event management) and
non-functional (scalability, timeliness, reliability, availabil-
ity, security, privacy, simplicity, interoperability, flexibility,
etc.). Third three IoT platforms have been categorized accord-
ingly to their support for: device management, application
development, and application enablement.

Guth et al. [25] firstly presented a reference architec-
ture for IoT platforms and then contrasted eight platforms
accordingly to this reference. The comparison included IoT
connectivity for sensors/actuators and gateways, IoT integra-
tion middleware, and upper level applications. Commercial
platforms have been also included.

In [26], Cruz et al. provided qualitative and quantita-
tive metrics to evaluate IoT middleware performance in a
real scenario. Proposed qualitative metrics included: (i) per
device authentication; (ii) data access control; (iii) device
credentials; (iv) device habits and addresses; (v) develop-
ment kits; (vi) supported application protocols; (vii) popu-
larity; (viii) number of updates; and (ix) mobile application.
Qualitative network performance metrics have been adopted
in experiments, i.e. packet sizes, error percentage, response
times, etc. Eleven IoT middleware have been qualitatively
compared. Five middleware have been installed and con-
sidered in experiments. A list of lessons learned has been
provided by the authors.

165750 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

Sethi and Sarangi [27] provided a taxonomy of IoT tech-
nologies, including architectures, protocols, and applications.
The discussion covered: sensors and actuators, technolo-
gies for data preprocessing, IoT connectivity, middleware,
and applications. The authors presented a list of open chal-
lenges related to IoT middleware: (i) network, semantic,
and syntactic interoperability; (ii) programming abstractions;
(iii) device discovery and management; (iv) scalability;
(v) big data and analytics; (vi) security and privacy; (vii)
cloud services; and (viii) context detection. Ngu et al. [28]
provided an IoT middleware categorization, a comparative
analysis of middleware, and a discussion about open research
issues. IoTmiddleware are classified into three types: service-
based, cloud-based, and actor-based. Service-based adopts
principles of a service-oriented architecture (SOA). Cloud-
based employs elastic computing at edge/cloud. Actor-based
middleware enable exposition of IoT devices as reusable
actors, i.e. using software representatives. Eight IoT mid-
dleware are compared considering: (i) device’s abstraction
in software; (ii) IoT connectivity; (iii) service composition;
(iv) monitoring and visualization of results; (v) service dis-
covery; (vi) security and privacy; (vii) data storage; (viii) data
stream processing.

Farahzadi et al. [29] discussed about IoT middleware fea-
tures, architectural styles, and services provided. The focus
in on approaches aligned to cloud computing, a.k.a. cloud of
things (CoT) approaches. Desirable features included: flex-
ibility, transparency, context management, interoperability,
reusability, portability, maintainability, resource discovery,
trustworthiness, adaptability, security and privacy, and IoT
connectivity. IoT middleware’s architecture has been catego-
rized as: distributed, component-based, service-based, node-
based, centralized, and client-server (web-based model).
Twenty middleware have been analyzed accordingly to its
architecture, main application, business model, and cloud-
based execution. Finally, open issues in the design of CoT
middleware have been explored.

Santana et al. [30] surveyed software platforms for
smart cities. The article focused in answering the question:
‘‘What characteristics should software platforms provide for
enabling the construction of scalable integrated smart city
applications?’’ Smart city platforms have been categorized
accordingly to their main focus: IoT, big data, cyber-physical
system (CPS), and general. Twenty three platforms have
been evaluated accordingly to their support for: (i) data
management; (ii) application management; (iii) IoT connec-
tivity management; (iv) data processing; (v) external data
access; (vi) service management; (vii) software engineering
tools; (viii) definition of city model; (ix) interoperability;
(x) scalability; (xi) security; (xii) privacy; (xiii) context
awareness; (xiv) adaptation; (xv) extensibility; and (xvi) con-
figurability. Open research issues have been pointed in terms
of privacy, data management, heterogeneity support, energy
management, connectivity, scalability, security, and platform
maintenance. Finally, a reference architecture for smart city
platforms has been proposed.

Hejazi et al. [31] provided a survey of IoT platforms,
discussing their architectures and components. The aim has
been to help users selecting an adequate IoT platform for
their projects. The article presented IoT platforms compo-
nents, protocols, and roles. According to the authors of [31],
the aspects that should be considered when choosing an
IoT platform are: stability; scalability, flexibility, pricing
model, and business case. Twenty one IoT platforms have
been compared accordingly to their support for: (i) device
management; (ii) communication model among components;
(iii) security; (iv) protocols for data collection; (v) data ana-
lytics; and (vi) results visualization.

Nitti et al. [32] explored the role of virtual objects
(smart objects) in IoT. The relation among IoT chal-
lenges and virtualization has been established in terms
of: (i) semantic description; (ii) addressing and nam-
ing; (iii) search and discovery; (iv) context awareness;
(v) situation-awareness; (vi) decision making; (vii) mobility;
(viii) security; (ix) association between physical/virtual com-
ponents. Six IoT architectures have been compared regard-
ing these enablers. Context-awareness for IoT has been also
discussed in article [33]. Perera et al. reviewed eleven IoT
middleware according to their support for: (i) device man-
agement; (ii) interoperability; (iii) platform portability; (iv)
context-awareness; v) security and privacy. Fifty approaches
have been evaluated accordingly to context-awareness life-
cycling, including context acquisition, modeling, reasoning,
and distribution. In [34], Sezer et al. surveyed context-
awareness for IoT. The authors also included machine learn-
ing and big data aspects in their review. The aim has been
to relate context-awareness, inference from context, context
reasoning, and learning algorithms. The support for device
management, data management, real-time analytics, big data
analytics, and learning tools have been explored in thirty six
IoT platforms.

From standardization perspective, Gazis et al. [35]
surveyed the major efforts in the scope of IoT, pro-
viding a panorama of initiatives and their relationships.
The description covered architecture standardization from
international telecommunication union (ITU), European
telecommunication standards institute (ETSI), oneM2M,
telecommunications industry association (TIA), and the
alliance for telecommunications industry solutions (ATIS).
Standardization of IoT connectivity has been also addressed,
including 3rd generation partnership project (3GPP), 3GPP2,
Internet engineering task force (IETF), and institute of elec-
trical and electronics engineers (IEEE). Standards for data,
support and other aspects have also been covered. A detailed
comparison has been provided regarding standards: (i) matu-
rity; (ii) layers covered; (iii) horizontal segments covered;
(iv) arrangement (centralized or distributed); (v) domain
coverage; (vi) style (SOA or RESTful); (vii) audience; and
(viii) prototype availability.

Previous reviews for smart environments partially
cover identified requirements, generally leaving out many
points previously identified in FI research. For instance,

VOLUME 7, 2019 165751



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

the following aspects are usually left behind: naming,
name resolution, in-network cache, name-based routing, net-
work programmability, network function virtualization, self-
organizing networking, content naming, identifier/locator
splitting, mobility, entities representatives, service orchestra-
tion, dynamic service compose ability, self-verifying naming,
etc. In this context, a more generalist approach covering
how TCP/IP-based proposals for smart environments relate
to the key aspects employed in state-of-the-art future Internet
research is missing in literature. In the next subsection,
surveys about future Internet-based proposals for smart envi-
ronments are discussed.

B. FUTURE INTERNET APPROACHES
In 2009, Stuckmann and Zimmermann [12] commented on
IoT as a component of FIAs, but did not describe existing
approaches at that time. This has been latter performed by
Hernandez-Munoz et al. [13] in 2011, covering general fea-
tures required by smart cities and presenting SmartSantander
approach.

The majority of survey papers on future Internet architec-
tures (FIAs) relates to ICN-based IoT (ICN-IoT), therefore
focusing on the integration of two FIA ingredients: IoT and
ICN [12], [18]. ICN can be defined as a network in which
contents are discovered and retrieved using their data names
instead of host addresses. Content names are used in packet
headers instead of locators. However, future Internet research
is not limited to ICN. There are many other components
to be integrated, such as: SOA and XaaS, SCN, SDN/NFV,
ID/Loc splitting, cloud-computing, contract-based operation,
dynamic service composition, recursive layering, autonomic
computing, cognitive radio, among others. Despite the impor-
tance of these other themes, there are few surveys on ingredi-
ents other than ICN and SDN.

The literature has many papers comparing named-
data networking (NDN1) [18] and MobilityFirst2 regard-
ing IoT support. These comparisons have been done in
terms of: (i) device’s discovery; (ii) communication model;
(iii) mobility; (iv) naming and name resolution; (v) security;
(vi) in-network caching; (vii) scalability; (viii) quality of ser-
vice; (ix) energy efficiency; (x) support for heterogeneity;
(xi) content discovery and delivery; and (xii) data morphing.

ICN naming and name resolution for IoT is a hot topic. The
adequacy of self-verifying naming for ICN-IoT is also being
investigated [1]. Self-verifying names (SVNes) are flat names
generated by hash functions. Hierarchical and flat (SVNes)
naming approaches are being adopted for smart homes, vehic-
ular networks, smart buildings, under water communications,
and smart campus. In addition, hybrid naming schemes are
being investigated.

Regarding packet forwarding and routing, ICN-IoT
demands not only name-based routing (NBR), but also look-
up-based resolution system (LRS). While NBR is adopted by

1https://named-data.net/
2http://mobilityfirst.cs.umass.edu/

NDN (Subsection V-O), MobilityFirst employs LRS (Sub-
section V-N). Both techniques are required for ICN-IoT data
discovery and delivery, since each of them has important
advantages for specific IoT scenarios. Also, the identification
of services and content is a requirement for ICN-based smart
environments. Efficient name aggregation, i.e. hierarchical
naming structures, is also a requirement being addresses
by FIAs.

The work on NDN [18] for IoT encompasses naming,
name resolution, forwarding and routing, access control
and policies, in-network caching, device configuration and
management, data aggregation, available libraries for plat-
form/middleware development, operating systems. NDN is
being adopted for: cyber physical systems, environment mon-
itoring, smart home, smart building, vehicular networks,
smart healthcare and smart cities. This shows that there
is a strong relationship between smart environment and
FIA design.

Several wireless sensor networks are now employing SDN
and virtualization to provide sensing-as-a-service. The inte-
gration of SDN/NFV and cloud computing help on meeting
smart cities’ requirements for flexibility and elasticity of
network functions and physical resources. Taleb et al. [17]
addressed IoT relation to SDN and NFV, specially regard-
ing security features. SDN and NFV have gained increas-
ing attention to react to many IoT security threads. Twelve
SDN/NFV-based approaches for IoT security have been
compared accordingly to their support for: (i) policy-
based orchestration; (ii) intrusion detection; (iii) autonomic
reaction; (iv) SDN-based; (v) cloud-based; and (vi) ETSI
NFV-based. A list of lessons learned (in contrast to the
traditional IoT security) is provided, as well as the open
research issues required for better integration of IoT, SDN,
and NFV. SDN-based smart cities are also being explored in
literature.

IV. METHODOLOGY
The key aspects selected for discussing and compar-
ing smart environment proposals and their platforms and
middleware have been obtained from previous work in
smart environments performed in the context of future
Internet [1], [7]–[16]. Since, the amount of relevant aspects
is enormous and it is virtually impossible to include all
the relevant ones, the approach taken here has been to
select the requirements addressed in two previous work from
Alberti et al. [1], [19]. They are related to the NovaGene-
sis future Internet architecture, which has been designed
to support IoT and smart environment needs since 2008.
NovaGenesis [1], [16], [19], [36], NDN [18], and Mobility-
First already summarized many of the requirements for future
smart environments and therefore some of its key aspects are
representative for this task. They are:
• Architecture - It covers how proposals are structured and
how their components interact with one another.

• Cloud Computing - The cloud computing model is
advantageous to provide flexibility and operation cost

165752 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

reduction of computing systems. Intelligent environ-
ment solutions need to support distributed execution
across regional and global data centers. Edge comput-
ing is also interesting for smart environments and it is
explored by some proposals.

• Communication Model - It discusses how hardware
and software components communicate. IoT connectiv-
ity is one of the most important topics in any smart
place proposal. Typically, traditional client/server mod-
els are employed in CoAP and REST. Notwithstanding,
publish/subscribe model is preferred for other propos-
als, e.g. MQTT. Finally, future Internet architectures
bring new models for smart environments, such as
push/pull.

• Naming, Name Resolution, and Semantic Interoperabil-
ity - The role of naming and name resolution is better
discussed in future Internet architectures, since naming
is fundamental for smart environments. IoT demands for
semantic interoperability of names, contents, services,
etc. Since all smart environment’ entities have names
and Internet’s domain name system (DNS) provides
limited name resolution, novel naming and name res-
olution proposals are emerging such as: Global Name
Resolution Service (GNRS) from MobilityFirst archi-
tecture, NDN DNS (NDNS) and NRNCS [16], [19].
They provide a powerful tool for supporting security,
privacy and trust (SPT) [18], as well as service compose
ability [1], [16].

• Service Life-cycling - It addresses IoT services and
their life-cycle, including dynamic compose ability and
service contracting. IoT services have the ability to
add value to business and therefore must be present
in any analysis of smart environment proposals. The
integration of SDN and NFV brings a dynamism for ser-
vice orchestration and network programmability. Smart
environment architectures are adopting these technolo-
gies that emerged in future Internet research. Novel
approaches for service-oriented architecture are also
being combined with SDN/NFV, such as ICN-IoT and
contract-based operation [19].

• Artificial Intelligence - Autonomic computing, machine
learning (ML) and artificial intelligence (AI) are funda-
mental ingredients to automate environments, making
them truly more autonomous and smart.

• Entities Representation - Proposals should address inter-
operability of data, things, gateways, and services, since
heterogeneity of hardware and software is the rule.
A candidate solution is to employ entities representation
services, i.e. smart objects or digital twins, to represent
heterogeneous entities via a common interface.

• Security, Privacy and Trust (SPT) - It is a consensus
that SPT requirements should be met by any smart
environment proposal. Name-based security is emerging
as a novel paradigm, in which data chunks integrity is
granted by their own names.

V. SMART ENVIRONMENT PROPOSALS
Smart environment proposals usually involve the integra-
tion of platforms, middleware, and/or frameworks with IoT
devices. In this context, a platform is a major piece of
software that other applications operate and run over. A mid-
dleware is a mediator employed to transfer data from hetero-
geneous protocols, platforms, and operating systems (OSs)
to applications. In the context of IoT, a platform for smart
environment can include one or more middleware. Finally,
a framework can be defined as a collection of libraries, which
can be used to develop platforms and middleware. A frame-
work provides higher level features to allow developers to
focus on application logic.

In this section, the aforementioned key aspects have been
analyzed for many proposals (TCP/IP and future Internet
research), which have been selected based on availability of
high quality publications and coverage of selected aspects.
In addition, commercial platformswhose details are not avail-
able by trustable means, specially by peer reviewed papers
have been avoided. Proposals that are unclear or that do not
provide consistent information with regard to the selected key
aspects have been disregarded. Please note that the list is not
complete as it is impractical to review all available options.

A. ALLJOYN
AllJoyn [37] is an open source platform that emerged
for peer-to-peer, device-to-device communication in smart
home, building, industry and city context. It provides a set
of protocols and services for interoperability among devices
and software applications in smart environment. Originally,
the scope was dynamic proximal networks, i.e. proximity
communication among devices in the same environment.
However, the need to involve software applications in the
cloud has forced the proposal to expand by providing gateway
agents and device system bridge. AllJoyn has been merged
with another platform called IoTivity (Subsection V-J), both
being developed by Linux Foundation.

1) ARCHITECTURE AND CLOUD COMPUTING
AllJoyn adopts a decentralized architecture in which compat-
ible devices can host a router and one or more services and
applications. This architecture contains four layers: transport
layer, router/client connectivity layer, service layer, and appli-
cation layer. The router/client connectivity layer contains
a re-implementation of the D-Bus specification, including
support for decentralized devices. Therefore, AllJoyn relays
in multiple underlying connectivity provided by a trans-
port layer that supports TCP, UDP, and even Unix sock-
ets inside OSs. These inter node protocols are carried over
Wi-Fi, Ethernet, Bluetooth, and power line communications.
The router/client connectivity layer also offers service and
interface discovery, connection establishment, and security
independently of OSs. Every node can have its own router
for D-Bus-based message exchanging. A lightweight node

VOLUME 7, 2019 165753



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

has been also developed for low power devices that want
to join the network. In this case, the majority of AllJoyn
functionalities is provided by a gateway node. The service
layer contains functionalities for devices onboarding, control
panel, notifications, audio support, among others. AllJoyn
was not originally created to operate in cloud. However, this
need appeared when smart phones and other remote devices
become required in application scenarios. Thus, a gateway
agent and a device system bridge have emerged to deal with
devices and systems connected via cloud computing. For
instance, Masek et al. [38] applied AllJoyn in a light bulbs
scenario integrated to the cloud to enable interoperabilitywith
a Twitter application running in a smartphone.

2) COMMUNICATION MODEL
AllJoyn services and applications inside a node are built by
objects that have more than one interface to support three
types of communication: (i) remote method call; (ii) signals;
and (iii) properties. An application interested in a method
implemented in another object must access this method
through a proxy object locally. The call passes the expected
input parameters and wait for the results. A client/server
model is used in method calls. Signals are notifications pro-
vided by one service to others. They communicate events or
state changes. Connection oriented sessions deliver a signal
to all nodes connected. Meanwhile, sessionless signals are
delivered to nodes that subscribed for them, i.e. a pub/sub
model is employed. Routers maintain a cache to store ver-
sioned versions of sessionless signals.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Naming has an important role in AllJoyn. Naming structures
proposed in D-Bus specification are adopted and extended.
Naming covers application, service, interface, interfacemem-
bers (methods, signals and properties), and well-known
names. Applications need to connect to a single router, which
assigns a unique name for them. A next-generation name ser-
vice has been developed to enhance discovery feature. It uses
multicast DNS-enabled discovery of nodes and services that
contain a certain interface.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
AllJoyn supports two types of discovery: name-based and
announcement-based. Name-based discovery enables appli-
cations/services to advertise and discovery peers. A discovery
protocol is implemented in routers that exchange discovery
messages via multicast IP. The well-known names an appli-
cation supports are advertised in a message generated by its
router to other proximal nodes. Some interested application
(in another node) can ask its local router about such well-
known names. The local router then sends a service discov-
ery notification to the peer application informing about the
application that advertised before. A connection is mounted
to carry out the partnership. In announcement-based dis-
covery, advertisement and peer discovery occur based on

interface names. Applications broadcast announcement mes-
sages that they have interest in receiving notifications about
certain interfaces in AllJoyn routers. When a consumer
node is closer to a router that registered previous broadcast
announcements, the router delivers the notifications. Device
discovery is supported at the AllJoyn service layer. The sup-
port for analytics, AI, and machine learning is outside the
scope of AllJoyn platform. Villari et al. [39] provided a Big
data integration of AllJoyn with MongoDB and Storm to
deploy a smart home scenario.

5) ENTITY REPRESENTATION
In remote method calls, a proxy object represents a producer
service object inside a consumer device. This representation
is aimed for remote process call only. Therefore, it has no
relation to device representation in the format of a digital
twin.

6) SECURITY, PRIVACY AND TRUST
AllJoyn router/client connectivity layer provides the typical
mechanisms for authentication, authorization, secrecy and
integrity. Interfaces in application layer can be annotated as
secure. In addition, connections are also secured by sym-
metric or asymmetric cryptography. A Security 2.0 package
includes a security manager application for establishment
of security mechanisms among producers and consumers.
A permission module is added to AllJoyn core enabling cre-
dentials exchange. Also, the support for policies, certificates
and trust anchors has been added. Applications are identified
using a combination of identifiers (global unique identifier -
GUID) and identity certificate.

B. ALMANAC
ALMANAC [40] is a FP7 funded project focused on pro-
viding a service platform for smart cities. The smart city
platform (SCP) supports semantic interoperability of sensors,
services and data management. Also, it enables federation of
IoT networks, covering policy definition, interoperability to
external applications, and intelligent operation of city devices
and services.

1) ARCHITECTURE AND CLOUD COMPUTING
The ALMANAC architecture aligns to IoT-A reference
architecture [41] and addresses the following main topics:
(i) exposition of SCP services and devices; (ii) data context
management; (iii) translation of specific data representations
and communication protocols. The architecture is organized
into four layers:
• Smart city resource adaptation layer (SCRAL), which
provides a uniform REST API to physical devices via
a field access layer (FAL). The FAL has a collection of
drivers for IoT technologies, like ZigBee, Xilevy, etc.
It also includes policy enforcement to provide access
control and role-based policies.

• Data management framework (DMF) enables storage,
filtering, aggregation, fusion, retrieval and management

165754 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

of data and metadata. It includes four internal
components: data fusion manager (DFM), storage man-
ager (SM), resource catalogue and semantic representa-
tion framework (SRF).

• Virtualization layer (VL) provides support for interoper-
ability to other platforms, data security and access poli-
cies enforcement. It includes three internal components:
virtualization layer core (VLC), LinkSmart and federa-
tion identity and accessmanager (FIAM). LinkSmart is a
European middleware for interoperability of platforms,
enabling ALMANAC to interoperate to other proposals.
Therefore, cloud-based operation is native.

• API layer provides REST and web socket APIs to offer
user access to the platform.

2) COMMUNICATION MODEL
SCRAL supports pub/sub (MQTT) and client/server (HTTP)
communication models. REST API is employed for
request/response interactions, while web socket is used for
data stream. Many ALMANAC functions are exposed via
SCRAL.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
ALMANAC employs DNS (CNAMEs) to provide com-
ponent naming and name resolution. A name structure
is employed for intra and inter platform instances (PIes)
communication. Data validation is performed at SCRAL
as well as metadata generation. Data aggregation and fil-
tering are provided by DMF. Heterogeneous device fea-
tures are uniformed, abstracted, and translated to a seman-
tic representation framework (SRF). SRF provides metadata
and context based on semantic web standards (JSON-LD,
OWL). It also enables SPARQL queries. VLC also translates
request/response messages to allow interoperability.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
ALMANAC provides federation of PIes, enabling internal
and external components (services) to be integrated to the set
of available services. LinkSmart solution enables data and
task exchange among PIes. Service discovery is based on
DNS. AI, machine learning and analytics are not integrated
to the platform. In [42], Bonino et al. provide an application
example of ALMANAC to waste recycling. Cloud APIs are
employed to deliver the location of waste bins and their
garbage level to an Android OS smartphone application. The
services employed in this solution have been described and
evaluated in a real scenario in Turin city, Italy.

5) ENTITY REPRESENTATION
The resource catalogue handles descriptions of physical
devices, enabling querying of available resources either by
REST explicit registration or by implicit UPnP service con-
trol point document (SCPD). The update of devices states
is at DMF layer. DFM offers complex event and live data
processing through Esper, QSO2 and StreamInsight tools.

In addition, VLC acts as proxy for lower layers, forwarding
data to/from the right modules locally or at federated peers.
It also supports complex application requests, such as data
fusion query or permanent data query.

6) SECURITY, PRIVACY AND TRUST
FIAM takes care of security and trust, enabling federa-
tion of ALMANAC platform instances or interoperability
with other platforms, like SmartSantander. FIAM central-
izes users’ authentication and authorization. LinkSmart also
enforces access control and security.

C. ANEKA
Aneka is a platform-as-a-service (PaaS) proposal developed
by Manjrasoft company [43]. It provides an IoT middleware
that interfaces to public and private cloud APIs, more specifi-
cally Microsoft Azure, Amazon EC2 and GoGrid. It provides
data stream reading directly from sensors or from databases.
Also, data analytics is offered to process data at the cloud.
When interest events are detected, outcomes are sent to a
visualization tool. Aneka encompasses a set of APIs for
developers and several services that allow users to configure,
scale, reserve, monitor and bill IoT resources used by their
applications.

1) ARCHITECTURE AND CLOUD COMPUTING
Aneka architecture is supported by a cloud-based infrastruc-
ture. Sensors’ data are received by gateways and forwarded
to public or private cloud storage. Data access security is
granted by cloud providers. The Aneka software runs in the
same cloud than sensor’s data storage or any other cloud.
It consists of a number of services for IoT scenario: (i) QoS-
based, dynamic scheduling of computational, storage and
networking resources; (ii) flexible billing; (iii) cloud web
portal for analytics and visualization service; and (iv) backup
cloud storage of sensor data. Optimal virtualized resources
are allocated or terminated according to the requirements of
each sensor application in the platform. This is accomplished
by dynamically negotiating with cloud IaaS providers accord-
ing to application history and budget. Subhash et al. [44] pre-
sented a solution for elasticity of cloud resources for Aneka
platform.

2) COMMUNICATION MODEL
Aneka follows the typical communication model offered by
cloud computing providers. For instance, Azure IoT hub
offers pub/sub (MQTT and advanced message queuing pro-
tocol - AMQP) and client/server (HTTP).

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
The initiative does not enter in this scope. Data semantic inter-
operability is provided by IoT services in cloud providers.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Aneka proposal is centered on elasticity of cloud resources
for IoT applications. An scheduler selects and assigns

VOLUME 7, 2019 165755



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

resources accordingly to IoT applications requirements.
It dynamically negotiates resources with public cloud
providers to meet IoT application requirements. Service life-
cycling depends on the cloud support. MapReduce data ana-
lytics is supported. No mention to AI technologies.

5) ENTITY REPRESENTATION
Once again, Aneka delegates a functionality for cloud
providers.

6) SECURITY, PRIVACY AND TRUST
Aneka assumes commercial IaaS suppliers security and pri-
vacy mechanisms are sufficient for IoT scenarios.

D. ARROWHEAD
It is lightweight framework aimed at enabling the Industrial
Internet of Things and to improve interoperability between
applications [45]. The framework operates with a hierarchical
set of core systems, allowing a single machine to operate its
own Arrowhead cloud. Local authorization and orchestration
rules are supported. Arrowhead provides inter-cloud services
and an approach to solve security and orchestration issues
outside the cloud limits. It aims to guarantee the interoperabil-
ity of different technologies through the advantages of SOA.
A core system is proposed accordingly to a new concept: the
Gatekeeper. Gatekeepers are special gateways with the extra
functionality of decision-making instead of just network layer
functions.

1) ARCHITECTURE AND CLOUD COMPUTING
Arrowhead is composed by systems that interoperate with
services. The framework has been designed to run in local
or online clouds. Three obligatory services are: (i) service
registry management; (ii) service authorization; and (iii) ser-
vice orchestration. Other services can be added at each local
cloud. Services can interoperate globally by using gatekeeper
systems that search for resources in other domain clouds.
Therefore, it offers resources for global service discovery and
inter-cloud negotiation.

2) COMMUNICATION MODEL
The proposal applies technologies such as 6LowPAN, REST,
CoAP, XMPP, ZigBee and OPC-UA. Therefore, different
communication models are supported. Jokinen et al. [46] pre-
sented two IoT application for smart cities: (i) a street lighting
system connected via ZigBee; and (ii) a car heating system
for winter connected using 6LowPAN. The integration of
both systems using Arrowhead platform has been described
in details.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Arrowhead prescribes a method of documentation in order
to enable native interoperability among services. This mech-
anism employs different semantics and communication pro-
tocols [47]. Gatekeepers encompass addressing translations.

Derhamy et al. [47] do not offered real names on paper
examples, just fictional ones. Therefore, it is not possible to
evaluate its naming approach.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Arrowhead is based on service oriented architecture (SOA)
design. The focus is on global interoperability of IoT ser-
vices among cross domain SOA platforms. It supports SOA-
based design principles, including: (i) standardized service
contracts; (ii) service loose coupling; (iii) service abstraction
and (iv) service autonomy. The Orchestration system allows
dynamic reconfiguration of service consumer and provider
end-points. Inter-cloud service discovery is provided mean-
ing that local clouds can consume outside services or pro-
vide data as a service to outside consumers. The Arrowhead
framework does not include native tools for analytics or AI.
In a more recent paper, Kozma et al. [48] presented a supply
chain management use case employing Arrowhead frame-
work. A detailed description of the services implemented has
been provided.

5) ENTITY REPRESENTATION
The project is focused in IoT automation via cloud services
and their interoperability. However, the degree of support for
entity representation is not clear.

6) SECURITY, PRIVACY AND TRUST
The proposal offers support for authentication and authoriza-
tion in a local cloud. For inter-cloud security, Arrowhead
offers decentralized certificate management and trust forma-
tion among gatekeepers.

E. AMAZON WEB SERVICES IOT
Amazon web services (AWS) provides a commercial
cloud-based platform for IoT. It has been launched in Octo-
ber 2015 to provide a complete solution for smart environ-
ments. In the edge, the platform covers IoT devices operating
system (FreeRTOS) and edge computing (Greengrass) to
collect and analyze data in the access network. In the cloud,
services offered for IoT integrate to other Amazon products,
such as Kinesis (for machine learning), DynamoDB (for data
storage), and QuickSight (for visualization).

1) ARCHITECTURE AND CLOUD COMPUTING
Taking a horizontal perspective, AWS IoT is structured from
endpoints up to enterprise application in the cloud. End-
points can be IoT sensors and actuators running MQTT
over TCP/IP/Wi-Fi or other link layer protocols, such as
power line communication (PLC), Ethernet, Bluetooth low
energy (BLE).

Devices of the open platform communications uni-
fied architecture (OPC-UA) standard are also supported
via protocol adapters at the edge gateway. The gateway
can run edge computing services, including: (i) over the
air (OTA) firmware update for end devices; (ii) local device
state shadowing; (iii) support for device to device (D2D)

165756 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

communication; (iv) support for intermittent device commu-
nication; (v) local execution of predictions based on machine
learning; (vi) data filtering; (vii) security related services.
The next portion of the architecture (AWS IoT Core) imple-
ments a message broker, which provides a rule engine to
filter, transform and aggregate device’s data. The rule engine
can also evaluate, transform, and forward gateway messages
to cloud services. All these actions are performed follow-
ing if-then-else logic. For instance, all the data sent by a
connected vehicle using a MQTT topic like ‘connected-
car/telemetry/#’ is processed and forwarded to persistent stor-
age in the cloud. The message broker also includes device
shadowing and things’ security certificate management. The
architecture also includes a component for device manage-
ment, which supports OTA updates, device and group of
devices searching, and batch device provisioning. An IoT
device defender is included to audit devices’ configurations,
to monitor device behavior and mitigate effects of misbe-
having nodes. The next component is IoT Analytics, which
encompasses data pipelines, storage, in-depth data analysis
and reports. Finally, a set of enterprise applications can be
connected to offer visualization, machine learning, etc.

2) COMMUNICATION MODEL
From a vertical point of view,MQTTwith pub/sub communi-
cation model is used from devices up to IoT Core. HTTPS for
devices publication is also possible. In the cloud, client/server
RESTful HTTP is predominant. Bhatnagar et al. [49] has
presented a car pollution detection system that relays in AWS
for user warning in case of excessive CO2 levels. MQTT is
employed. Another use case for smart vehicle traffic control
has been proposed by Tarneberg et al. [50]. Traffic lights,
buses, induction loops, and bus stops are connected via
MQTT topics. AWS IoT provides device management and
authentication. Results have been obtained by experiments
and simulation.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Things, groups of things, type of things, policies, data
base tables, services, rules, certificates, edge/cloud functions,
authorizers, and IoT data topics are named in natural lan-
guage. Data topics names are adopted not only forMQTT, but
also in URLs for RESTful HTTP. It is not clear the degree of
support AWS IoT has for name resolution and semantic data
interoperability.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Services can be dynamically invoked in the form of Lambda
functions not only in the cloud, but also inside gateways
and/or devices in the edge. AWS IoT provides a web-
based graphical user interface with thousands of possi-
ble interactions. However, a lot of manual intervention is
required, as reported by Tarneberg et al. [50]. AWS IoT
supports integrated data analytics and machine learning.

Amazon QuickSight business intelligence application can
also be connected to the IoT platform.

5) ENTITY REPRESENTATION
The best abstraction in AWS IoT for entity representation is
the Device Shadow, which is a JSON document containing
the latest state information of a certain thing. Device states
can be changed by MQTT or HTTP. Named topics are used
for this aim.

6) SECURITY, PRIVACY AND TRUST
Security encompasses authentication and secrecy in all
connections. It contains SPT mechanisms for devices
(FreeRTOS), gateways (Greengrass), cloud (IoT Core), and
device management. To connect, devices should have proper
credentials (X.509 certificates). All the IoT traffic is ciphered
by transport layer security (TLS). AWS IoT also provides
a service to continuously monitor and audit device security
settings: the Device Defender. The objective is to ensure that
best security practices are being fulfilled. If any device is
disregarding the best security practices an alert is generated.
Device behavior deviations are monitored.

F. CLOUT
ClouT is a partnership composed by European and Japanese
companies, universities and research centers [51]. The main
object of this consortium is to offer services as an alternative
to provide connection among IoT and Internet of people. This
approach also offers to end-users the possibility of creating
their own cloud services once the platform is user-centric.

1) ARCHITECTURE AND CLOUD COMPUTING
ClouT is based on three main layers: the CIaaS (City Infras-
tructure as a Service), CPaaS (City Platform as a Service),
CsaaS (City Application Software as a Service). The CIaaS
includes sensors that are virtualized as a middleware service
in the CPaaS. The application software in the CsaaS uses the
CPaaS platform and it is the layer open for the end-users.
The virtual resources exposition in the CIaaS is guaranteed
through open standard APIs. It enables the access to any
physical interconnected resources in the CIaaS, empowering
anyone/anything to use the devices, data and computational
power.

2) COMMUNICATION MODEL
ClouT adopts a multi-protocol IoT gateway for managing
and collecting data flow from heterogeneous devices. The
IoT Kernel block has 3 components: (i) Uniform Access
to IoT Devices; (ii) IoT Device Management; and (iii) IoT
Device Traffic Adaptation. Uniform Access to IoT Devices
is the component responsible for device abstraction, imple-
menting an API for transparent access to the upper layers
using extensible messaging and presence protocol (XMPP).
To meet the large volume of sensors and actuators expected in
a smart city, a variation of the Openfire server was developed,
an open source project that provides a client application for

VOLUME 7, 2019 165757



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

unstructuredmessaging and a server that supports group chats
employing XMPP [52].

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Heterogeneous data is mapped to a common data format.
Interoperability is treated at CIaaS and CPaaS. Naming and
name resolution is based on current Internet.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
ClouT offers a City Service Composition module that is
formed by two functional components: (i) Service Com-
position and (ii) Development and Deployment Platform.
Service Composition contains all the tools necessary for
users, whether experienced developers or simple citizens,
to build their own services. Service composition is achieved
by employing services exposed by the CIaaS layer using
mashup tools. A web application called Service Mashup Edi-
tor was created to allow intuitive and GUI-based manual ser-
vice creation. Development and Deployment Platform offers
virtual machines that host ClouT applications. As the number
of requests grows, new instances of the hosted application
are implemented, promoting load balancing. This compo-
nent supports a variety of software platforms, such as web
servers, SQL/NoSQL databases and middleware, and a man-
agement interface for system developers and administrators.
Data/event processing and decision making are offered in the
CPaaS layer. Few details are given about this component,
even in project deliverable.

5) ENTITY REPRESENTATION
The IoT Device Management is responsible for management
tasks at IoT nodes, such as parameterizing the frequency
used to send data, checking the state of firmware, among
others. This component also has the Device Discovery func-
tion, which is performed in different ways depending on the
standards supported by each device. The discovered devices
are stored in a local database. The IoT Device Management
enables physical entity representation.

6) SECURITY, PRIVACY AND TRUST
ClouT ensures client authentication through user and pass-
word and rule-based access to resources. It covers standard
security features, including protocols selection, authorization
of access to platform modules and encryption for protection
of sensitive data. The security module is composed of 3
components: (i) Platform and Infrastructure Reliability Mon-
itoring; (ii) Cryptography; and (iii) Authentication, Autho-
rization and Auditing.

G. COMPAAS – COOPERATIVE MIDDLEWARE
PLATFORM AS A SERVICE
COMPaaS [53] is a platform that covers from heterogeneous
physical devices up to smart environment applications. The
proposal extends EPCGlobal [54] towards interoperability of

RFID and other IoT standards. It is web-based and supports
synchronous and asynchronous communication.

1) ARCHITECTURE AND CLOUD COMPUTING
The COMPaaS architecture is divided in three layers:
(i) physical devices layer; (ii) event processing and inte-
gration layer; (iii) services and applications layer. Physical
devices layer encompasses a set of smart objects called log-
ical resources. The event processing and integration layer
provides a web-basedmiddleware with several services: com-
munication with IoT devices, physical resource management,
complex event processing (CEP), devices operation, data col-
lection, administration and query. The application layer takes
advantage of the middleware to start data collection cycles for
devices. In [53], a proof-of-concept is performed using virtual
machines, therefore demonstrating the proposal is ready to
run virtualized.

2) COMMUNICATION MODEL
For synchronous queries, COMPaaS employs RESTful APIs
among layers. Middleware and logical resources use a
Subscribe/Notify communication model implemented with
RESTful for device control and data collection. However,
the platform also allows asynchronous bottom up communi-
cation. An Observer communication model is implemented
using simple object access protocol (SOAP) web sockets for
asynchronous responses.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Logical resources are described by profiles, which contain
device names, manufactures, mode, URI, etc. Applications
use profiles to discover resources. Name resolution is not
covered. Semantic interoperability is addressed by device
profiles and DataMessage objects, which represent data gen-
erated by smart objects.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Services are static. Nothing is commented on how to add new
services for the platform. Therefore, service discovery is not
addressed. Data analytics and AI techniques are not covered
in the proposal.

5) ENTITY REPRESENTATION
Logical resources are used to represent physical devices
inside the platform. They contain drivers for communication
with devices (e.g. RFID and WSN).

6) SECURITY, PRIVACY AND TRUST
Security support is not explored in [53]. The platform has an
administration service, but no details are given.

H. DIAT
The distributed Internet-like architecture for things (DIAT)
[55] is a deliverable of the iCore FP7 funded project.

165758 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

FIGURE 1. Distributed Internet-like architecture for things (DIAT). Physical devices are represented by
virtual objects (VOs) that facilitate their dynamic recognition, composition and adaptation. VOs can be
aggregated to form a composite virtual object (CVO). CVOs provide tiny services that interoperate with
applications.

The main aims are: (i) to deal with heterogeneity of IoT
devices; (ii) zero configuration of new devices and ser-
vices; (iii) self-management of data/services, including auto-
nomic composition; (iv) control policy model for security
and privacy. The architecture is focused on autonomous
data collection, processing, semantic annotation, decision
making with minimal human intervention. In this sense,
DIAT addresses situation and context awareness. It provides
dynamic recognition, composition, and adaptation of IoT
objects, which are virtual representatives of physical devices.
Virtual objects (VOs) and their compositions provide tiny
services for applications. DIAT employs dynamic service
instantiation and modeling to create a distributed environ-
ment for smart environments. DIAT supports virtual object
services exposition in order to facilitate self-orchestration.

1) ARCHITECTURE AND CLOUD COMPUTING
DIAT is organized into three software layers (as illustrated
in Figure 1):
• Virtual object layer (VOL) - It represents physical
devices inside DIAT architecture, acting as an interpreter
among physical and virtual worlds. It provides a seman-
tic description of devices features and capabilities to
enable access to any physical device. A virtual object is
equivalent to the aforementioned smart object concept.
Virtual objects can run in data centers or computational
capable devices.

• Composite virtual object layer (COL) - It enables com-
munication and coordination among virtual objects.
A composite virtual object (CVO) is dynamically
composed according to the needs of services (tasks).
It mash ups VOs and/or other VCOs accordingly to
service needs, scheduling actions towards collabora-
tively accomplishing a service request. CVO formation
involves selection of suitable VOs that can ‘‘socially’’
(the so called self-emergent behavior of autonomic sys-
tems) solve the task proposed. A discovery mechanism
(not proposed by the authors) should discover and select

the appropriate VOs. Semantic description is fundamen-
tal on this step.

• Service Layer (SL) - It receives task requests from users
and allocates appropriate services to handle them, a fea-
ture called automatic service creation. This layer can
subdivide a received task into sub tasks. If there is not
a perfect match, the service layer can partially meet the
request, an approach named approximate service.

2) COMMUNICATION MODEL
Many IoT solutions employ MQTT pub/sub for the com-
munication among applications, services and adapters. DIAT
is agnostic regarding its communication model. However,
apparently, several physical object specific technologies will
be required.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Naming and name resolution are not seen as a main
concern and are based on current Internet technologies.
DIAT employs metadata for service discovery and selection
in order to accomplish a task. It also employs semantic
operators for human location (e.g. ‘‘atOffice’’) and status
(e.g. ‘‘inMeeting’’).

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
DIAT supports autonomic service creation according to
required tasks. Service life-cycling considers location-,
situation- and user-awareness. Context is derived for VOs
continuously by an observer component that is spread over
CVO layer and SM. Changes in context can drive initializa-
tion of new services, autonomously. Location-awareness is
given using semantic operators like ‘‘atHome’’, etc. In DIAT,
there is huge dynamism in service life-cycle, while it is more
typical in IoT platforms that services remain running for
long term.

Self-orchestration is achieved based on context-aware
decision making. VCOs mash up VOs and/or other VCOs

VOLUME 7, 2019 165759



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

FIGURE 2. FIWARE scenario for converging future Internet, Internet of ‘‘things", big data, and cloud
computing.

accordingly to service needs, scheduling actions towards col-
laboratively accomplishing a service request. DIAT receives
task requests from users and allocates appropriate services
to handle them, a feature called automatic service creation.
Besides self-management support, the integration of artificial
intelligence and data analytics in the architecture is not clear.

5) ENTITY REPRESENTATION
Both VOL and COL support physical and logical entity
representation. Protocol adaptation and data exposition are
performed based on these digital twins, a.k.a. virtual objects.
Dynamic compositions and semantic-based resource access
and control are provided by DIAT’s VCOs.

6) SECURITY, PRIVACY AND TRUST
DIAT encompasses a security management (SM) component.
It is a cross layer service that employs expressive policies
(with semantic) to model, provide and enforce access control
to entities. There are representations for data, identities, con-
text, roles, structure and behavior. The SM runs into an IoT
daemon, which can be simplified for lightweight devices. The
collection of meta models and components is called SecKit.

DIAT offers a security management (SM) component that
employs expressive policies (with meaning) to model, pro-
vide and enforce access control. Security in DIAT starts
at access policy management. Policies are modeled using
specific ontology tuples, which contains policy-ID, VO’s
authorization, obligation, role, behavior and conditions under
which the policy is applicable. Policy rules are specified
following an event-condition-action model.

I. FIWARE
FIWARE [56], [57] is the technological platform of the Euro-
pean FI-PPP initiative. It is an open ecosystem that uses a

standardized software platform to facilitate the development
of smart applications in various sectors, including the IoT
and smart cities. FIWARE platform integrates services using
next generation service interfaces (NGSIs) as a glue. The
architecture enables new services to be added as generic
enablers (GEs). GEs offer various functionalities, imple-
menting protocols and interfaces for control and data planes.

1) ARCHITECTURE AND CLOUD COMPUTING
Figure 2 illustrates a simplified overview of FIWARE archi-
tectural components for IoT, which include: (i) IoT broker;
(ii) backend device management (BDM); (iii) context-
broker (CB); (iv) big data analysis (BDA); and (v) com-
plex event processing (CEP). Before describing them, it is
important to notice that three kinds of things are supported:
(a) devices that are compatible with next generation ser-
vice interface (NGSI) version 9/10; (b) devices that are
not compatible with NGSI 9/10, however the gateways are;
and (c) devices and gateways that are not compatible with
NGSI-9/10.

The IoT broker recovers, collects and processes infor-
mation from things exposing devices as RESTful resources
[58]. The BDA exposes legacy technologies (standardized or
proprietary) as resources to the CB via NGSI-9/10. IoT agents
are instantiated to handle, configure and monitor non NGSI
devices and gateways. The CB provides a publish/subscribe
context broker service via NGSI-9/10 interface. Contexts can
be registered, updated, queried, notified, subscribed, etc. For
example, a native NGSI-9/10 device can create a context
that carries the current value of the temperature in a certain
room. BDA is an extended version of hadoop from Telefonica
(called Cosmos). Finally, CEP is an IBM generic enabler to
correlate real time events according to programmed rules. The
data generated either by CEP or BDA is published on CB.
BDA is fed by CB and processed data from CEP. Therefore,

165760 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

FIWARE allows near real time map/reduce operations over
large amounts of data from IoT.

2) COMMUNICATION MODEL
FIWARE Orion context broker supports two pub/sub modes:
(i) push method to send information to the broker; (ii) pull
to send some information requested by the broker. The push
method is for the case that the broker does not queried for
the information. In this case, subscribed clients receive the
information continuously, every time it is updated. The push
method is similar to the publish primitive employed at MQTT
message broker.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
FIWARE relays on DNS naming and name resolution
capabilities. Resource names are exposed via NGSI.
Ramparany et al. [56] have discussed the importance of
semantic modeling and semantic-based orchestration in IoT
platforms, presenting how FIWARE supports semantic-based
components for IoT application development. A street lamps
application use case has been implemented, deployed, and
evaluated using FIWARE. An et al. [59] have provided
a solution to interconnect FIWARE to oneM2M platform.
A semantic-driven integration approach has been developed
to enable static mapping of sensing data between platforms,
as well as dynamic semantic interoperability via a semantic
proxy. A proof-of-concept has been evaluated in the San-
tander city, Spain.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
FIWARE encompasses a catalog that transparently supports
addition of new services as generic enablers. Service life-
cycle is supported by OpenStack features. FIWARE encom-
passes native support for big data and analytics. It also
provides business intelligence via Knowage generic enabler.
However, at the time of this writing, AI algorithms are not
available as architectural components.

5) ENTITY REPRESENTATION
FIWARE device management contains a software repre-
sentation (called IoT agent) for each backend device con-
nected. NGSI-9/10 interfaces are proposed to gateways, even
though other interfaces are supported. Apparently, theMQTT
topics employed in many IoT middleware are equivalent
to the FIWARE CB pub/sub mechanisms using NGSI-9/10
interface.

6) SECURITY, PRIVACY AND TRUST
FIWARE security depends on NGSI-9/10 interfaces secrecy
and authentication. Additionally, FIWARE offers several
security enablers: (i) privacy preserving authentication,
which issues credentials, presentation policies and verifiers
to compute access tokens; (ii) KeyRock identity management
to handle several issues related to users access to the plat-
form; (iii) AuthZForce provides an API to get authorization

decisions based on authorization policies as well as authoriza-
tion requests from policy enforcement points (PEPs). Trust
formation is limited to these enablers. Alonso et al. [60]
have proposed a model to connect FIWARE services authen-
ticated with OAuth 2.0 to electronic identification and trust
services (eIDAS) nodes, therefore meeting recent European
Union data protection/privacy regulations.

J. IOTIVITY
IoTivity is an open source project hosted by Linux Founda-
tion that implements a reference specification of the open
connectivity foundation (OCF). The OCF is a group of indus-
try leaders who is developing a standard specification and
certification program to address IoT challenges [61]. One
of the main goals of OCF is to provide devices discovery
and connectivity. The project is supported by several technol-
ogy companies like Intel, Qualcomm, LG, Samsung, Cisco,
Microsoft, etc. IoTivity provides a software development
kit (SDK) in C, C++ and Java languages under Apache
2.0 license. IoTivity is now merging with AllJoyn initiative.

1) ARCHITECTURE AND CLOUD COMPUTING
The IoTivity architecture has two main layers (as illustrated
in Figure 3): (i) IoTivity service layer; and (ii) IoTivity
base layer. The IoTivity service layer has the sub-layers:
(a) Resources encapsulation (RE): it provides common func-
tional modules like broker, builder, container, cache, etc;
(b) Services: it contains the servicemodules that use the func-
tional modules of RE layer. The IoTivity base layer also has
two sub-layers: (a) Resource introspection: it is responsible
for resource type/properties management; (b) Connectivity
abstraction: it performs Wi-Fi, Bluetooth, and BLE abstrac-
tions with CoAP. IoTivity has been extended to support many
cloud-based services, such as: resource life cycle, security
with TLS, and OAuth2 over CoAP, MQTT pub/sub broker-
ing, device-cloud keep-alive, among others.

2) COMMUNICATION MODEL
The IoTivity uses RESTful, BLE, and CoAP with JSON
as communication model. Also, it can handle dual-stack
IPv4 and IPv6. Lee et al. [62] have implemented a health
care application for blood glucose, body temperature, and
oxygen saturationmeasurements over IoTivity platform. BLE
connectivity was employed to connect sensors to an Android
OS application. Elsayed et al. [63] have proposed a ser-
vice discovery platform for heterogeneous IoT environments
that runs over IoTivity. The approach called campus as a
mashups platform for IoT experimentation (CAMPIE) inte-
grates BLE, MQTT, Thread, ZigBee, Z-Wave, Ethernet,
Wi-Fi, etc. A resource proxy is implemented to deal with
devices heterogeneity.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
The specification is not clear about naming neither name
resolution strategies. Current Internet technologies are
employed for these aims, e.g. URI.

VOLUME 7, 2019 165761



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

FIGURE 3. IoTivity two layers architecture (Service and Base) and Resource Model (scheme and
instance).

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Cloud-based device life-cycling is supported via IoTivity
stack, which can be instantiated via Docker containers,
including Apache Kafka (for data stream processing) and
Zookeeper (for hierarchical key-value data storage), Mon-
goDB (database), MQTT message queue, account server,
and resource directory. Regarding to AI/ML, no support is
provided in the platform.

5) ENTITY REPRESENTATION
As guided by RESTful design, all devices are modeled as
resources. The resource URI is composed by: (i) Resource
type: identifies the type of resource; (ii) Resource interface:
list of interfaces associated to the resource; (iii) Policy: asso-
ciatedwith resource life-cycle, i.e. discovery, access, security,
etc; and (iv) Resource name: an user-friendly name. Resource
life-cycle includes: (a) Resource registration; (b) Resource
discovery; (c) Resource presence.

6) SECURITY, PRIVACY AND TRUST
IoTivity uses DTLS/TLS for secure data channel with encryp-
tion. There are two main security modules: (i) the security
resourcemanager that takes care of access control; and (ii) the
security provisioning manager that is responsible for creden-
tials authentication.

K. LWM2M
The Lightweight Machine to Machine (LwM2M) framework
has been created by Open Mobile Alliance (OMA), and
has been designed for device management in a machine-to-
machine environments [64].

1) ARCHITECTURE AND CLOUD COMPUTING
The LwM2M has a two layers architecture (as illustrated
in Figure 4): (i) LwM2M Server: it is typically hosted in
private or public data centers and it is responsible to perform

higher level requirements like device discovery, communica-
tion and security; (ii) LwM2M Client: it is typically hosted
in the device and integrated as software library or built-in
function of device. The Server can be installed in the cloud,
allowing remote handling of Clients.

2) COMMUNICATION MODEL
The LwM2M protocol stack utilizes CoAP over UDP, SMS,
TCP, LoRaWAN, and NB-IoT bearers. CoAP is responsible
to define the message header, request/response code, mes-
sage options and transmission mechanisms. LwM2M also
defines the UDP binding with CoAP, as mandatory. How-
ever, the SMS binding with CoAP is optional. Therefore,
the server-client interactions can be performed by both UDP
and SMS. Karaagac et al. [65] have introduced intermittent
connectivity to LwM2M devices. Two new objects have been
developed: batch and notify. The batch object enables actions
on several devices at once, while the notify object allows
devices to send a notification to the server informing they are
awake for data retrieval.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
In order to enable naming resolution, the communication
between LwM2M client and LwM2M server follows the URI
pattern ’/ObjectID/InstanceID /ResourceID’, where Instan-
ceID is the name of the object instance on client side.
The LwM2M specification keeps open the way how to
generate the InstanceID. In others words, it can be a sur-
rogate key or a meaningful name. Silverajan et al. [66]
have proposed a semantic meta model repository to facil-
itate data sharing among LwM2M device manufacturers
and operators. Karaagac et al. [67] have investigated the
integration of LwM2M and open platform communications
unified architecture (OPC UA), which is a standard for
Industry 4.0.

165762 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

FIGURE 4. LwM2M architecture describing the both server and client side components as well as the
service life-cycle and communication model.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
The communication between the Server and Client has four
logical interfaces: (i) Bootstrapping; (ii) Device Registra-
tion and Discovery; (iii) Device Management and Service
Enablement; and (iv) Information Reporting. LwM2M offers
and online editor in which users can deal with objects and
resources life-cycles. Integration to commercial clouds, such
as MS Azure, can help on AI/ML/Big data analytics and
pattern recognition.

5) ENTITY REPRESENTATION
The LwM2M proposes an entity representation based on
two concepts: object and resource. Every LwM2M client
has objects and each Object has resources. Every object has
a unique predefined identification (ObjectID). In the first
release of the LwM2M specifications, it has been defined an
initial set of objects for device management purposes. The
following list are some of them:
• LwM2M Security (ObjectID = 0): to define security
aspects among servers and clients;

• LwM2M Server (ObjectID = 1): to handle data and
functions related to management servers;

• Access Control (ObjectID = 2): to handle access rights
that servers are allowed to perform over devices on client
side.

• Device (ObjectID = 3): to detail information about the
device.

In the same way, every resource also has a unique pre-
defined identification called ResourceID. Taking the object
‘LwM2M Security’ as example, some of its Resources are
‘Security Mode’ (ResourceID = 2), ‘Public Key or Identity’
(ResourceID= 3) and ‘Server Public Key’ (ResourceID= 4).

6) SECURITY, PRIVACY AND TRUST
LwM2M performs secure communications between client
and server by using datagram transport layer security (DTLS)

including pre-shared key (PSK) and public key technology to
support both kinds of embedded devices (the very limited and
more capable ones).

L. MANIOT
ManIoT [68] is a platform formanaging of heterogeneous IoT
devices and their associated context-aware services. It offers
the possibility of running management applications locally,
close to managed devices; or globally, in a cloud infras-
tructure. The local manager supports users’ configurations,
like turning on or off a lamp. The global/remote manager
deals with high level directives for many local domains,
e.g. an energy provider policy for those that reduce con-
sumption. Global managers interact with local managers
via TCP/IP and take care of high level decisions. Provided
services include device discovery, data storage and secure
access. ManIoT specifies data and information models to
homogenize communication among devices, services and
applications. It manages user’s access.

1) ARCHITECTURE AND CLOUD COMPUTING
Managers running locally or in the cloud are structured in 5
layers:
• Device layer - It includes support for physical (e.g. RFID
reader, SMS modem, smartphone) and virtual devices
(google calendar, google talk).

• Communication layer - It supports many standardized
communication protocols, like universal plug and play
(UPnP), REST and XMPP.

• Adaptation layer - It includes a number of drivers for
adapting from ManIoT data model to the supported
communication protocols.

• Service layer - It provides several services that support
architecture applications.

• Application layer - Offers a web interface for users with
visual alerts. Flexibly supports user applications, like
home task automation for example.

VOLUME 7, 2019 165763



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

2) COMMUNICATION MODEL
The proposal supports REST, XMPP, ZigBee and UPnP
device communication approaches. Therefore, client/server
model is adopted.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Devices are named in natural language and have also
unique identifiers. Name resolution is provided by a
database (MySQL). The relation to DNS is not clear. A con-
text management component provides sensing data contextu-
alization for other services.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
A static set of services is offered for: (i) storage, which keeps
a history of collected data, events and information regarding
devices features; (ii) scheduler, to schedule periodic device
readings or configurations; (iii) authentication, for users and
devices; (iv) discovery, which enables the discovery of new
devices with previously installed drivers; (v) device configu-
ration; (vi) local/global managers communication; (vii) event
management, which enables application notification depend-
ing on the states of devices; (viii) conflict management,
to avoid conflicting configuration of devices; (ix) context
management, which offers location- and time-awareness for
other services and applications. AI and ML are out of scope.

5) ENTITY REPRESENTATION
There is not a component to represent entities. However, plat-
form services help on interfacing devices and applications.
In this sense, context and conflict management are interesting
tools.

6) SECURITY, PRIVACY AND TRUST
ManIoT enables user authentication and access control.
Applications have limited view to sensor data. Trust forma-
tion is not explored.

M. MBDSAS
The management by delegation smart object aware sys-
tem (MbDSAS) is a hierarchical, distributed approach for IoT
gateways and physical devices management [69]. It provides
script-based dynamic reconfiguration of physical equipment.
Gateways equipped with MbDSAS web services can detect
physical devices under their range and prepare a list of con-
nected devices to forward to a top level manager.

1) ARCHITECTURE AND CLOUD COMPUTING
The management by delegation (MbD) approach is based on
three level of entities:
• Managed devices (MDes) - They are the heterogeneous
devices being managed by the management hierarchy.
Devices can export their features, like memory or energy
levels, via web services (SOAP or REST).

• Mid-level managers (MLMs) - They typically run
embedded at gateways, being responsible to run the

MbDSAS web service (MbDSAS-WS) to configure the
gateway and its MDes. Three services are implemented
and connected to MbDSAS-WS: (i) MD list builder,
which keeps track of gateway connected devices, report-
ing to TLM; (ii) MbD solutions, like OSGi and Script
MIB, to pull scripts from repository and manage their
life-cycle at MLM level. These components can run in
a local web server, in a regional data center or in the
cloud; and (iii) Java, C or TCL run time environments to
execute management scripts handled by MbD solutions.
Feedback on executed scripts can be cached locally
or forwarded to TLMs. The MbDSAS-WS was imple-
mented in PHP and can expose services to be accessed
by TLM.

• Top-level managers (TLMs) - It encompasses manage-
ment applications that: (i) delegate to MLMs specific
routines to manageMDes; (ii) control MDes joining and
leaving the network; (iii) provide script selection and
configuration for MLMs; (iv) exposes web services for
users; (v) notify MLMs about new management scripts
deployed; (vi) manage scripts repository (script life-
cycling). TLMs can relay on cached information and
a timer to determine when scripts become out of date.
The management application was developed in Java and
provides a GUI for human operators. It can be applied
to manage experiments, inserting workload, monitoring
experiments, collecting performance information and
delegating management.

The MbDSAS architecture is aimed at managing configu-
ration and performance of IoT devices, including gateways
and sensors/actuators. In other words, IoT adapters could
employ MbDSAS TLM to manage gateways and devices of a
number of suppliers using REST web services. Architectural
components can run in virtual machines at the cloud.

2) COMMUNICATION MODEL
Discovery protocols like link layer discovery protocol (LDP)
and universal plug and play protocol (UPnP) are employed
at devices level. Web services (SOAP or REST) are com-
bined with IETF script MIB and open service gateway ini-
tiative (OSGi), to enable gateway reconfiguration without
firmware patching or update. Therefore, the proposal adopts
more than one communication model.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Despite of current Internet naming, MbDSAS employs a web
services name structure to identify services in the platform.
The proposal implements script repositories accordingly to
service IDs. DNS can be used to reach other domains script
repositories and services.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
MbDSAS offers a static set of services for IoT management.
Novel services need to be manually deployed. AI/ML/Big
data software has not been integrated in the proposal.

165764 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

5) ENTITY REPRESENTATION
Devices are represented by MLM instances. Unfortunately,
this representation is limited to network management plane.

6) SECURITY, PRIVACY AND TRUST
Security of script repositories is considered. MbDSAS secu-
rity relays in the security support of employed technologies
(SOAP, XML, REST, LLDP, UPnP, etc).

N. MOBILITYFIRST
MobilityFirst is a clean slate future Internet architec-
ture whose design started in 2010. As the name implies,
the project focus is device’s mobility. It is grounded on
decoupling identifiers from locators (ID/Loc) for entities in
the network, including devices, services and contents. Global
unique identifiers (GUIDs) can be attributed to all entities.
They can be randomly generated or calculated as the out-
put of a mathematical hash functions, i.e. a self-verifying
name (SVN). GUIDs are dynamically resolved to network
locators, allowing entities to move without losing their identi-
ties. A global name resolution service (GNRS) has been pro-
posed to resolve IDs on locators. In last years, MobilityFirst
has been increasingly applied to IoT and smart environments.

1) ARCHITECTURE AND CLOUD COMPUTING
MobilityFirst network is composed by content routers
(CRs), content producers and consumers, and instances of
the GNRS. Content routers support on-path caching of
contents by their GUIDs. Therefore, novel data requests
can be answered by delivering in-network content copies.
In addition, all routing is based on network addresses, e.g.
IP addresses. However, GUIDs are employed to update for-
warding decisions. Producers that want to share some infor-
mation ask the GNRS for a GUID and then register a binding
between the provided GUID and the network address of the
device where the data is located. Consumers inform to their
local CR the GUID of a desired content, as well as their
own GUIDs to receive the requested contents. CR queries a
GNRS instance to resolve the requested GUID to one or more
locators. After selecting one of the network addresses sug-
gested by GNRS, CR routes the content request (called GET
message) using the traditional host-centric approach. The
requested GUID is also inserted in GET message, since CRs
update the target network address during the path. In case of
producer device mobility, a CR will eventually change the
network address as required, a feature called late binding. The
architecture also allows the transition to other producers that
have the same content. The returning path is independently
routed, therefore supporting data consumer mobility.

2) COMMUNICATION MODEL
MobilityFirst adopted a pull communication model in which
content consumers indicate the GUID of a desired infor-
mation. Applying this approach for named content IoT
(ICN-IoT) requires gateways to pull data into the sensors.

However, to perform this action gateways need to know the
name of the data they wish to obtain. Alternatively, a service-
centric networking (SCN) approach for IoT services and
devices communication can be built. In SCN-IoT, services
talk one another using GUIDs. They also described other
adaptations of MobilityFirst for IoT: (i) header compres-
sion; (ii) translation between normal MobilityFirst protocol
to lightweight version; (iii) mapping of GUID (160 bits) to a
lightweight identifier (16 bits).

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
MobilityFirst is grounded in a global name resolution service,
which can be distributedly implemented. Semantics interop-
erability could be built over this GNRS.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
An example scenario of SCN-IoT can be composed by two
devices: and IoT device (FitBit) and a smartphone; and three
services: user step count service, social network and e-health
application. The binding between services’ GUIDs and their
network addresses are stored in GNRS.When the user forgets
its FitBit, a novel binding between user step count service
and the smartphone address is registered in GNRS. Therefore,
the other two applications talk now to the user step count ser-
vice instance on the smartphone instead of the one in FitBit.
This scenario illustrates a service migration from FitBit to
Smartphone by rebinding the user step count service GUID
to a novel network address. No specific support or application
has been found for ML/AI/analytics.

5) ENTITY REPRESENTATION
MobilityFirst can support physical devices representation
(digital twins) via service life-cycling. However, no refer-
ences to this subject were found in the literature.

6) SECURITY, PRIVACY AND TRUST
Self-verifying names ensure data integrity. However, they
are not obligatory. MobilityFirst for IoT adopts a service-
oriented security model. It can secure IoT services commu-
nication using digital signatures. Privacy can be supported by
attribute-based encryption.

O. NAMED DATA NETWORKING
Named-data networking (NDN) is an information-centric
future Internet architecture. Unlike TCP/IP, which employs
host-centric addressing and URLs for content access, NDN
adopts a named content approach, in which packets carry only
the name of the content an application is interested. In other
words, content is searched and delivered directly by its name,
instead of host locators. The incorporation of NDN in the IoT
landscape has gained a lot of attention in recent years.

1) ARCHITECTURE AND CLOUD COMPUTING
NDN architecture replaces the IP protocol in the Inter-
net stack by a named data protocol for content request

VOLUME 7, 2019 165765



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

and retrieval. In this new protocol, two packet types are
employed: interest and data. The interest packet contains the
name of the content required by some application. No host
or router addresses are included in the interest packet header.
The network forwards and routes interest packets using the
content names. Every data packet meets a prior demand
informed via the interest packet. There is a one to one rela-
tionship. NDN nodes contain three components: (i) forward-
ing information base (FIB); (ii) pending interest table (PIT);
and (iii) content store (CS). When an interest packet arrives
at an NDN node, it checks for existing data in the content
store (network cache) using the desired information name.
If a match happens, it means a previous request for the same
content has already been answered and the content is in the
cache. Then, the interest packet is deleted and a data packet
is delivered via the same network interface of the content
query. In case the content is not in CS, the node verifies
the pending interest table. If there is a match on the content
name,meaning previous interest packets have already queried
for the same content, the interest packet is discarded and the
network interface is added to the PIT. If there is not a match,
a query in the FIB is performed to determine the interfaces
for which the desired content can be found on other domains,
nodes or content publishers. In this case, a PIT entry is added
to register the returning path of the data packets. Regarding
cloud-based operation, NDN can run in cloud and/or edge
computing scenarios.

2) COMMUNICATION MODEL
NDN originally adopted a pull communication model,
in which content is discovered by interest packets forwarded
accordingly to their names. The delivery path is obtained
from soft-states registered in the nodes when forwarding
interest packets from consumers to producers. Therefore,
in a typical IoT scenario, the gateways should periodi-
cally issue interest packets for sensor’s data. Three strate-
gies have been proposed to extend NDN towards data push
operations from sensors to gateways: (i) interest notifica-
tion; (ii) unsolicited data transmissions; (iii) virtual interest
polling.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
NDN names are hierarchically structured, e.g. /inatel.br/bu-
ilding3/room20/en/temperature/sensor/1. They look sim-
ilar to URLs. However, they could include self-verifying
names generated by hash functions. This naming structure
allows name-based aggregation on NDN nodes, i.e. part of
the name can be read as a name prefix, allowing access to
multiple contents, simultaneously. A name resolution system
similar to Internet’s DNS has been proposed. Data interop-
erability can take advantage of NDN naming, which could
include encoding and versioning information directly in the
content names.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
NDN naming structure allows creating namespaces for ser-
vice registration and discovery. Services can register them-
selves directly in a named service bus via a local NDN
instance using specific name prefixes. Possible peer services
can discover registered ones using the same name conven-
tions. Another possible approach is the publication of ser-
vice’s profile as content through an special API. Profiles
can include service IDs, access control policies and API to
reach the services directly. Semantic matching engines have
also been developed to check fitness of available services to
emerging demands. Even proposals to extend the semantics of
NDN protocols for service discovery and provisioning have
already been implemented, e.g. NDN at the edge. It improved
NDN packets to identify cloud services by their names.

A machine learning-based mobility management scheme
for NDN is available in literature. Significant reduction in
handover delay has been reported for mobile IoT nodes.
Machine learning is also adopted to optimize interest packets
forwarding. NDN FIB compression using artificial neural
networks is also a possibility. Deep learning can also optimize
NDN forwarding. An approach is to employ content names,
selected node interfaces, and interest packet pending states
for training deep learning algorithms.

5) ENTITY REPRESENTATION
The representation of things is a service that can be devel-
oped for NDN employing service life-cycling extensions as
previously described. However, no references to this subject
were found in the literature. Therefore, this issue is a research
opportunity.

6) SECURITY, PRIVACY AND TRUST
Contents are ciphered by publishers using public key cryptog-
raphy. Public key certificates can be obtained by certifying
authorities in the NDN network. NDN provides name-data
integrity and authenticity since the names are the only thing
required to receive contents. Despite hierarchical compo-
nents, content names can have a digital digest of the content
itself, allowing integrity check at every node. However, self-
verifying names are not obligatory. Also, there is an important
limitation in this pull communication model: how to generate
interest packets for content whose hash is unknown? In addi-
tion, there is a lack of peer authentication in NDN.

P. NOVAGENESIS
NovaGenesis (NG) is a service-oriented, contract-based,
information-centric, software-defined future Internet archi-
tecture [1], [19] funded by Ministry of Science, Technology,
Innovations and Communications in Brazil. Its current imple-
mentation can be seen as a platform, since it runs at user
space in Linux kernel. NovaGenesis implements a distributed
system in which any information processing or exchanging is
seen as a service. All entities are named and name bindings

165766 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

FIGURE 5. NovaGenesis scenario with an EPGS for IoT that is running in Host 3. EPGS
is represented by PGCS on Host 1. This PGCS establishes contract with an
application (App) interested in IoT samples (e.g. temperature). Just after
exposition, discovery and contracting of EPGS, PGCS and App is that
data samples are transferred.

are distributedly stored to meet scalability requirements.
Also, services (including protocol implementations) organize
themselves based on names, name bindings, and contracts to
meet semantically rich goals and policies. Every component
of the architecture is offered to others by publishing several
name-bindings (NBs).

1) ARCHITECTURE AND CLOUD COMPUTING
NovaGenesis software is composed by a set of distributed
services, which have several internal objects, called blocks,
implementing specific functionalities. Services run at nodes,
employing Linux operating system. A domain has a set of
nodes, their services and contents. IoT support is based on
smart objects, gateways and controllers implemented as ser-
vices. A smart object represents entities in a network for any
purpose. For instance, aWi-Fi access point can be represented
by a smart object service that ‘‘sells’’ its forwarding capaci-
ties. This smart object can negotiate the Wi-Fi capabilities
to potential applications. Another important functionality of
NovaGenesis IoT is a gateway, which translates or encapsu-
lates messages from an input protocol to a desired output pro-
tocol. Finally, a controller functionality is also implemented
as a service, configuring devices accordingly to services need.
In the current prototype, these smart object, gateway and
controller functionalities are implemented all together in a
unique service. NG services can run inside virtual machines
and/or Docker containers, locally, in regional data center or
at cloud computing facilities.

To support IoT scenarios, NovaGenesis implementation is
founded in four core services (Figure 5):
• Publish/subscribe service (PSS): NovaGenesis employs
a publish/subscribe model in which NBs (and related
contents) are published/subscribed by services through
a PSS instance API. This API offers several primitives

to publish, notify, and subscribe names and associated
contents (e.g. a .jpg file can be bind to its hash). There-
fore, PSS together with the next two core services offers
a distributed name resolution service (NRS) with a net-
work cache functionality.

• Generic indirection resolution service (GIRS): Name
bindings and associated contents are published/subscri-
bed via PSS, which provides a rendezvous service. How-
ever, name bindings or published contents are not stored
in the PSS itself. They are stored in a hash table ser-
vice (HTS). Therefore, GIRS selects the proper HTS to
store them.

• Hash table system (HTS): Implements a distributed hash
multimap in several nodes. Name bindings can be gen-
erated from natural language names (NLNes) or self-
verifying names (SVNes). They have a key and one or
more values in the format: < key, value(s) >. A math-
ematical hash function is employed for SVNes. A hash
code is generated over the entire content or entity unique
attributes.

• Proxy/gateway/controller service (PGCS): NovaGene-
sis requires link layer technologies to deliver its mes-
sages. In this context, PGCS provides: (i) encapsulation
of messages; (ii) a smart object to represent devices;
(iii) bootstrapping functions to initiate communica-
tion; (iv) configuration of devices. An embedded ver-
sion of PGCS was developed and called embedded
proxy/gateway service (EPGS).

The integration of PSS, GIRS and HTS is called name
resolution and network cache service (NRNCS).

2) COMMUNICATION MODEL
Link layer technologies, e.g. Wi-Fi, LoRa, and IEEE
802.15.4, are employed to deliver NG messages. Therefore,

VOLUME 7, 2019 165767



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

NG does not use MQTT, CoAP, HTTP, TCP/IP, etc. Sources
publish to NG NRNCS anytime they want. Subscribers can
asynchronously discover published content or be notified by
publishers in case they already know each other. In current
prototype, content and NBs should be temporally stored at
NRNCS. NRNCS mechanism enables publishers to expose
their name bindings (or content) before meeting any sub-
scribers. This enables subscribers to discover possible peers
via asynchronous access to previous publications. Based on
this discovery mechanism, services can discover, negoti-
ate and contract one another. After contract establishment,
publishers can update authorizations to give access to their
already published content.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
To discover existing topics in a domain, a service should
query PSS for certain keywords or their hash codes. The
published NBs that the service is authorized to see will
be returned. Of course, some topics will be private and
others not. Contracts are employed to determine the secu-
rity issues related to access public or private topics. This
generic approach allows NG’s NRNCS to store and resolve
name bindings related to network addresses. In other words,
NRNCS allows services to resolve MAC addresses to IP
addresses or domain names, covering any required names-
pace for IoT.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Services life-cycling is contract-based. Contracts are formu-
lated and negotiated after peer services discovery. Contracts
set the limitations, responsibilities and clauses of the services
provided. The majority of smart environment middleware
does not employ contracts right now. Therefore, a possible
direction of improvement is to extend them towards state-
of-the-art services life-cycling. In this context, smart envi-
ronment services should be able to: (i) expose their features
and capacities to other services; (ii) discover possible peer
services in the middleware considering operator policies;
(iii) select candidate peer services for contract negotiation;
(iv) operation in a contract-based model. An integration of
NG services to Spark Big Data tool has been specified
in 2016 [36]. An ongoingwork is being developed to integrate
NG to OpenCog [70] for a smart room scenario.

5) ENTITY REPRESENTATION
A virtual working topology is defined for each application
and contains only the components that make sense for it.
Through the virtual working topology, an application can read
the physical objects state/conditions and/or configure them.
PGCS exposes the device features, capabilities and con-
figurations, as well details of the available functions and
procedures. In the contrary direction, PGCS reflects to the
physical world the configurations required by established
contracts.

6) SECURITY, PRIVACY, AND TRUST
NovaGenesis prototype does not implement any security
algorithm. However, its security, privacy and trust model was
already designed and some of its cornerstones (in addition to
traditional techniques) are the name resolution, the support
for SVNes, and the formation of trust networks via service
contracts.

Q. OPENIOT
OpenIoT [2] is a European FP7 funded project with the aim
to provide a middleware platform for semantic interoper-
ability of heterogeneous IoT scenarios integrated to cloud
computing. OpenIoT addresses the problem of combining
data streams and services from different IoT scenarios. For
example, data streams with different units, raw sensor val-
ues, etc. It aims at collecting, filtering, contextualizing and
selecting data from heterogeneous sensing devices. Data sets
are linked using linked data concept. It also includes visual-
ization tools for enabling easy development of cloud based
IoT applications.

1) ARCHITECTURE AND CLOUD COMPUTING
OpenIoT architecture encompasses seven components: (i) a
sensor middleware called extended global sensor network
(X-GSN) to collect, filter and aggregate data streams from
physical or virtual sensors employing a pub/sub mobile
broker; (ii) a cloud database storage called linked stream
middleware light (LSM-light) to store data streams and
metadata from sensor middleware; (iii) a scheduler to on
demand deploy services and give them access to data streams;
(iv) a service delivery and utility manager (SD&UM) for
service-driven data stream combination and management;
(v) a component for specification of service requests (with
user interface), which enables scheduling of new services at
the scheduler; (vi) a component to select appropriate scripts
while visualizing services outputs; and (vii) a component for
devices operation. As an example of OpenIoT application,
Medvedev et al. [71] have developed an architecture to report
occurrences in smart city streets. Location, timestamp, voice
memos, and video recordings are sent by smart phones to
OpenIoT middleware that runs in a local data center. Reports
are stored in a database. Voice recognition and reasoning
is applied to deliver reports for manual processing when
required.

2) COMMUNICATION MODEL
OpenIoT relays in a publish/subscribe middleware called
cloud-based publish/subscribe middleware for IoT (CUPUS).
CUPUS has two components: (i) a mobile broker that runs
on mobile devices to collect data from sensors; (ii) a cloud
data processing service. CUPUS offers several subscrip-
tion mechanisms, which avoid transferring of irrelevant data
to the cloud. CUPUS offers elastic pub/sub processing at
the cloud.

165768 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
OpenIoT enhances existing ontologies to deal with semantic
annotation of measurement units, raw sensor data and points
of interest for them. The LSM software implements archi-
tecture’s ontology, transforming data from virtual sensors
(smart objects) into linked data, which are stored in resource
description format (RDF). These semantic annotated data are
queried using SPARQL. Sensor readings are accessible by
several APIs, which can be extended to deal with new sensor
types. Naming and name resolution follow current Internet
technologies.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Soldatos et al. [2] do not comment on dynamic composition
of services. Apparently, platform services are fixed and man-
ually introduced. The platform does not include components
for AI/ML/Big data.

5) ENTITY REPRESENTATION
OpenIoT supports W3C semantic sensor networks (SSNs)
standard for representing physical and virtual world sensors.
A sensor representation combines the vision of its measures,
features, functionalities and how it processes data. The update
of virtual sensors (smart objects) is also based on wrappers,
such as serial communication, UDP, HTTP, etc.

6) SECURITY, PRIVACY AND TRUST
OpenIoT provides a privacy and security module for user
management, authentication and authorization. Authenti-
cated users are represented by token objects with expiration
time. The token is forwarded from one service to another
according to the service chain. The implementation is done
using OAuth2.0. Per service authorization is implemented
using Apache Shiro.

R. SMARTSANTANDER
It provides a European testbed infrastructure for scientific
research and experimentation in the context of a smart
city [72]. Besides smart city utilities, like parking, public
street lighting, and environmental monitoring, the project
provides support for testbed observation and management.

1) ARCHITECTURE AND CLOUD COMPUTING
The project encompasses three tiers: devices, gateways
and service platform. Services are provided to support the
entire experimentation cycle, including scenario specifica-
tion (resource selection, configuration, provisioning of hard-
ware images), setup (resource reservation, scheduling, and
deployment), and execution (experiment execution, monitor-
ing, data collection, and logging). Services can run virtual-
ized in cloud infrastructure. Devices and gateways employ
IEEE 802.15.4, general packet radio service (GPRS), uni-
versal mobile telecommunications system (UMTS), digimesh
and Wi-Fi. Experimentation with services is provided via

RESTful APIs, JavaScript object notation (JSON) and intelli-
gence data advanced solution (IDAS) from Telefônica I+ D.
More recently, Sotres et al. [73] have discussed lessons
learned in terms of interoperability, management, energy
harvesting, co-existence with other networks, threads from
physical environment (humidity, etc.), and data life-cycling.

2) COMMUNICATION MODEL
In the service layer, a REST API is provided for querying
and retrieval of IoT resources accordingly to users need.
Meanwhile, the communication among services and gate-
ways is performed via an event bus implemented over the
ActiveMQ [74] pub/sub asynchronous model.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Naming has an important role in architecture. ActiveMQ top-
ics are employed to support device management. Event types
are implemented using google protocol buffers [75]. In addi-
tion, the proposal offers a resource registration interface
implemented via REST uniform resource identifiers (URIs).
To every registered resource a URI is provided. Resources
are described using XML documents that contain many
node information, including its MAC addresses. A uniform
resource name (URN) is employed to uniquely identify
resources for experiments [72]. Resource lookup is granted
based on resources characteristics using REST GET method.
Therefore, SmartSantander name resolution is capable to
resolve resources URIs on devices MAC addresses.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Services are statically orchestrated to support architecture
functionalities. Sánchez et al. [72] does not comment on
dynamic service composition at the service layer, i.e. the
authors do not discuss proposal’s extensibility. An experi-
mentation support subsystem provides measured data analy-
sis. AI/ML/Big data are not a component of the architecture.

5) ENTITY REPRESENTATION
SmartSantander provides an IoT resource manager that rep-
resents devices at service level, offering devices registration,
monitoring and configuring actions. A testbed runtime
configuration component specifies devices available for
experimentation, reflecting users intent to devices via
resource management. Paganelli et al. [76] have developed
a framework to run integrated to SmartSantander platform.
The aim has been to make things available as RESTful web
resources. Digital representatives (smart things) have been
developed and tested in the field.

6) SECURITY, PRIVACY AND TRUST
Users are authenticated and can securely select resources
(if authorized) for their experiments by employing a reser-
vation system (RS) API. The reservation process returns a
private URI for reserved devices.

VOLUME 7, 2019 165769



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

S. SENSEI
SENSEI [77], [78] is aimed at delivering a managed envi-
ronment for the interaction of IoT service providers and
consumers. The idea was to integrate islands of heteroge-
neous wireless sensor and actuator networks (WSANs) to
future Internet. The proposed architecture relied on RESTful
interfaces to create a market of IoT devices and services.
Some of the main characteristic of SENSEI proposal are:
(i) search, discovery, dynamic composition, and instantia-
tion/deployment of IoT services and devices; (ii) ‘‘semanti-
cally rich’’ models and descriptors of sensors, actuators, and
processing elements; (iii) device users interact directly with
things or resource directories; and (iv) ‘‘semantic brokers’’,
execution managers and dynamic resource ‘‘creators’’ that
provide more complex interfaces, where users can execute
short/long term queries, deploy new devices, and perform
more sophisticated queries using meaning (e.g. temperature
in room X). Experimental results have been provided for
6LowPAN and ZigBee [78], including a web based access to
the architectural components.

1) ARCHITECTURE AND CLOUD COMPUTING
SENSEI architecture is composed by three layers: (i) com-
munication service layer; (ii) real world resources layer;
and (iii) application layer. The communication service layer
provides connectivity to physical world devices. The real
world resource layer provides a unifying abstraction for het-
erogeneous devices, homogenizing access, managing com-
munities of devices and supporting devices discovery. Finally,
the application layer encompasses functionalities for context-
aware control and management of resources. Since it is an
older project, there is no reference to cloud computing. How-
ever, many of the services provided can possibly run as virtual
machines in a cloud infrastructure.

2) COMMUNICATION MODEL
Each component of the architecture is accessible by a REST
API, as a resource on the web. Therefore, SENSEI commu-
nication model is client/server. Sensors are either directly
connected to components or accessed via a REST gateway,
e.g. when ZigBee is employed.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Resource layer offers support for identity management of all
entities. It implements an entity dictionary, with an ontology
and a mapping table to relate real world entities to their
logical representation. An entity lookup service is provided
for applications in order to enable semantic rich queries.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Although SENSEI provides a complete life-cycle for wire-
less sensor and actuator networks, the introduction of new
services in architecture is static. For instance, if some use case
requires a novel service, let’s say a data interoperability tool,

current components are unable to discover this new service
and take advantage of it. There is no mention to AI/ML/Big
data in references [77], [78].

5) ENTITY REPRESENTATION
SENSEI provides support for representing physical entities
as resources that can be exposed to applications. Dynamic
resource creation, entity directory and semantic query com-
ponents allow flexible resource utilization by applications.

6) SECURITY, PRIVACY AND TRUST
Tsiatsis et al. [78] does not mention about SPT support
on SENSEI. Even though, based on architecture description
security is dependent on REST practices.

T. THINGWORX
It is a commercial, cloud-based, event-driven, and object-
oriented IoT platform. Abstract models can be defined for
things, properties, devices, services, mashups, events, users,
data, value streams, data tables, data tags, networks, organiza-
tions, and authenticators. Models instances are accessed via
RESTful APIs. A list of things in a model can be obtained
by accessing https:<Server>/Thingworx/Things. Properties,
services, and other features of a thing can be accessed
by: https:<Server>/Thingworx/Things/<thingName>. This
thing-centric approach is adopted to model entire solutions.
Model’s inheritance and polymorphism are employed to
reduce time to deploy.

1) ARCHITECTURE AND CLOUD COMPUTING
The architecture is organized in three tiers: (i) physical enti-
ties models; (ii) platform; (iii) databases. The physical tier
contains things, devices, and agents that connect to Thing-
Worx platform. It also contains the users of the platform that
access its resources via web. The platform tier contains core
components of the architecture, such as: connectivity server
to connect things; foundation server to run IoT services; sys-
tem monitor; and load balancing. The last tier contains sup-
port for several databases, including PostgreSQL, Microsoft
SQL, SAPHANA andDataStax Enterprise. Software compo-
nents of the platform can be hosted on Amazon EC2 cloud.

2) COMMUNICATION MODEL
Accordingly to platform documentation, the following con-
nectivity options are available to devices: (i) a REST API
to support HTTP POST from device to the platform; (ii) a
proprietary/native AlwaysOn protocol; (iii) proxy-based con-
nection using AlwaysOn protocol for devices that cannot sup-
port TLS; (iv) several industrial network adapters; (v) device
cloud adapters for Amazon AWS and Microsoft Azure;
and (vi) several IoT protocol adapters, including MQTT,
CoAP, SigFox, etc. As an example, Jaurkar et al. [79] have
developed a car parking system based on ThingWorx plat-
form. A perception layer have been deployed to transfer
park vacancy data to the cloud using HTTP or FTP. The
link layer supports 3G, GSM, Ethernet, Wi-Fi, Bluetooth,

165770 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

and ZigBee. An application running in a smartphone has been
developed for users interaction. Another interesting example
of connectivity is provided by Yasmin et al. [80] In this work,
LoRa sensors are connected using MQTT to a ThingWorx
platform in cloud via a Nokia’s 5G setup.

3) NAMING, NAME RESOLUTION, AND SEMANTICS
INTEROPERABILITY
Unique natural language naming is supported for all entities.
Name resolution is achieved by directly searching in abstract
model instances. Systems interoperability is provided by con-
nectors. Data tags allow users to define a vocabulary (ontol-
ogy) for objects and data itself, facilitating their filtering and
discovering. Data shapes are employed to structure the data.

4) SERVICES LIFE-CYCLING AND ANALYTICS/AI
Thing models can have associated services which are imple-
mented using server side SQL or JavaScript codes. Services
are invoked by a REST API. Services input and output data
are formatted accordingly to supported data types. An imple-
mentation editor allows users to manually implement their
things’ services. User application development follows a
model-based approach using a GUI. Application develop-
ment consists in: designing a data model; defining application
functional behavior in terms of model abstractions, properties
and events; integration of business logic; and connection to
third party systems. Dynamic composition is obtained by
integrating models in an application. The platform encom-
passes a big data analytics component, which includes super-
vised machine learning.

5) ENTITY REPRESENTATION
A thing model is an abstract representation of a device,
product, system, people or a logic in business process. Things
can have properties, services, events, and subscriptions to
changes occurred in other things. Thing model templates
facilitate new models development via inheritance of previ-
ous thing abstractions. Remote things are used to represent
devices outside the ThingWorx platform.

6) SECURITY, PRIVACY AND TRUST
Permissions for users or groups of users are granted at
design time and/or run time. Run time permissions control
access to things, collections (group of things), and templates.
Connectivity security depends on the protocols employed,
i.e. RESTful APIs, MQTT, CoAP. Support for encryption,
authentication, certificates, and TLS is mentioned in platform
documentation.

VI. QUALITATIVE COMPARISON
In this section, it is provided a comparison among the ana-
lyzed smart environment proposals considering the aspects
selected in Section IV, namely: (i) architecture and cloud
computing support; (ii) communication model; (iii) naming,
naming resolution and semantic interoperability; (iv) ser-
vices life-cycling and artificial intelligence; (v) entities

representation; and (vi) security, privacy and trust. The
same aspects presented before are discussed and compared.
Tables 1 and 2 provide a summary of studied proposals.

Regarding proposed architectures, the general case is to
cover from devices up to applications, although some propos-
als do not include support for physical sensors or actuators,
e.g. Arrowhead. Some architectures are standardized, such
as ALMANAC (IoT-A) and LwM2M. However, the major-
ity is not. Almost all the proposals adopt TCP/IP stack.
While NDN, MobilityFirst and NovaGenesis are clean slate
proposals, LwM2M allows for non-TCP/IP protocols in its
stack. Cloud-based architectures are a reality, since many
of them allow instantiation in data center, e.g. ALMANAC,
Aneka, Arrowhead, ClouT, COMPaaS, FIWARE, DIAT, etc.
Virtualization is employed to allow scalability and elasticity
of services, mainly employing virtual machines. Container-
based virtualization is not explored, being an open demand.
Also, many platforms are not ready for edge computing,
a trend in 5G mobile networks. DIAT, Arrowhead, FIWARE,
NDN, MobilityFirst and NovaGenesis adopt a distributed
model, in which services can run on edge devices, as well
as in regional clouds. The majority of the proposals runs on
public clouds. In general, layers cover devices, connectivity,
adaptation, virtualization, services, and applications.

Heterogeneity is also present at the communication mod-
els. The most common approach is REST, which is an HTTP
client/server solution. Publish/subscribe is also common,
since MQTT is one of the preferred protocols. Some propos-
als employ both solutions, such as FIWARE, ALMANAC,
Aneka, SmartSantander, AWS, AllJoyn, ThingWorx, etc.
Pub/sub is being adopted due to its asynchronous nature
and topic (name) based operation. Devices can publish data
directly to a broker using named topics, which facilitates
data distribution (M2M communication). The most com-
mon protocols for device connectivity in the studied plat-
forms are: MQTT, HTTP, AMQP, CoAP, XMPP, 6LowPAN,
LwM2M, IEEE 802.15.4, ZigBee, and LoRaWAN. MQTT
is supported by ALMANAC, AllJoyn, Aneka, Arrowhead,
AWS, FIWARE, ThingWorx. NDN and MobilityFirst rely
on push/pull model due to its interest-based communica-
tion model. NovaGenesis adopts a pub/sub model, but other
approaches can be implemented as well.

Regarding naming and name resolution, the majority of
proposals totally relays on DNS and MQTT support. Some
additional naming and name resolution services have been
developed in many proposals to support specific demands.
For instance, ClouT employs a CoAP resource directory,
while COMPaaS provides a device’s naming structure.
LwM2M provides a URL name structure to access devices
via their ResourceIDs. MbDSAS and ManIoT also provide
support for devices IDs. These specific services address punc-
tual demands at each proposal. The most common demand
is to relate a device ID to its address. However, many other
demands are not addressed. For example, the relationship
among information objects (sensor samples) and the host that
provides such a measurement. As already demonstrated by

VOLUME 7, 2019 165771



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

TABLE 1. Comparison of proposals features under the future Internet research point of view.

Ghodsi et al. [18], naming and name resolution are at the
core of security, privacy and trust support. How to guar-
antee provenance if data samples are coming from nodes
with volatile identifiers? How to form trust networks among
services that do not have unique identifiers. NovaGenesis,
NDN and MobilityFirst provide novel naming and name
resolution services (GNRS, NDNS and NRNCS) that sup-
port not only natural language names, but also self-verifying
names (SVNes). They address many of these issues by
redesigning naming structures for global reachability [19].

Service life-cycling is another important topic in smart
environment, since new services should transparently work
together with previous ones, preferably in an autonomous
way. Despite the obvious importance, only DIAT provides
an autonomous manager for smart environment. NDN ser-
vices can take advantage of interest packets to consume
other service profiles and establish agreements. Such fea-
tures are community provided extensions to the origi-
nal design. MobilityFirst encompasses a rich name-based
service-life cycling support. NovaGenesis provides service

165772 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

TABLE 2. Comparison of proposals features under the future Internet research point of view (continuation).

self-organization, which can be seen as one of the autonomic
properties desired for smart places. NovaGenesis also pro-
vides contract-based orchestration, which is a unique feature
among the studied proposals. DIAT, FIWARE, ALMANAC,
Arrowhead, ClouT, MobilityFirst and NovaGenesis support
dynamic composability of services. In contrast, the remaining
proposals support only static (manual) composability, which
will require frequent human intervention, increasing opera-
tional expenditure (OPEX).

Many approaches supply mechanisms for service dis-
covery, proofing that reduction on human interference is
required and is being addressed by services self-organization.
Dynamic composability of services means that services can

work together with minimum human interference, i.e. they
can discover and start working as a team. New services (com-
puter programs) can establish collaborative work with exist-
ing ones. Dynamic composability is supported by AllJoyn,
ALMANAC, Arrowhead, AWS, ClouT, DIAT, FIWARE,
NovaGenesis, MobilityFirst and ThingWorx. A feature
not supported by COMPaaS, IoTivity, LwM2M, ManIoT,
MdBSAS, OpenIoT, SmartSantander, and SENSEI.

The integrated support for artificial intelligence, machine
learning, and big data is highly desirable for any IoT plat-
form/solution. However, among the proposals studied, only
Amazon AWS and LwM2M (via Microsoft Azure) provide
such features. ClouT, FIWARE, and ThingWorx encompass

VOLUME 7, 2019 165773



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

support for Big data. Possibly, some of the platforms can
support IA/ML/Big data tools by adding novel components
or APIs to exiting software. However, this is not ready for
users. Apparently, commercial proposals are ahead in this
matter. Extensions to NDN FIA allow machine learning-
based optimizations to content forwarding and caching.

The concept of smart objects or digital twins is also com-
monly adopted in the investigated proposals. Examples are
ALMANAC, DIAT, ClouT, COMPaaS, FIWARE, NovaGe-
nesis, OpenIoT, SmartSantander and SENSEI. This demon-
strates that smart objects are a de facto solution for the
devices interoperability problem. In other words, heteroge-
neous devices are represented by software objects that inter-
operate one another in the name of physical entities. ClouT
instantiates a virtual machine in the cloud to represent one or
more physical devices. NovaGenesis is the unique approach
were devices representatives establish contract in the name of
things. NDN and MobilityFirst do not offer such feature.

Regarding SPT, all initiatives provide some support. The
basic one is user authentication and access authorization to
resources. Trust network formation, which means to establish
a trustable network of services and resources is supported by
some approaches, such as: ALMANAC, Arrowhead, DIAT,
NDN and NovaGenesis. Only DIAT employs autonomic
security. In general, SPT support in studied proposals could
be improved to increase protection, role-based access control
and autonomic operation. It is quite concerning that some
approaches offer very simplistic solution to a complex prob-
lem, leaving important issues without coverage, e.g. trace-
ability, provenance, data privacy and access control.

Tables 1 and 2 also facilitate on identifying the main
strengths and weaknesses of all studied proposals. AllJoyn
enables diverse M2M communication, comprehensive secu-
rity, and digital twins, even though the support for cloud
applications was recently added. ALMANAC offers dynamic
service composability, entities representation, and limited
communication models: only HTTP andMQTT. SPT appears
to be the weaker point. Aneka provides strong cloud support,
but lacks on naming, name resolution, entities representa-
tion, and SPT. Arrowhead strengths are service orchestration,
cloud interoperability, and diversity of communication mod-
els. Entities representation and naming/name resolution are
not supported. AWS is a comprehensive proposal, with sound
SPT, integrated AI/ML, Big data, naming, name resolution,
and native cloud-based operation. However, entities are rep-
resented by passive JSON files. ClouT delivers a multitude
of device wrappers, resource directory, and dynamic service
composability. Security covers all layers, entity representa-
tion is also offered. However, there is a lack of AI/ML/Big
data support.

COMPaaS strengths are communication models, name and
name resolution, and resources representation. SPT, service
life-cycling, and limited communication are attention points.
DIAT has impressive autonomic IoT services support, as well
as entities representation. However, limited communication
and naming/name resolution are concerns. FIWARE main

features are cloud-based operation, dynamic service com-
position, context brokering, digital representatives, and SPT
support. Naming and name resolution is limited to current
DNS. IoTivity supports cloud operation (including Docker
containers) and DTLS/TLS security. However, IoTivity has
no support for digital twins, offering limited communication
and static service composition. LwM2M is strong on con-
nectivity, providing access to AI/ML/Big data via Microsoft
Azure, and traditional security. Dynamic service composition
is missing. ManIoT provides naming and name resolution
features. However, it does not support dynamic composability
and entities representation. ManIoT provides limited SPT
functionalities. MbDSAS includes entity representation and
service naming. It has similar limitations to ManIoT. NDN
and MobilityFirst are name-based clean slate future Inter-
net architectures. NDN adopts a content name-based routing
approach, with in-network caching.

MobilityFirst encompasses a different approach grounded
on global name resolution service. Content routers rely on
GNRS to map global unique IDs to locators, which are
indeed used to forward packets in the network. NovaGenesis
main features are naming, name resolution, contract-based
dynamic service composition, and entities representation.
It has limitations regarding current SPT implementation and
IA/ML/Big data. OpenIoT main strengths are cloud-based
operation and standardized entities representation via wrap-
pers. Concerns include naming, name resolution, dynamic
service composability, and SPT. SmartSantander strengths
are IoT services for experimentation, data analysis, and
devices representation. Limited communication and static
service composition are weak points. SENSEI is similar to
SmartSantander, with SPT being a major concern. Finally,
ThingWorx has strong abstractions to represent physical
world and services, comprehensive support for SPT, and
natural language naming. As can be seen, there are important
similarities and differences among proposals, but few of them
cover most of the requirements considered in this article.

A. OPEN RESEARCH ISSUES
The diversity of technologies employed in smart environ-
ments directly influences the key aspects that should be
selected for qualitative comparison. In this article, a set of key
aspects aligned to future Internet research has been selected,
providing novel insights on the limitations of current pro-
posals and previous literature reviews. The opposite is also
true, the three future Internet proposals (NDN, Mobility-
First, and NovaGenesis) also have unimplemented aspects
already available in TCP/IP-based proposals. Even though,
some challenges still remain as opportunities for further
research:
• Improvement and expansion of the key aspects consid-
ered in reviews and architecture designs - This is huge
challenge, since the spectrum of key aspects presented
in Section III is enormous. A very broad survey on the
key aspects and enablers for smart environments is still
missing in literature.

165774 VOLUME 7, 2019



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

• Importance sampling - Many surveys give a lot of atten-
tion to aspects less relevant than others, specially regard-
ing evolution towards new generation architectures, such
as future Internet or 5th generation mobile networks.
Quantitative techniques could be used to determine rel-
ative importance of key aspects and enablers, specially
regarding new generation networks.

• Synergy among design ingredients - In general, smart
environment platforms can better explore synergies
among adopted enablers. Tables 1 and 2 give several
examples. Naming and name resolution is superficially
explored by the large majority of proposals, despite
its importance for other architectural aspects, specially
security, privacy, and trust [18].

• Service-orientation is another example. Manual inter-
vention is predominant. Approximately half of the plat-
forms employ dynamic service composition. Devices are
not represented by services in many proposals, a fun-
damental feature for IoT and smart environments, since
smart objects provide an autonomous bridge between
physical and virtual worlds. Security does not take
advantage of service level agreements to form trust net-
works between smart objects and high level applications.

• Other FIA and 5G enablers, such as network pro-
grammability, network function virtualization, self-
organizing networking, AI, ML, distributed immutable
information databases (e.g. blockchain, tangle, etc.),
context-awareness, cloud-based radio access network,
virtual functions elasticity, in-network computing,
among others, are not being cohesively integrated in
current smart environments. The majority of proposals
in Tables 1 and 2 does not employ any of these enablers.

• Integrated support for AI, ML, and Big data is highly
desirable due to its potential to take advantage of avail-
able data and determine trends, generating value to pro-
cesses and business. While IoT is analogous to nervous
systems in biology, AI/ML/Big data is similar to the
brain. There is no intelligent decision without nervous
systems. Possibly, in the majority of solutions a devel-
oper can integrate AI/ML/Big data software to existing
implementations. However, what is wanted is that such
software be already integrated in the platforms, without
the need for further implementations. Another related
issue concerns the usage of metamorphic computing
embedded in devices. None of the studied approaches
are integrated to such distributed, hardware-based AI
(called neuromorphic computing).

• Another open research opportunity is things economy.
Monetizing sensors and actuators through micro pay-
ments is another open opportunity. Services would con-
tract sensors accordingly to demand, performing micro
transactions to monetize their owners. Digital wallets
could be used to store cryptoassets received in payment
for measures. The same applies for actuators. A data
market place could be integrated to IoT platforms or
become accessible by well know APIs.

• Novel naming and naming resolution approaches are
required to denote IoT devices, services, users, etc.
NovaGenesis and MobilityFirst apply self-verifying
naming to all entities in a domain. NDN applies SVNes
exclusively for content. Ghodsi et al. [18] already
demonstrated the huge advantages of self-verifying
names in architectures. However, none of the protocols
in current Internet architecture employs this kind of
naming approach. Not only hierarchical addressing or
natural language naming is important, but also self-
verifying names, which increase security from architec-
ture foundation.

• In NovaGenesis, sensors and actuators have a represen-
tative service that ‘‘sells’’ their features to interested
applications. Self-organization is adopted to enable
name-based discovery and contracting. Contract-based
operation is a unique feature of NovaGenesis. How-
ever, SPT in IoT platforms requires trustworthy oper-
ation. Digital twins should be involved in ‘‘selling’’
what their physical counterparts can do. Contracts can
be established and monetized. Smart contracts are a
promising technology to automate things economy and
make it more safe, since computer programs can be run
from Blockchain or other equivalent distributed ledger
technology. Users would like to be sure that their pro-
grams are exactly the ones they published. Deterministic
building (or integral computing) is on its infancy —
a large opportunity for researchers and future smart
environments.

Future research and development should more deeply
incorporate FIA and 5G ingredients in IoT/smart environment
platforms, improving their performance, security, flexibility,
extendability, autonomy, etc. Not only small medium-sized
enterprises, but also big companies should dig deeper into
what is being done in these areas to take advantage of emerg-
ing technologies in their already successful platforms.

VII. CONCLUSION
This paper provides an overview of the status quo of propos-
als for smart environment, giving a taxonomy of approaches,
and analyzing their support for a selected set of key future
Internet enablers. Solutions have been analyzed in terms
of architecture, communication model, naming and name
resolution, services and data life-cycling, representation of
physical devices, security, privacy, and trust. It has been
observed a big diversity of scopes, technologies and support
for these requirements. Even though, comparison regarding
some important aspects was possible. The conclusion is that
heterogeneity came to stay and solutions need to be generic
enough to interoperate to a number of alternatives. Also, pub-
lish/subscribe communication model appears to have signif-
icant advantages, which justify its broad adoption. However,
there are alternatives such as push/pull mode used in the
NDN and MobilityFirst projects that deserve further inves-
tigation. Future Internet proposals clearly show that there

VOLUME 7, 2019 165775



A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

are significant advantages to start security design by naming
and name resolution, especially by adopting self-certifying
names. It is known that naming and name resolution plays a
key role in security, privacy and trust. Even so, most of the
proposals are stuck to the limitations of the current Internet
model. Future Internet architectures have exciting advantages
that can be explored to build the smart environments of
the future. In addition, the dynamic composition of smart
city services is not supported in many approaches, certainly
increasing operational expenditure. The interoperability of
devices is a problem solved. Smart objects (digital twins) are
being employed to represent heterogeneous nodes, providing
a common language for M2M communication. Ingredients
from future Internet research, such as SDN/NFV, ICN and
SCN are systematically being adopted for smart environ-
ments design.Many others are to come. AI, machine learning,
and big data support are missing not only in TCP/IP-based
approaches, but also in future Internet-based.

REFERENCES
[1] A. M. Alberti, G. D. Scarpioni, V. J. Magalhães, S. A. Cerqueira,

J. J. P. C. Rodrigues, and R. da R. Righi, ‘‘Advancing Novagenesis archi-
tecture towards future Internet of Things,’’ IEEE Internet Things J., vol. 6,
no. 1, pp. 215–229, Feb. 2019.

[2] J. Soldatos et al., ‘‘OpenIoT: Open source Internet-of-Things in the cloud,’’
in Interoperability and Open-Source Solutions for the Internet of Things
(Lecture Notes in Computer Science), vol. 9001, Ž. I. Podnar, K. Pripužić,
and M. Serrano, Eds. Cham, Switzerland: Springer, 2015.

[3] M. Taneja and A. Davy, ‘‘Resource aware placement of IoT
application modules in Fog-cloud computing paradigm,’’ in Proc.
IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 1222–1228.

[4] J. von Uexküll and H. Girardet. (2005). Shaping Our Future: Creat-
ing The World Future Council. [Online]. Available: https://digital.library.
unt.edu/ark:/67531/metadc13722/

[5] C. Formisano, D. Pavia, L. Gurgen, T. Yonezawa, J. A. Galache,
K. Doguchi, and I. Matranga, ‘‘The advantages of IoT and cloud applied
to smart cities,’’ in Proc. 3rd Int. Conf. Future Internet of Things Cloud,
Aug. 2015, pp. 325–332.

[6] J. H. Lee,M. G. Hancock, andM.-C. Hu, ‘‘Towards an effective framework
for building smart cities: Lessons from Seoul and San Francisco,’’ Technol.
Forecasting Social Change, vol. 89, pp. 80–99, Nov. 2014.

[7] G. Tselentis, J. Domingue, A. Galis, A. Gavras, and D. Hausheer, Towards
the Future Internet - A European Research Perspective. Amsterdam, The
Netherlands: IOS Press, 2009.

[8] G. Tselentis, A. Galis, A. Gavras, S. Krco, V. Lotz, E. Simperl, B. Stiller,
and T. Zahariadis, Emerging Trends from European Research. Amsterdam,
The Netherlands: IOS Press, 2010.

[9] J. Domingue, A. Galis, A. Gavras, T. Zahariadis, D. Lambert, F. Cleary,
P. Daras, S. Krco, and H. Müller, The Future Internet Future Internet
Assembly 2011: Achievements and Technological Promises. Berlin, Ger-
many: Springer-Verlag, 2011.

[10] F. Alvarez, F. Cleary, P. Daras, G. A. Domingue, J., A. Garcia, A. Gavras,
S. Karnourskos, L. M.-S. Krco, S., V. Lotz, S. E. Müller, H. A.-M. Sassen,
H. Schaffers, B. Stiller, G. Tselentis, P. Turkama, and T. Zahariadis, The
Future Internet. Berlin, Germany: Springer-Verlag, 2012.

[11] A. Galis, Eds., The Future Internet: Future Internet Assembly 2013:
Validated Results and New Horizons. Berlin, Germany: Springer-Verlag,
May 2013.

[12] P. Stuckmann and R. Zimmermann, ‘‘European research on future Internet
design,’’ IEEE Wireless Commun., vol. 16, no. 5, pp. 14–22, Oct. 2009.

[13] J. M. Hernández-Muñoz, J. B. Vercher, L. Muñoz, J. A. Galache,
M. Presser, L. A. H. Gómez, and J. Pettersson, ‘‘Smart cities at the
forefront of the future Internet,’’ in The Future Internet (Lecture Notes
in Computer Science), vol. 6656. Berlin, Germany: Springer, 2011,
pp. 447–462. [Online]. Available: http://link.springer.com/10.1007/978-3-
642-20898-0_32

[14] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, ‘‘Internet of
things: Vision, applications and research challenges,’’ Ad Hoc Netw.,
vol. 10, pp. 1497–1516, Sep. 2012.

[15] A. M. Alberti, ‘‘A conceptual-driven survey on future Internet require-
ments, technologies, and challenges,’’ J. Brazilian Comput. Soc., vol. 19,
no. 3, pp. 291–311, 2013.

[16] A. M. Alberti, M. M. Bontempo, J. R. D. Santos, A. C. Sodré, and R. Da
R. Righi, ‘‘NovaGenesis applied to information-centric, service-defined,
trustable IoT/WSAN control plane and spectrum management,’’ Sensors,
vol. 18, no. 9, p. 3160, 2018. [Online]. Available: https://www.mdpi.
com/1424-8220/18/9/3160

[17] I. Farris, T. Taleb, Y. Khettab, and J. Song, ‘‘A survey on emerging SDN
and NFV security mechanisms for IoT systems,’’ IEEE Commun.Surveys
Tuts., vol. 21, no. 1, pp. 812–837, 1st Quart., 2019.

[18] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker,
‘‘Naming in content-oriented architectures,’’ in Proc. SIGCOMM
Workshop Inf.-Centric Netw., New York, NY, USA, 2011, pp. 1–6,
doi: 10.1145/2018584.2018586.

[19] A. M. Alberti, M. A. F. Casaroli, D. Singh, and R. R. Righi,
‘‘Naming and name resolution in the future Internet: Introducing
the NovaGenesis approach,’’ Future Gener. Comput. Syst., vol. 67,
pp. 163–179, Feb. 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167739X16302643

[20] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. McCann, and K. Leung,
‘‘A survey on the IETF protocol suite for the Internet of Things: Standards,
challenges, and opportunities,’’ IEEE Wireless Commun., vol. 20, no. 6,
pp. 91–98, Dec. 2013.

[21] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
‘‘Internet of Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, Feb. 2014.

[22] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, Internet of Things
Based on Smart Objects, G. Fortino and P. Trunfio, Eds., Cham, Switzer-
land: Springer, 2014, pp. 1–27. [Online]. Available: http://link.springer.
com/content/pdf/10.1007/978-3-319-00491-
4.pdf\nhttp://link.springer.com/10.1007/978-3-319-00491-4

[23] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ‘‘Middle-
ware for Internet of Things: A survey,’’ IEEE Internet Things J., vol. 3,
no. 1, pp. 70–95, Feb. 2016.

[24] M. A. A. da Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev, and
V. H. C. de Albuquerque, ‘‘A reference model for Internet of Things mid-
dleware,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 871–883, Apr. 2018.

[25] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp, F. Ley-
mann, and L. Reinfurt, A Detailed Analysis of IoT Platform Architec-
tures: Concepts, Similarities, and Differences. Singapore: Springer, 2018,
pp. 81–101.

[26] M. A. A. da Cruz, J. J. P. C. Rodrigues, A. K. Sangaiah, J. Al-Muhtadi,
and V. Korotaev, ‘‘Performance evaluation of IoT middleware,’’ J. Netw.
Comput. Appl., vol. 109, pp. 53–65, May 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S108480451830064X

[27] P. Sethi and S. R. Sarangi, ‘‘Internet of Things: Architectures, proto-
cols, and applications,’’ J. Elect. Comput. Eng., vol. 2017, Jan. 2017,
Art. no. 9324035, doi: 10.1155/2017/9324035.

[28] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, ‘‘IoT
Middleware: A survey on issues and enabling technologies,’’ IEEE Internet
Things J., vol. 4, no. 1, pp. 1–20, Feb. 2017.

[29] A. Farahzadi, P. Shams, J. Rezazadeh, and R. Farahbakhsh, ‘‘Mid-
dleware technologies for cloud of things: A survey,’’ Digit. Commun.
Netw., vol. 4, no. 3, pp. 176–188, Aug. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352864817301268

[30] E. F. Z. Santana, A. P. Chaves, M. A. Gerosa, F. Kon, and D. S. Milojicic,
‘‘Software platforms for smart cities: Concepts, requirements, challenges,
and a unified reference architecture,’’ ACM Comput. Surv., vol. 50, no. 6,
pp. 78:1–78:37, Nov. 2018, doi: 10.1145/3124391.

[31] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, ‘‘Survey of platforms for
massive IoT,’’ in Proc. IEEE Int. Conf. Future IoT Technol. (Future IoT),
Jan. 2018, pp. 1–8.

[32] M. Nitti, V. Pilloni, G. Colistra, and L. Atzori, ‘‘The virtual object as
a major element of the Internet of Things: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1228–1240, 2nd Quart., 2015.

[33] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, ‘‘Context
aware computing for the Internet of Things: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 414–454, 1st Quart., 2014.

165776 VOLUME 7, 2019

http://dx.doi.org/10.1145/2018584.2018586
http://dx.doi.org/10.1155/2017/9324035
http://dx.doi.org/10.1145/3124391


A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

[34] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, ‘‘Context-aware computing,
learning, and big data in Internet of Things: A survey,’’ IEEE Internet
Things J., vol. 5, no. 1, pp. 1–27, Feb. 2018.

[35] V. Gazis, ‘‘A survey of standards for machine-to-machine and the Internet
of Things,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 482–511, 1st
Quart., 2016.

[36] A. M. Alberti, E. S. dos Reis, R. da R. Righi, V. M. Muñoz, and
V. Chang. (Feb. 2016). Converging Future Internet, Things, and Big
Data: An Specification Following Novagenesis Model. [Online]. Available:
https://eprints.soton.ac.uk/387089/

[37] O. Tomanek and L. Kencl, ‘‘Security and privacy of using AllJoyn IoT
framework at home and beyond,’’ in Proc. 2nd Int. Conf. Intell. Green
Building Smart Grid (IGBSG), Jun. 2016, pp. 1–6.

[38] P. Masek, R. Fujdiak, K. Zeman, J. Hosek, and A. Muthanna,
‘‘Remote networking technology for IoT: Cloud-based access for AllJoyn-
enabled devices,’’ in Proc. 18th Conf. Open Innov. Assoc. Semi-
nar Inf. Secur. Protection Inf. Technol. (FRUCT-ISPIT), Apr. 2016,
pp. 200–205.

[39] M. Villari, A. Celesti, M. Fazio, and A. Puliafito, ‘‘AllJoyn Lambda: An
architecture for the management of smart environments in IoT,’’ in Proc.
Int. Conf. Smart Comput. Workshops, Nov. 2014, pp. 9–14.

[40] D. Bonino, M. T. D. Alizo, A. Alapetite, T. Gilbert, M. Axling, H. Udsen,
J. A. C. Soto, and M. Spirito, ‘‘ALMANAC: Internet of Things for
smart cities,’’ in Proc. 3rd Int. Conf. Future Internet Things Cloud,
Aug. 2015, pp. 309–316. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=7300833

[41] S. Meyer, A. Ruppen, and C. Magerkurth, ‘‘Internet of Things-aware
process modeling: Integrating IoT devices as business process resources,’’
in Proc. Int. Conf. Adv. Inf. Syst. Eng. Berlin, Germany: Springer, 2013,
pp. 84–98.

[42] D. Bonino, M. T. D. Alizo, C. Pastrone, and M. Spirito, ‘‘WasteApp:
Smarter waste recycling for smart citizens,’’ in Proc. Int. Multidisciplinary
Conf. Comput. Energy Sci. (SpliTech), Jul. 2016, pp. 1–6.

[43] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of
Things (IoT): A vision, architectural elements, and future directions,’’
Future Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[44] D. S. S. Subhash, R. A. Ramchandra, P. T. Nagnath, S. D. Rajbhoj, and
A. M. Jagtap, ‘‘Dynamic provisioning of resources in cloud computing
using Aneka,’’ in Proc. Int. Conf. I-SMAC IoT Social Mobile, Anal. Cloud
(I-SMAC), Feb. 2017, pp. 905–908.

[45] P. Varga and C. Hegedus, ‘‘Service interaction through gateways for inter-
cloud collaboration within the arrowhead framework,’’ in Proc. 5th IEEE
Wireless VITAE, Dec. 2015.

[46] J. Jokinen, T. Latvala, and J. L. M. Lastra, ‘‘Integrating smart city services
using Arrowhead framework,’’ in Proc. 42nd Annu. Conf. IEEE Ind. Elec-
tron. Soc., Oct. 2016, pp. 5568–5573.

[47] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, ‘‘A survey of commercial
frameworks for the Internet of Things,’’ in Proc. IEEE 20th Conf. Emerg.
Technol. Factory Automat. (ETFA), Sep. 2015, pp. 1–8.

[48] D. Kozma, P. Varga, and C. Hegedüs, ‘‘Supply chain management and
logistics 4.0 - A study on arrowhead framework integration,’’ in Proc. 8th
Int. Conf. Ind. Technol. Manage. (ICITM), Mar. 2019, pp. 12–16.

[49] A. Bhatnagar, V. Sharma, and G. Raj, ‘‘IoT based car pollution detection
using AWS,’’ in Proc. Int. Conf. Adv. Comput. Commun. Eng. (ICACCE),
Jun. 2018, pp. 306–311.

[50] W. Tärneberg, V. Chandrasekaran, and M. Humphrey, ‘‘Experiences cre-
ating a framework for smart traffic control using AWS IOT,’’ in Proc. 9th
Int. Conf. Utility Cloud Comput., Dec. 2016, pp. 63–69.

[51] T. Yonezawa, I. Matranga, J. A. Galache, H. Maeomichi, L. Gurgen,
and T. Shibuya, ‘‘A citizen-centric approach towards global-scale smart
city platform,’’ in Proc. Int. Conf. Recent Adv. Internet of Things (RIoT),
Apr. 2015, pp. 1–6, doi: 10.1109/RIOT.2015.7104913.

[52] I. Realtime. Openfire Project. (Accessed: Apr. 2017). [Online]. Available:
https://www.igniterealtime.org/ projects/openfire

[53] L. A. Amaral, R. T. Tiburski, E. de Matos, and F. Hessel, ‘‘Cooperative
middleware platform as a service for Internet of Things applications,’’ in
Proc. 30th Annu. ACM Symp. Appl. Comput., New York, NY, USA, 2015,
pp. 488–493, doi: 10.1145/2695664.2695799.

[54] R. da R. Righi, E. S. dos Reis, G. Rostirolla, C. A. da Costa, and
A. M. Alberti, ‘‘Exploring cloud elasticity on developing an EPCGlobal-
compliant middleware,’’ in Proc. IEEE Int. Conf. RFID (RFID),
Orlando, FL, USA, May 2016, pp. 43–46, doi: 10.1109/RFID.2016.
7488003.

[55] C. Sarkar, A. U. N. S. N., R. V. Prasad, A. Rahim, R. Neisse, andG. Baldini,
‘‘DIAT: A scalable distributed architecture for IoT,’’ IEEE Internet
Things J., vol. 2, no. 3, pp. 230–239, Jun. 2015. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7000513

[56] F. Ramparany, F. G. Marquez, J. Soriano, and T. Elsaleh, ‘‘Handling smart
environment devices, data and services at the semantic level with the FI-
WARE core platform,’’ in Proc. IEEE Int. Conf. (Big Data), Oct. 2014,
pp. 14–20.

[57] P. Fernández, J. M. Santana, S. Ortega, A. Trujillo, J. P. Suárez,
C. Domínguez, J. Santana, and A. Sánchez, ‘‘SmartPort: A platform for
sensor data monitoring in a seaport based on FIWARE,’’ Sensors, vol. 16,
no. 3, p. 417, Mar. 2016. [Online]. Available: http://www.mdpi.com/1424-
8220/16/3/417

[58] R. T. Fielding, ‘‘Architectural styles and the design of network-based
software architectures,’’ Ph.D. dissertation, Dept. Inf. Comput. Sci.,
Univ. California, Irvine, CA, USA, 2000. [Online]. Available: https://
www.ics.uci.edu/fielding/pubs/dissertation/fielding_dissertation.pdf

[59] J. An, F. Le Gall, J. Kim, J. Yun, J. Hwang,M. Bauer,M. Zhao, and J. Song,
‘‘Toward global IoT-enabled smart cities interworking using adaptive
semantic adapter,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 5753–5765,
Jun. 2019.

[60] Á. Alonso, A. Pozo, J. Choque, G. Bueno, J. Salvachúa, L. Diez, J. Marín,
and P. L. C. Alonso, ‘‘An identity framework for providing access to
FIWARE OAuth 2.0-based services according to the eIDAS European
regulation,’’ IEEE Access, vol. 7, pp. 88435–88449, 2019.

[61] IoTivity Project. Iotivity. Accessed: Nov. 12, 2019. [Online]. Available:
https://www.iotivity.org

[62] J.-C. Lee, J.-H. Jeon, and S.-H. Kim, ‘‘Design and implementation of
healthcare resource model on IoTivity platform,’’ in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2016, pp. 887–891.

[63] K. Elsayed, M. A. B. Ibrahim, and H. S. Hamza, ‘‘Service discovery
in heterogeneous IoT environments based on OCF/IoTivity,’’ in Proc.
15th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Jun. 2019,
pp. 1160–1165.

[64] O. M. Alliance. Oma. Accessed: Nov. 12, 2019. [Online]. Available:
http://openmobilealliance.org/about-oma/work-program/m2m-enablers/

[65] A. Karaagac, M. VanEeghem, J. Rossev, B. Moons, E. DePoorter, and
J. Hoebeke, ‘‘Extensions to LwM2M for intermittent connectivity and
improved efficiency,’’ in Proc. IEEE Conf. Standards Commun. Netw.
(CSCN), Oct. 2018, pp. 1–6.

[66] B. Silverajan, H. Zhao, and A. Kamath, ‘‘A semantic meta-model repos-
itory for lightweight M2M,’’ in Proc. IEEE Int. Conf. Commun. Syst.
(ICCS), Dec. 2018, pp. 468–472.

[67] A. Karaagac, N. Verbeeck, and J. Hoebeke, ‘‘The integration of LwM2M
and OPC UA: An interoperability approach for industrial IoT,’’ in
Proc. IEEE 5th World Forum Internet of Things (WF-IoT), Apr. 2019,
pp. 313–318.

[68] J. B. Antunes, I. L. Dénes, M. Santos, T. O. Castro, D. F. Macedo,
and A. L. D. Santos, ‘‘ManIoT: Uma Plataforma para Gerenciamento de
Dispositivos da Internet das coisas,’’ in Proc. Simpósio Brasileiro de Redes
de Computadores Sistemas Distribuidos (SBRC), 2016, p. 14. [Online].
Available: http://sbrc2016.ufba.br/downloads/WGRS/ST1-1.pdf

[69] M. A. Marotta, F. J. Carbone, J. J. C. de Santanna, and L. M. R. Tarouco,
‘‘Through the Internet of Things—A management by delegation smart
object aware system (MbDSAS),’’ in Proc. IEEE 37th Annu. Comput.
Softw. Appl. Conf., Jul. 2013, pp. 732–741.

[70] D. Hart and B. Goertzel, ‘‘Opencog: A software framework for inte-
grative artificial general intelligence,’’ in Proc. 1st AGI Conf. Artif.
Gen. Intell., Mar. 2008, pp. 468–472. [Online]. Available: http://www.
booksonline.iospress.nl/Content/View.aspx?piid=8338

[71] A. Medvedev, A. Zaslavsky, S. Khoruzhnikov, and V. Grudinin, ‘‘Report-
ing road problems in smart cities using OpenIoT framework,’’ in Interop-
erability and Open-Source Solutions for the Internet of Things. I. P. Žarko,
K. PripuÅ̌¿ić, and M. Serrano, Eds., Cham, Switzerland: Springer, 2015,
pp. 169–182.

[72] L. Sánchez, V. Gutiérrez, J. A. Galache, P. Sotres, J. R. Santana,
J. Casanueva, and L. Muñoz, ‘‘SmartSantander: Experimentation and ser-
vice provision in the smart city,’’ in Proc. 16th Int. Symp. Wireless Pers.
Multimedia Commun. (WPMC), Jun. 2013, pp. 1–6.

[73] P. Sotres, J. R. Santana, L. Sánchez , J. Lanza, and L. Muñoz, ‘‘Practical
lessons from the deployment and management of a smart city Internet-
of-Things infrastructure: The smartsantander testbed case,’’ IEEE Access,
vol. 5, pp. 14309–14322, 2017.

VOLUME 7, 2019 165777

http://dx.doi.org/10.1109/RIOT.2015.7104913
http://dx.doi.org/10.1145/2695664.2695799
http://dx.doi.org/10.1109/RFID.2016.7488003
http://dx.doi.org/10.1109/RFID.2016.7488003


A. M. Alberti et al.: Platforms for Smart Environments and Future Internet Design: Survey

[74] B. Snyder, D. Bosanac, and R. Davies, ActiveMQ in Action. Greenwich,
CT, USA: Manning Publications Co., 2011.

[75] K. Varda, ‘‘Protocol buffers: Google’s data interchange format,’’
Google Open Source Blog, Mountain View, CA, USA, Tech. Rep.,
Jul. 2018. [Online]. Available: http://google-opensource.blogspot.
com/2008/07/protocol-buffers-googles-data.html

[76] F. Paganelli, S. Turchi, and D. Giuli, ‘‘A Web of things framework for
RESTful applications and its experimentation in a smart city,’’ IEEE Syst.
J., vol. 10, no. 4, pp. 1412–1423, Dec. 2016.

[77] M. Presser, P. M. Barnaghi, M. Eurich, and C. Villalonga, ‘‘The SENSEI
project: Integrating the physical world with the digital world of the network
of the future,’’ IEEE Commun. Mag., vol. 47, no. 4, pp. 1–4, Apr. 2009.

[78] V. Tsiatsis, A. Gluhak, T. Bauge, F. Montagut, J. Bernat, M. Bauer,
C. Villalonga, P. M. Barnaghi, and S. Krco, ‘‘The SENSEI real world
Internet architecture,’’ in Towards Future Internet—Emerging Trends From
European Research, G. Tselentis, A. Galis, A. Gavras, S. Krco, V. Lotz,
E. P. B. Simperl, B. Stiller, and T. B. Zahariadis, Eds., IOS Press, 2010,
pp. 247–256. [Online]. Available: http://dx.doi.org/10.3233/978-1-60750-
539-6-247

[79] H. V. Jaurkar, G. N. Mulay, and V. Gohokar, ‘‘Parking guidance system
using Internet of Things,’’ in Proc. Int. Conf. Inventive Comput. Technol.
(ICICT), vol. 1, Aug. 2016, pp. 1–6.

[80] R. Yasmin, J. Petäjäjärvi, K.Mikhaylov, and A. Pouttu, ‘‘On the integration
of LoRaWAN with the 5G test network,’’ in Proc. IEEE 28th Annu. Int.
Symp. Pers. Indoor, Mobile Radio Commun. (PIMRC), Oct. 2017, pp. 1–6.

ANTONIO MARCOS ALBERTI received the
M.Sc. and Ph.D. degrees in electrical engi-
neering from Campinas State University (Uni-
camp), Campinas, Brazil, in 1998 and 2003,
respectively. He has been an Associate Profes-
sor and a Researcher with the National Institute
of Telecommunications (INATEL), Brazil, since
2004. In 2012, he was a Visiting Researcher
with the Future Internet Department, ETRI, South
Korea. Since 2008, he has been designing and

implementing a future Internet architecture called NovaGenesis. Since 2013,
he has been acting as a Coordinator of the Information and Communications
Technologies (ICT) Laboratory, INATEL. He has authored or coauthored
over 100 articles in refereed international journals and conferences.

MATEUS A. S. SANTOS received the Ph.D.
degree from the Universidade de São Paulo
(USP), in 2014. From 2013 to 2014, he was
a Research Scholar with the Inter-Networking
Research Group, UC Santa Cruz. He was also
a Postdoctoral Researcher with the University
of Campinas (UNICAMP), from 2014 to 2016.
He is currently with Ericsson Research, Brazil.
His research interests include software-defined
networking, network functions virtualization, and
network automation.

RICARDO SOUZA received the master’s degree
from the University of Campinas (UNICAMP),
in 2011. He is currently a Senior Researcher with
Ericsson Research, Brazil. Hismain research inter-
ests include distributed systems, the Internet of
Things, mobile and networked robotics, and arti-
ficial intelligence.

HIRLEY DAYAN LOURENÇO DA SILVA
received the B.S.E.E. degree with an emphasis
in telecommunications from the National Insti-
tute of Telecommunications (INATEL), in Brazil,
in 2000. He is with Ericsson Research, Develop-
ment, & Innovation Facility, in Brazil, where he
joined, in 2000. Hewas anArchitect in many smart
cities and smart industries related projects. His cur-
rent activity includes the evolution of the business
support systems (BSS) solutions for supporting

5G and the IoT. Besides 5G and the IoT, he has also interested in cloud
computing and machine learning.

JORGE ROBERTO CARNEIRO is the Telecom-
municationsManager by SENAC-RJ, a member of
CREA-RJ, CRA-RJ, and APJERJ, the Specialist
in project management by UCM-RJ, a Special-
ist in networks and telecommunications systems
engineering by the National Institute of Telecom-
munications (Inatel). He is currently developing
the M.Sc. dissertation in telecommunications with
the Inatel, focusing on governance and operation
models for smart places for current and future tech-

nologies (NovaGenesis). He contributes to the Research and Development
area with the ICT Laboratory, Inatel, as a Researcher in cyberinfrastructure,
future internet architectures, and smart places. He is responsible for the ICT
Laboratory Project Office. He has 25 years of expertise in ICT industry.

VITOR ALEXANDRE CAMPOS FIGUEIREDO
received the bachelor’s degree in computer engi-
neering from the Federal University of São Carlos
(SP), in 2000, and the master’s degree in business
intelligence from PUC-RJ, in 2002. He is currently
pursuing the master’s degree in telecommunica-
tions with the IoT Research Group’s Laboratory
with INATEL, Santa Rita do Sapucaí, Brazil. He is
a specialist in web software development, SOA,
and database with more than 15 years of experi-

ence in the telecommunications market.

JOEL J. P. C. RODRIGUES (S’01–M’06–SM’06)
is currently a Professor with the Federal University
of Piauí, Brazil, and a Senior Researcher with
the Instituto de Telecomunicações, Portugal. He is
the Leader of the Internet of Things Research
Group (CNPq), the Director for Conference
Development-IEEE ComSoc Board of Governors
and the IEEE Distinguished Lecturer, the Past-
Chair of the IEEE ComSoc Technical Committee
on eHealth and the IEEE ComSoc Technical Com-

mittee on Communications Software, and a Steering CommitteeMember and
the Publications Co-Chair of the IEEE Life Sciences Technical Community.
He has authored or coauthored over 780 articles in refereed international
journals and conferences and three books. He holds two patents. He is a
licensed Professional Engineer (as SeniorMember), a member of the Internet
Society, and a SeniorMember of the ACM. He has one ITU-T Recommenda-
tion. He was awarded several Outstanding Leadership and Outstanding Ser-
vice Awards from the IEEE Communications Society and several best papers
awards. He has been the general chair and the TPC chair of many interna-
tional conferences. He is the Editor-in-Chief of the International Journal on
E-Health and Medical Communications and editorial board member of
several high-reputed journals.

165778 VOLUME 7, 2019


