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ABSTRACT The use of mobile phones or smartphones has become so widespread that most people rely
on them for many services and applications like sending e-mails, checking the bank account, accessing
cloud platforms, health monitoring, buying on-line and many other applications where sharing sensitive
data is required. As a consequence, security functions are important in the use of smartphones, especially
because most of the applications require the identification and authentication of the device in mobility. This is
usually achieved through cryptographic systems but recent research studies have also investigated alternative
or complementary authentication mechanisms which can be used to strengthen cryptographic methods
with multi-factor authentication. In this paper, we investigate the identification and the authentication
of smartphones using the intrinsic physical properties of the mobile phones built-in microphones. The
possibility to identify a microphone on the basis of features extracted from audio recordings is well known
in literature but it is mostly used in forensics studies and usually relies on human voice recordings. On the
contrary this paper proposes a smartphone identification and authentication approach by stimulating the
built-in microphone with non-voice sounds at different frequencies. An extensive data set of 32 phones
was used to evaluate experimentally the proposed approach. On the basis of the proven performance of deep
learning techniques, a new Convolutional Neural Network architecture is proposed both for the identification
and the authentication purposes. Its performance, in comparison to other machine learning algorithms,
is demonstrated in presence of different types of noises (e.g., Gaussian White noise, Babble noise and
Street noise). Satisfactory results have been obtained showing that the exploitation of a fingerprint from
the microphone sensor is a good choice to assess smartphone distinctiveness.

INDEX TERMS Smartphone identification, authentication, microphone, machine learning, deep learning.

I. INTRODUCTION

The ability to identify smartphones or mobile phones (in the
rest of the paper the two terms are used with the same mean-
ing) through their built-in components has been demonstrated
in the literature for various types of sensors including CCDs,
accelerometers, magnetometers and also microphones. The
unambiguous identification of a mobile phone can be used
to perform multi-factor authentication where the physical
identification related to a smartphone sensor is combined
with the cryptographic authentication [1]. In such a way users
of mobile applications can benefit from an improved authenti-
cation procedure in term of security and usability. This kind of
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identification could be extremely important also to guarantee
continuous authentication for specific transactions or for time
consuming processing. Furthermore, in forensics and security
applications, identification proofs based on physical charac-
teristics are much more difficult to be faked and reproduced
since they are intrinsically related to the electronic component
and to the mobile phone itself. So the main goal of this paper
is to study and develop a methodology to identify mobile
phones through the analysis of the signal coming from an
on-board sensor like the microphone, with the aim to extract
a smartphone fingerprint which is unambiguous and distinc-
tive of one specific device. This identification is based on
the assumption that the manufacturing process leaves some
imperfections on the physical structure of each sensor, thus
the output signal suffer from a systematic distortion, which
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is irrelevant for its use but can be distinguishable for the
identification task. The extraction of features concerning the
microphone sensor can contribute to the definition of the
smartphone fingerprint as well as SPN (Sensor Pattern Noise)
characterized the digital camera sensor of a mobile phone [2].
In a similar way, researchers have demonstrated the ability
to identify mobile phones with different degrees of accuracy
from various built-in MEMS sensor, such as accelerometers,
radio frequency components, magnetometers and so on [3].

In particular, the microphone is a sensor that transduces
acoustic pressure waves to an electrical signal. Basically, it is
used in combination with a loudspeaker to allow users to com-
municate, digitalizing pressure waves produced by the users
voice in electric signal sequences. The microphone structure
is composed by many modules and the defections in the area
of the movable and conductive plate (membrane) may occur
during the productive process impressing slight deviations
from the ideal response of the microphone. Even assuming
that such imperfections are not considerable during the stan-
dard usage of the sensors, these features may be inspected to
determine the uniqueness of each microphone. In this paper
and in literature (see section II), it is demonstrated that this
kind of error is unique and systematic and can be used as
fingerprint of the device.

The smartphone identification is related to the ability to
distinguish among phones of the same model but differ-
ent serial numbers (intra-model identification) and between
phones of different models and brands (inter-model identi-
fication). The first one is usually more difficult to achieve
because mobile phone manufacturers use the same materials
to assemble the same model, while different models/brands
are usually built using different components. For this reason
for our experimental results we collect a dataset composed of
responses from a relatively large set of mobile phones with
different brands and models but with a significant number of
phones belonging to the same model to better evaluate the
intra-model identification capabilities.

In particular, we propose a Convolutional Neural Net-
work method able to discriminate among various devices of
the same or different brands and comparatively evaluated it
against baselines like K-Nearest Neighbors (KNN), Support
Vector Machine (SVM) classifiers and CNN in the presence
or absence of noises. In particular, we evaluate three kind
of noises: the Gaussian White noise, the Babble noise and
the Street noise. In this paper, it will be demonstrated that
the proposed CNN significantly outperforms related works
showing a certain robustness to such noises.

The paper is organized as follows: Section II presents
some previous works related to the smartphone and sensor
fingerprinting. In Section III the application scenario will be
described, while Section IV describes the proposed method-
ology and the materials used in the experimental phase. In
Section V extended experimental results are presented and
discussed to evaluate the performances of the proposed tech-
nique. Finally Section VI draws conclusions.
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Il. RELATED WORKS

Various techniques proposed so far have been devised to
discern among different devices including digital cameras,
smartphones, printers and scanners considering different sen-
sors and properties.

The possibility to identify digital cameras exploiting
Charge Coupled Device (CCD) sensor pattern noise has
been demonstrated in well established works [4]-[7]. Others
papers dealing with the distinction among different kind of
devices such as scanner, digital camera, computer generated
content are proposed in [8]-[10]. A new trend in recent years
for the device identification is related to investigate about the
social networks provenance of digital images [11], [12].

The smartphone identification using built-in sensors like
accelerometer, gyroscope, magnetometer is demonstrated
recently by various works. The first analyzed sensor was
the accelerometer in [13], then it was used in combination
with the loudspeaker and the microphone [14]. The work
in [15] takes into account the combination of two sensors as
well (i.e., accelerometer and gyroscope). The paper in [16]
presents a work on how to combine accelerometer, gyroscope
and CCD sensor. In [17] an extension of the previous work is
proposed where four built-in sensors are combined in order to
build a more reliable fingerprint (accelerometer, gyroscope,
magnetometer and microphone).

In [18] smartphone identification is used to contrast
MEMS components counterfeiting using accelerometer and
gyroscope, while in [19] only the magnetometer is consid-
ered.

In recent years, the problem of how to identify the source
of an audio recording has been addressed, with a considerable
attention to mobile phone as recording system. The advantage
of using microphones for authentication in comparison to
other components in the mobile phone like the CCD camera
sensor or other kind of sensors is the possibility to control the
stimulus, which is applied to the microphone from an external
device. In this way it is easier to create a challenge/response
space as described in the Section III. This is more complex for
other components like a camera, where the recorded image
can be random (based on the collected visual context) or for
the radio frequency fingerprints where the wireless standards
may impose specific constraints.

The authors in [20] proposed a pioneering work in micro-
phone identification, where a set of audio steganalysis-based
features to cluster both the microphone and the environment
have been used. This work has been extended in [21], wherein
a combination of statistical features and unweighted informa-
tion fusion have been employed to improve the accuracy in
the classification.

In most of the earliest works only the inter-model classifi-
cation on speech audio recordings has been considered. More
recently, in [22], [23] the authors addressed the intra-model
classification task through a K-Nearest Neighbor (KNN) and
Gaussian mixture model (GMM). A comparison of various
features is provided showing that the use of Mel-Frequency
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Cepstrum Coefficient (MFCC) gives the best accuracy results
in term of identification.

On the contrary, in [24] the Power Spectrum Density (PSD)
of speech-free audio recordings is used to train a Support Vec-
tor Machine (SVM) classifier. The speech-free audio record-
ings are detected using Audacity software and the PSD is
calculated using a periodogram. The authors in [25],
employed MFCC coefficients of the non-speech segments of
the voice recordings in combination with SVM and GMM to
classify the microphones. The method exhibited promising
results but it also showed substantial sensitivity to addi-
tive noises. A sparse representation of speech recording is
used for device recognition in [26]. A recent work proposes
to recognize different microphones based on the recorded
speeches [27] using a kernel-based projection method; then
again a SVM is used for the classification.

Alternatively, the microphones can be stimulated using
non-voice recordings such as in [28] and [29]. In par-
ticular, the authors in [28] found out that the frequency
response curve extracted from sample recordings can be
a robust fingerprint to characterize the recording device.
A SVM is proposed to perform the classification over
31 mobile phones. In [29], the authors proposed a speaker-
to-microphone authentication protocol by leveraging the fre-
quency response of a speaker and a microphone from two IoT
wireless devices as the acoustic hardware fingerprint.

The application of deep learning on microphone identifica-
tion it is a quite new task and it is inspired by the superior per-
formance, respect to conventional machine learning methods
(especially when combined with frequency representations),
demonstrated for example in the radio frequency device iden-
tification (see [30] and [31]).

In [32] and [33] the authors proposed two deep learning
methods to solve the microphone identification task using
Convolutional Neural Networks. In particular in [32] aset of 9
devices stimulated with speech sound is employed. In [33]
the proposed CNN is compared with other machine learning
classifiers including SVM, Recurrent Neural Network and
Random Forest. The number of microphones used in this
case is 24 and a spectral representation Constant-Q Trans-
form (CQT) is used to perform the classification. The type of
sound stimuli used to generate the recordings is again related
to the speech (TMIT database). The use of non-speech sounds
in combination with CNN, as it is in this paper, is rather novel
and it is more suitable for the identification and authentica-
tion functions that require specific sound stimuli rather than
the use of speech recordings which is more appropriate for
forensics analysis. To summarize, the idea introduced in this
paper evaluates the use of CNN, as well as [32], [33], but a
different structure of the net is proposed, non-speech audio
recordings are given as input to the net and the results are
tested on a superior number of phones especially to test the
intra-model classification. This paper confirms the promising
results shown in [32] and [33], which has proven the superior
performance of CNN in comparison to conventional machine
learning algorithms. As shown in Section V our experiments
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FIGURE 1. The application scenario for smartphone identification using
the built-in microphone sensor.

Smart Phone

Sound Recording

demonstrate the optimal behavior of the proposed CNN espe-
cially in presence of noises.

Ill. APPLICATION SCENARIO

The potential application scenario for microphones identi-
fication or authentication (and consequently of the smart-
phone) is shown in Figure 1.

In an initial first phase (identified with A in Figure 1)
the microphone of a smartphone is stimulated by a sound
generator. As will be described in the Section IV the sound
stimulus is composed by a repetition of audio tones. The
sound recording is collected and stored in a database of
fingerprints, accessible by a cloud application which is used
in the in-field identification and also in the authentication
phase (identified with B in Figure 1). In the second phase
B, the microphone is stimulated by the same sound used in
the first phase A. After that, the audio recording is sent to a
deep learning cloud service able to perform the classification.
In the case of the identification task the application identifies
the source microphone in the fingerprints database, while in
the case of the authentication task a phone with a claimed
identity P; will be compared with the fingerprint associated
to P; in order to be assigned to that phone.

In the first phase, the fingerprints are collected in a con-
trolled sound environment avoiding the risk that the bias
introduced in the recording phase become part of the fin-
gerprint. In a real scenario the second phase is rarely ideal
and background noise is certainly present. For this reason,
in order to simulate this behavior, different types of noises
are evaluated in the Section V-B.3. In particular, three noises
have been taken into account including: the Additive white
Gaussian noise (AWGN), in order to consider different dis-
tances between the amplifier/loudspeaker system and the
microphone, and the Babble noise and the Street noise to
simulate the presence of specific background noise. Finally,
the bias introduced by the loudspeaker is considered as well.
We noticed that a common bias introduced by the audio
amplifier (where spurious replicas at higher frequencies are
generated) is mitigated in our methodology because only a
segment of the frequency response is selected thus cutting
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those spurious replicas. Furthermore in this application sce-
nario, it is preferable to obtain a good identification and
authentication accuracy with a limited audio recording lenght
to limit the overall time for identification and the authen-
tication. This duration time is composed by the recording
of the audio stimulus in the smartphone, the transmission
of the recording to the cloud application and the time for
the classification itself. So the shorter is the time of the
audio recording, the smaller is the size which decreases its
transmission and classification times. For this reason in the
Section V we perform an optimization of the size of the
segment used as input to the classifier in order to reduce its
length.

IV. PROPOSED METHOD AND MATERIALS

A. OVERALL WORKFLOW

The overall workflow used to generate and collect the audio
recordings, process them and then submit as input to the
classification procedure is presented in Figure 2.

In the initial recording collection phase, each smartphone
was stimulated with two separate sounds pulses at 1 KHz
and 2 KHz which are repeated for 800 times (see the section
below IV-C for a description on how the sounds are gen-
erated). Then, the audio recordings for each smartphone
are stored in in Pulse Code Modulation (PCM) format at
44100 Hz. The audio records are then power normalized and
synchronized to avoid the presence of bias related to test bed
configuration (e.g., the distance from the loudspeaker or the
time shift among sound recordings). Various types of noises
are subsequently artificially added to the sound recordings
to simulate the presence of background noise or attenuation
in practical environments (see Sections V-B.l1 and V-B.3
for details on the noise generation and related classification
results). Then, the Fast Fourier Transform (FFT) is applied to
the digital representation of the sound recordings to obtain a
frequency representation (the Frequency Domain Represen-
tation block in Figure 2). Note that a complex time series is
derived from the application of the FFT to the original sound
recordings, which is expressed in real values. Even in the
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FIGURE 3. Frequency responses on the 32 mobile phones for the 1 KHz
(a) and 2 KHz (b) stimulus with details on the band 0-600Hz.

frequency domain, the size of the data to be classified is quite
large (i.e., complex values in a frequency range from O to
44100 Hz) and it is necessary to perform a dimensionality
reduction. After that a segmentation is performed. It was
empirically found that not all the segments contribute in an
equal measure to the classification. In fact, it was noticed
that the best classification results was obtained by using the
magnitude components of the frequency and only a specific
segment was mainly responsible for the classification. This
is due to the fact that most of the fingerprints are located in a
frequency band between DC (direct current) and the stimulus
frequency (1 KHz or 2 KHz). The empirical demonstration
of this statement will be given in the Section V. This can
also be seen from the amplitude of the frequency response
to the stimulus at 1KHz and 2KHz, in Figures 3a) and 3b)
respectively. A detail on the frequency band between 0 and
600 Hz is also shown.

Finally, the classification is performed using a Convolu-
tional Neural Network. Two baselines classifiers (SVM and
KNN) are also evaluated. A detailed description of the clas-
sification phase is provided in Section IV-B below. It is inter-
esting to evaluate the performance of the classifier both for
the inter-model identification (i.e., phones of different models
and brands) and intra-model identification (i.e., phones of the
same model and brand). For this reason we provide in the
results Section V an analysis on the entire set of available
phones to evaluate the inter-model classification performance
and on a smaller set of phones of the same model to evaluate
the intra-model classification.

B. THE CLASSIFICATION PHASE

The classification phase is constituted by the introduction
of a Convolutional Neural Network. In the following the
details related to the proposed CNN are given. In particular
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the scheme of the proposed architecture is shown in Figure 4
with the related optimized values. The frequency vector of the
digitized microphone recording is reshaped to a matrix with
different sizes according to the stimuli at 1 KHz and 2 KHz
(see input layer in Figure 4). The network is then composed
by three convolutional layers, the first two followed by max
pooling to reduce the size. The classification performance
with the use of an increasing number of convolutional layers
have been evaluated too but no significant gain in classifi-
cation accuracy was obtained. All the convolutional layers
use the rectified linear unit (ReLU) as activation function.
After that a softmax layer with as many units as the num-
ber of microphones to be identified (32 in our experiments)
is attached. The softmax layer is aimed at producing the
probability of each sample being classified into each class.
The training phase is stopped when the loss function on the
validation set reaches its minimum, at which point the model
associated with a certain epoch is selected. The number of
epochs for the learning rate drops is set to 10. The L2 reg-
ularization factor is set to 0.0001. To mitigate overfitting,
a 4-fold approach was used for classification, where 25% of
the dataset was used for test, and 75% was used for training
and validation (9/10 of which used for training and 1/10 for
validation, so the validation set is 7.5% of the entire dataset).
The overall classification process was then repeated 20 times,
each time with different training and test sets and the final
results are averaged.

As introduced before, a SVM and a KNN classifiers are
used in the experiments for comparison so some details
regarding those baselines are provided in the following.
As for CNN, to mitigate the problem of overfitting, a 4-fold
approach for classification (which was repeated 20 times) was
adopted.

In particular, the SVM was based on a Radial Basis Func-
tion (RBF) kernel and it was optimized for the values of the
scaling y and penalty C factors using a grid search approach,
while the KNN uses the euclidean distance and it is optimized
on the basis of the K parameter.

C. MATERIALS

A set of 32 phones have been used to collect the audio
recordings. This dataset is larger than other datasets used in
the literature, and is comparable in size to the dataset recently
used in [28]. The collection of smartphones used in this paper
includes a larger number of phones of the same model respect
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TABLE 1. List of the 32 mobile phones used in the experiments with
relative IDs.

Mobile phones ID | Quantity
Samsung ACE 1-23 23
HTC One X 24-26 3
Samsung Galaxy S5 | 27-29 3
Sony Experia 30-32 3
Total 32

to [28] to properly address the problem of the intra-model
classification.

The audio signals are generated by a dedicated computer,
amplified by a high quality amplifier and transmitted in the
air medium with a high quality loudspeaker (to reduce the
bias potentially introduced in the sound generation phase).
We note that the potential impact of a lower quality of the
amplifier is mitigated, in the adopted methodology, by using
specific frequency bands for the audio stimuli (1IKHz and
2KHz), by normalizing the audio recording and by introduc-
ing different type of noises. The microphone sensitivity and
the level of the amplifier was adjusted to avoid the saturation
phenomenon in the audio recordings.

The position of the phones relative to the loudspeaker is
always the same in order to work in a controlled environment.
Different distances of the microphone from the loudspeaker
to replicate a real scenario are simulated by adding the
AWGN as described in the Section V-B. On the contrary the
different angle of the audio source is not considered since was
demonstrated in [34] that this variation usually does not have
impact in the classification performance. The smartphone
was placed on a plastic absorber to minimize the effect of
vibrations on the supporting surface. The audio signals are
tones at 1000 Hz and 2000 Hz (1 KHz and 2 KHz) with
a duration of 1 second. The audio recording was stored in
the smartphone in PCM raw format at 44.1 KHz. The audio
recordings were collected in different days in our laboratory
in a timeframe of several weeks. The list of the mobile
phones in the dataset is reported in Table 1. The total number
is 32 smartphones with three different brands (Samsung,
Sony and HTC) and two different model of the same brand
(Samsung ACE and Samsung Galaxy S5). The quantity of
smartphones for each model is reported in Table 1.

V. RESULTS

This section presents the experimental results: a) the opti-
mization of the proposed CNN in subsection V-A and b) the
performance evaluation under different scenarios and envi-
ronmental conditions in V-B.

A. OPTIMIZATION

As anticipated in Section IV-B, this section will be devoted
to the optimization of some of the machine learning hyper-
parameters useful for the rest of the experimental analy-
sis. In particular, the most suitable CNN optimizer and the
optimal stride value related to the first convolutional layer
have been considered. Different optimization algorithms have
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FIGURE 5. Choice of the best solver function in term of accuracy in
classification. a) SNR from .—15 dB to 60 dB b) the detail for SNR = 5 dB
and 10 dB.

been evaluated such as the Root Mean Square Propagation
(RMSProp), the Stochastic Gradient Descent with Momen-
tum (SGDM) and Adam in term of classification accuracy
varying the SNRs. In the Figure 5 a slightly improvement in
the accuracy is evidenced with the RMSProp algorithm (with
a decay rate of 0.999). The same behavior it is demonstrated
also in Figure 5(b) where a detail for the SNR = 5 and the
10 dB case is reported. Hence for this reason the RMSProp is
chosen as optimization algorithm in the proposed CNN.

In Figure 6 is reported the choice of the stride values for the
first convolutional layer of the CNN. Different stride values
S have been evaluated S = [8 : 28] with step of 4. The stride
S is set to S=24 in fact from Figure in 5 (where a detail for
5 and 10 dB is reported) a small difference is appreciable. In a
similar way the size of the max pooling layer was optimized
to 2 x 2 with a stride of 2.

For the baseline algorithm we fixed the following optimal
values: the SVM grid search optimization provided values of
C =22 and y = 2° while the optimal value of K for the
KNN was set to K = 1.

After the parameters of the net have been selected an anal-
ysis on the best FFT segment of the microphone recordings
according to the accuracy provided in classification has been
performed. In particular a two steps approach is used. In the
first step, the entire frequency range of the input (1-44100 Hz)
was divided in 7 segments and evaluated separately in term
of accuracy. Each segment starts from the end of the previous
one (e.g., 4901 Hz to 9800 Hz is the second).

The classification result related to sound recordings at
2 KHz is shown in Figure 7. It is possible to point out that the
first segment in the range of frequencies 1 - 4900 Hz provides
the optimal accuracy. The segment optimization is performed
at SNR = 20 dB. The same behavior is noticed also for other
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SNR values; such analysis has not been reported for the sake
of conciseness.

In the second step, the segment in the range of frequen-
cies 1 - 4900 Hz is refined to find a smaller segment that
contribute more than the others to the classification accuracy.
We impose the constraint that the segment must be above
2 KHz as it is assumed that the frequency response of the
stimulus at 2 KHz includes significant features of the micro-
phone and can not be excluded. In this second step, the seg-
ments are of increasing size from a range of 1 - 2600 Hz
to 1 - 5000 Hz in steps of 300 Hz. The results are reported
in Figure 8, where we found out that the optimal segment
is in the range 1-2900 Hz. The same procedure has also
been applied to the stimuli at 1KHz, in this case the optimal
frequency range is between 1-2600 Hz. So these frequency
ranges have been applied in all the results provided in the
following Section V-B.
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B. PERFORMANCE EVALUATION

A comprehensive set of experiments are presented in this
subsection with the aim to show the proposed method per-
formance in relation to different operational setup, frequency
stimulus and noises contamination. In particular the AWGN,
the Babble and the Street noise are evaluated. The motivation
behind their use is briefly given in the following: the AWGN
has a constant power spectral density and it can strongly
masks microphone fingerprints present in a wide range of
frequencies. The Babble noise represents an unintelligible
mixture of multiple speakers, which occurs frequently in our
daily life and it can model a real scenario in an indoor envi-
ronment. Street noise was chosen because it is a particularly
noisy model and it can be used to represent an outdoor envi-
ronment. The three different noises have been added digitally
since is preferable that the parameters under which the data
is collected is controllable to make a plausible performance
assessment for an extensive range of noise magnitudes.

1) IDENTIFICATION IN PRESENCE OF AWGN

In this section, the influence of AWGN is analyzed in term
of accuracy in classification. First of all we evaluate the
proposed CNN method in comparison with different meth-
ods: the two baselines such as SVM and KNN and the
CNN technique proposed in [33]. The optimized parameters
described in section V-A are used both for the sinusoidal
stimuli at 1 KHz and 2 KHz. Table 2 shows a comparison,
in terms of accuracy, among the above-mentioned methods.
Itis evidenced that the proposed CNN method outperforms all
the other methods considering both the stimulation at 1 KHz
and 2 KHz also for a low SNR value (10 dB). The reported
results are the median values obtained among 20 repetitions
on each evaluated algorithms.

As it can be seen from Table 2, CNN performs better
than other machine learning algorithms like KNN and SVM
especially in presence of noise. The reason why CNN may
be so effective, is because the distortions introduced by
the microphone create a specific structure in the frequency
domain representation of the audio signal. This structure is
due to the material composition of the microphone compo-
nents and to the manufacturing process, but it mostly impacts
the frequency response of the microphone. This structure
is not known a priori but the CNN is able extract such
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TABLE 2. Accuracy (expressed in percentage) of the proposed CNN in
comparison with different methods.

[ Method [ TKHz | 2KHz | SNR(B) |

SVM 93.18 94.12 20

KNN 14.54 13.84 20

CNN [33] 95.01 95.30 20

CNN (proposed) 96.00 96.80 20

SVM 38.10 | 40.23 10

KNN 11.40 11.90 10

CNN [33] 64.75 80.90 10

CNN (proposed) 67.27 82.75 10
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FIGURE 9. Impact of AWGN on the identification accuracy with the
proposed method (the entire dataset is evaluated).

hidden structure and to highlight it even in presence of noise.
Conventional machine learning algorithms, which operate
on the basis of different principles (i.e., identification of an
hyperplane as in SVM) do not produce the same classifi-
cation performance since the classification model is heavily
impacted by the noise.

In the rest of the subsection the performance results of
our proposed method have been analyzed considering a more
extended range of Signal Noise Ratio (SNR)s from —15 to
60 dB. In particular, the classification accuracy results with
the presence of AWGN for the stimuli at 1 KHz, 2 KHz and
5KHz is shown in Figure 9. It can be seen that the classifica-
tion based on the stimulus at 2 KHz is more robust than the
classification based on the stimulus at 1 KHz. Figure 9 also
shows the performance accuracy for a stimulus at SKHz, such
behavior will be discussed later in this section. In Figure 10
the Precision and Recall metrics for the 1 Khz and 2 KHz are
reported for completeness. From Figures 9 and 10 it can be
also noticed that the accuracy, precision and recall degrade
with lower values of SNRs, as expected, in alighment with
the findings in literature [25], [28] and [29].

This behavior is related to the distribution of the micro-
phone fingerprints at different frequencies and their robust-
ness to the noise. This empirical result is useful for a practi-
cal deployment of an authentication system as it would be
preferable to use stimulation at higher frequencies than at
lower frequencies. On the other side, it is conceivable that
the vocoding filter in the microphone introduces a finger-
print at certain frequency that is usually around 3400 Hz.
Then, stimuli at higher frequencies could be more related
to the presence of vocoding filter than to the fingerprint of
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FIGURE 10. Impact of AWGN on the precision (a) and recall (b) using the
proposed CNN.
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FIGURE 11. Comparison in terms of accuracy of different features
(wavelets DB1, DB10 and FFT) with the proposed CNN (2 KHz stimulus).

the microphone. While the microphone fingerprint accuracy
and the robustness against noise could be even higher than
the stimuli at lower frequencies as evidenced in Figure 9
(5 KHz stimulus), it may not be appropriate to use them in the
identification and authentication application. In fact, a change
in the vocoding filter could unpair the classification process.
Then, we found out that it is recommended to use stimulation
at frequencies below 3400 Hz where the filter response of the
phone is usually similar across mobile phones. This claim
has been also demonstrated in V-A, where optimal ranges
1-2600 Hz and 1-2900 Hz are selected for the 1 KHz and the
2 KHz stimuli respectively.

Other representations of the audio recording respect to
FFT has been also evaluated in the following. In fact in
addition to FFT, the use of Fast Wavelet Transform (FWT)
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is taken into account. The results are shown in Figure 11
where the Daubechies wavelet at two different scales: 1 and
10 (DB1 and DB10 in the Figure 11) are evidenced in com-
parison to the FFT for the 2 KHz stimulus. It is interesting to
point out that the wavelet transform is more robust than FFT
for lower values of SNR (less than 5 dB) but for higher values
of SNR, the identification accuracy is higher using the FFT
transform. While there could be some applications where an
higher accuracy at very low SNR values could be beneficial,
in most practical identification and authentication applica-
tions a very high accuracy is requested. As a consequence the
FFT transform is used in all the subsequent results. Similar
result are obtained with the stimulus at 1 KHz and they are
not presented here for brevity.

For completeness, the box plots displaying the distribution
of classification accuracy are presented in Figures 12 respec-
tively for the stimulus at 1 KHz and 2 KHz. The results are
based again on a repetition of 20 times using the proposed
CNN. The two diagrams show a small range of variation in
the data demonstrating the robustness in classification.

2) THE INTRA-MODEL IDENTIFICATION ANALYSIS

In this section the classification performance of the pro-
posed method considering a subpart of the dataset is evalu-
ated. In particular 23 Samsung ACE smartphones have been
selected to assess the intra-model identification. The result
is presented in Figure 13. It can be seen that the identifi-
cation accuracy is quite high, but it is slightly lower than
the inter-modal identification case shown in Figure 9. Such
result is expected since intra-model classification is more
challenging than inter-model identification as microphones
produced by the same manufacturer will share the same
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FIGURE 13. Intra-model identification versus different SNR values using
the 23 Samsung ACE mobile phones.
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FIGURE 14. Impact of Babble noise (a) and street noise (b) on the
identification accuracy with the proposed CNN on the dataset
(32 phones).

components like filters and amplifiers. The same behavior
can be appreciated for the 2 KHz stimulus demonstrating
again its superior robustness to different scenarios.

3) IDENTIFICATION IN PRESENCE OF BABBLE AND STREET
NOISE

Different types of noise respect to AWGN have also been
applied to the microphone recordings as already said in
Section III. In particular the Babble noise and the Street noise,
chosen from the NOIZEUS noisy speech corpus [35], are
evaluated simulating the most frequent types of noises in
the everyday life. In particular, the Babble noise represents
an unintelligible mixture of multiple speakers and the Street
noise was chosen since it is a particularly noisy model and
it can be used to represent an outdoor environment. The
complete dataset of 32 mobile phones are taken in account
for this experiment. The results are shown in Figures 14, for
increasing noise values. The x axis is in logarithmic scale
(base 10) to be aligned to the white gaussian noise, which
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1

True positive rate
o
()]

—SNR(db)=-5
—- SNR(db)=5
SNR(db)=15
0 L L L
0 0.2 0.4 0.6 0.8 1
False positive rate
(@)
1 .
(0]
©
g
= —SNR(db)=-5
205 - SNR(db)=5
Q SNR(db)=15
(]
2
|_
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1
False positive rate
(b)

FIGURE 16. ROC curves: phone ID =31 (Sony Experia) at different values
of SNR(dB); 1 and 2 KHz stimulus.

is also in logarithmic scale. As expected the presence of
background noises does decrease the accuracy for both cases
but without the same significant impact respect to AWGN
similarly as in [33]. Again the classification performance
based on the stimulus at 2 KHz is more robust than the
stimulus at 1 KHz confirming the results obtained with the
AWGN.

4) ROC ANALYSIS FOR AUTHENTICATION
This section will be devoted to test the authentication of a
microphone. In particular, the objective is to verify that the
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FIGURE 18. Confusion matrix on 32 smartphones; SNR = 10 dB, 1KHz

stimulus.

claimed identity of a phone is confirmed or not. A potential
scenario is the following: a phone B would claim the identity
of a phone A. Then it is fundamental to be able to distinguish
between phone A respect to any other phones which could be
used to emulate it. So for the class of the phone A, a ROC
(Receiver Operating Characteristic) curve is created by plot-
ting the True Positive Ratio (TPR) against the False Positive
Ratio (FPR) at various threshold settings. In particular, for the
class A, the TPR is the occurrences whose the actual and the
predicted values are represented by the class A, divided by
the number of outputs whose predicted class is A. The FPR
is the number of outputs whose actual class is not the class
A, but the predicted class is the class A, divided by the
number of outputs whose predicted class is not A. As in the
previous experiments, the results were obtained by repeating
the classification process 20 times choosing at random the
training and testing sets and then averaging the results for
TPR and FPR.
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2KHz stimulus.

In particular we evaluate two cases: in the first one we
chose as phone A the Samsung ACE from the intra-model
dataset (with ID =3 see Table 1), in the second case, a phone
from the set of Sony Experia (ID =31). In the first case (ID
=3), the result is provided in Figure 15 for the stimulus at
1 and 2 KHz. In the second case (ID =31) the results are
shown in Figures 16. In all cases, the results for different
values of SNRs at —5, 5 and 15 dB are given.

The results obtained for the authentication confirm the
outcome of the identification: the use of the stimulus at 2 KHz
provides a more robust classification performance than the
stimulus at 1 KHz as the ROC curves tend to be closer to the
upper left corner.

For completeness, the confusion matrixes for the different
stimuli and at two different values of SNR (SNR = 0,10 dB)
are presented hereafter. In particular, Figure 17 provides the
confusion matrix at SNR = 0 dB for the 1 KHz stimulus. The
confusion matrix, where the number of classification errors is
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significant, confirms the results presented in Figure 9 where
a low identification accuracy is obtained for this SNR value.
Significant improvements are obtained for SNR = 10 dB and
1 KHz; the related confusion matrix is shown in Figure 18.
However the proposed method shows some difficulties in
classifying the mobile phones with ID = 24-26 of the HTC
One X and the ones from Sony Experia with ID =30-32
(i.e., in the heatmap the color of the related boxes is light
blue).

Again the classification performance is higher for the
2KHz stimulus in comparison to the 1KHz stimulus. This
is proven by the confusion matrixes provided in Figures 19
and Figure 20 where even for for SNR = 0 dB some
classes can be more easily distinguished respect to 1 KHz
stimulus.

VI. CONCLUSION

In this paper, we proposed a smartphones identification and
authentication method based on built-in microphones sensor
for secure authentication. In our scheme, the sound registered
through a microphone can be exploited in such a way that a
CNN is able to learn the distinction among different smart-
phones. The proposed approach has demonstrated its validity
using non-speech audio recordings. The experimental analy-
sis demonstrated that the introduced CNN achieves desirable
accuracy regarding both identification and authentication in
various operational scenarios with different frequency stimu-
lus and in presence of different types of noises. A comparison
with baselines methods it is also given. Future developments
will investigate the robustness of CNN against a larger set of
disturbances, like reverberation effects.
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