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ABSTRACT Arbitrage risk management is a very hot and challengeable topic in the commodity future
market. To resist the possible risk of an arbitrage, exchanges have to withdraw margin from clients referring
to the case of maximum risk. However, if this arbitrage is in the riskless state actually, the capital of clients
will be inefficient. Therefore, by investigating the applications of machine learning techniques, we here
propose a novel algorithm named PRAM to predict the riskless state of arbitrage, by integrating multi-scale
data ranging from contract quotation to contract parameters. Unlike the traditional models, PRAM explores
the arbitrage risk management from the view of minimum risk, which can form a powerful supplement with
the available risk management systems. Benchmark results based on DCE database implicate that PRAM
outperforms existing methods. Then, we discover that features of different arbitrage types depended by
PRAM are odds with being identical. In addition, we identify some trade situations, such as delivery and
near-deliverymonths, which seriously impact the effectiveness of PRAM. Furthermore, considering different
varieties involved in intra-commodity arbitrages, we create personalized PRAMs, which can deeply improve
the accuracy of prediction.

INDEX TERMS Arbitrage risk management, riskless state, machine learning, trade situations, personalized
models.

I. INTRODUCTION
In the commodity future market, it is such a difficult thing
to conduct an effective arbitrage risk management [1]–[4].
From the perspective of an administrator, there mainly exists
two reasons. First, the price of contract is influenced by so
many elements that it is impossible to make an accurate
prediction. Second, because of the complicated correlations
among contracts inside an arbitrage, which cannot be exactly
quantified, it is hard to make an adequate offset. Given these,
for the defense of the probable risk of each arbitrage on the
next trade date, a lot of exchanges have to choose margin
considering the maximum risk case. While, if the margin is in
high level, the financial liquidity of clients will be seriously
blocked, whose investments are practically in the riskless
state [5]–[7].
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In general, the current risk management systems of
exchanges could be classified into three clusters. Firstly,
the strategic risk models using linear algorithms, are adopted
by several Chinese exchanges, such as DCE (Dalian Com-
modity Exchange) and SHFE (Shanghai Future Exchange).
Based on VaR (Value at Risk) theory, this kind of meth-
ods respectively produces margins of positions with differ-
ent directions and then makes a comparison [8]. Finally,
the higher one is picked out as the final margin. The aim
of such models is to prevent the potential maximum risk
exposure substantially, when the original arbitrage is split
due to offset of the position with lower margin. Secondly,
the models depend on multiple scenarios analysis, such as
TIMS (Theoretical Intermarket Margin System) presented
by OCC (Option clearing Company) [9], SPAN (Standard
Portfolio Analysis of Risk) framework created by CME
Group (Chicago Mercantile Exchange Group) [10] and so
on. TIMS, born in 1986, could make a sampling of twenty
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different price scenarios of an arbitrage, which mainly takes
advantage of univariate risk management. At last, the max-
imum loss scene is selected for the purpose of ultimate
margin deducing. As for SPAN system, initialized by CME
group in 1988, possesses a significant share of the global
market. There are over fifty agents including exchanges,
clearing houses and supervision organizations, etc. regarding
SPAN as their official standard of margin performance [11].
SPAN computes the risk level of sixteen scenarios of a
portfolio, derived from different PSR (Price Scan Rate)
along with VSR (Volatility Scan Rate). After the funda-
mental risk resulted from the worst scene is settled down,
the supplement of intra-commodity, the discount of inter-
commodity, the addition of delivery month and SOM (Short
Option Minimum) parameters will be all deployed step by
step to make a precise correction. Then, the SPAN total
margin is finally achieved. Thirdly, this kind of models
are inferred from statistical methods, like Prisma pattern
designed by Eurex [12] and STANS (System for Theoretical
Analysis and Numerical Simulations) framework proposed
by OCC in 2006 [13], etc. Prisma, on the basis of HVaR
(Historical VaR), constructs many extreme price scan situ-
ations, which can accurately evaluate the potential risk of
an arbitrage. Additionally, in comparison with TIMS, Prisma
proceeds cross-validation and elimination to the extreme his-
torical records, in order for a precise and robust risk assess-
ment. However, Prisma can be only applied in the area of
derivatives currently, owing to the huge computation. As a
multi-variant risk evaluation model, STAN manipulates suf-
ficient offset, considering relationships not only within the
same product but also among different products. Neverthe-
less, due to large scaleMonte-Carlo simulations creating over
10000 theoretical profit and loss scenarios, it is difficult to
support such high complexity and recur a certain scenario.
Consequently, STAN cannot be generally applied. Totally
speaking, the orientation of maximum risk situation is the
foundation for both models based on linear algorithm and
multiple scenario analysis. Although the risk is fully covered,
the riskless state of the arbitrage is ignored all the time.More-
over, there also exists some underlying issues, such as over-
investment of risk management of exchanges, as well as the
restriction of cash flow of clients resulted from the excessive
margin. As to the models derived from statistical methods,
though an efficient offset can be provided, the tremendous
computation and non-recurrence make it unfit for generation.

Recently, machine learning models, especially deep learn-
ing algorithms, perform remarkably well on dynamic curve
fitting [14]–[16]. Therefore, many approaches have been used
to explore the risk management of derivatives. In particular,
some studies assess the underlying risk by anticipating the
financial index. For instance, with the purpose of potential
risk estimation of currency future market, DTW-WT (Hybrid
Dynamic Time Warping -Wavelet Transform) model was
proposed by Bagheri et al. This approach was used to cap-
ture the changing motif of FX time series, which was effi-
cient in future price forecasting [17]. Later, based on ADSS

(Auto-Adaptive Decision Support System) algorithm, Chiang
et al performed a simulation on the yield return in stock
index future market, which can effectively lock the risk at
the client level [18]. In 2017, in order to control the price
risk of stock market, Zhong et al tried to predict daily stock
price. They developed an algorithm with the combination
of PCA (Principle Component Analysis) and ANN (Artifi-
cial Neural Networks) [19]. More recently, Kim et al pre-
sented a hybrid algorithm named GEW-LSTM. It adopted
LSTM (Long Short-Term Memory) with inputs generated
from three kinds of volatility predictive model. The bench-
mark results on KOSPI 200 index proved that this model
well outperformed other approaches in stock price volatility
anticipation [20].

While, the other researches have paid attention to the
construction of EWS (Early Warning System), which is
used for financial crisis forecasting. For example, Sevim
et al presented three different EWS based on decision trees,
LR (Logistic Regression) and ANN, respectively. Moreover,
they also made a comparison on the Turkey economy, where
ANN yielded the best in the early warning of monetary
crisis [21]. Then, Dabrowski et al proposed the EWS con-
stituted with dynamic Bayesian network. It can make a
significantly precise perdiction of bank’s system risk with
respect to LR [22]. Later, Frische et al implemented the EWS
to forecast the national economic recession. This system
used BRT (Boosted Regression Trees) algorithm, along with
datasets such as short-term interest rate and stock price [23].
Recently, an ensemble model was presented by Chaizis et al,
as a means of predicting the stock market crisis episode.
The approach was based on multi-scale data involving stock
price, bond price, currency rate and interbank offered rate,
etc. It employed LR as the final model, which absorbed
results from a series of machine learningmethods [24]. As we
mentioned before, machine learning algorithms have been
widely used in the financial riskmanagement. However, these
researches merely concentrates on the maximum risk fore-
casting, the riskless state has always been disregarded.

In this paper, we present a novel algorithm named PRAM
to accurately predict the riskless state of inter- and intra-
commodity future arbitrage. PRAM is based on machine
learning techniques, as well as multi-scale data. These
datasets can make a supplement with each other and effec-
tively improve the prediction accuracy. Unlike the traditional
algorithms, PRAM means that for the first time the arbitrage
risk management is investigated from the view of minimum
risk. Hence, a mutual supplement can be made to the cur-
rent risk management system, leading to a more reasonable
discount of margin. The benchmark results on sixth database
of DCE demonstrate that our model remarkably outperforms
the other popular algorithms. Besides, we discover that the
features of different arbitrage types used by PRAMarewidely
different. In addition, some trade situations are found, includ-
ing delivery and near-delivery months, which can signifi-
cantly impact the accuracy of PRAM. Moreover, we further
propose personalized models, referring to the varieties
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involved in intra-commodity arbitrage, which can improve
the prediction accuracy in depth.

II. METHODS
A. THE DEFINITION OF RISKLESS STATE
According to the arbitrage orders fromDCE, the two-contract
arbitrage here was constructed with longing one contract with
low price and shorting another with high price. Therefore, this
two-contract arbitrage equals to shorting a contract with the
core of spread. Besides, contracts with low and high price are
also named as low and high leg, respectively. Then, based on
whether they belong to the same product or not, we placed
them into intra- or inter-commodity type.

With respect to contract in short, if the maximum price on
date T +1 is less than the clear price on date T , there will not
exist credit risk from clients. On the other side, there is no
need of margin for exchanges [3]. This theory is projected
on the two-contract arbitrage we established above, infer-
ring these following definitions. First, the possible maximum
spread of arbitrage i on date T + 1 was specified as TMS
(Theoretical Maximum Spread) as follows

δT+1i = max(βT+1i,h )−min(βT+1i,l ), (1)

where max(βT+1i,h ) is the highest price of high leg and
min(βT+1i,l ) is the lowest price of low leg. TMS means the
upper limitation of spread of arbitrage i on date T+1. Second,
the clear spread of arbitrage i on date T was described as
follows,

εTi = α
T
i,h − α

T
i,l (2)

where αTi,h, α
T
i,l represent the clear price of high leg and low

leg on date T , respectively. Third, we defined the judging
criteria of RTD (Riskless Trade Date) as follows,

εTi ≥ δ
T+1
i . (3)

If the inequality is true, date T + 1 of arbitrage i will be
regarded as RTD, which means this arbitrage on date T is
in riskless state. Here, δT+1i responses to the maximum price
on date T + 1 of the single short contract, and the same with
εTi to clear price on date T .

B. DATASET AND MODLE
1) SAMPLE COLLECTION
At first, we extracted arbitrage quotation, including both
inter- and intra-commodity arbitrage type, from DCE sixth
database, ranging from 2007.6.19 to 2017.5.10. Then,
we took each trade date of each arbitrage as a sample and
calculated its clear spread and TMS. Finally, with the judging
criteria of RTD, we labeled the sample as positive if it is
in riskless state, and on the opposite side we labeled it as
negative. In total, we obtained 120015 and 34751 samples
for intra- and inter-commodity arbitrage, where there exists
10552 and 4894 positive samples, respectively.

2) FEATURE SELECTION
Taking samples we collected above into account, we absorbed
features from four different classes within DCE sixth
database in TABLE 1, including contract quotations, con-
tract parameters, arbitrage quotations and generated features.
Because of two-contract arbitrage, the features of high leg and
low leg were both extracted in terms of contract quotations
and parameters. As for the three generated features, TMS of
sample here comes from date T but not date T + 1,
the same with CLEAR_SPREAD. And DIFF_DIFF is the
difference between clear spread and TMS on date T-1 and
date T, respectively. At last, every feature above was normal-
ized in z-score method as follows

f̃i =
fi − χ̄i
σi

, (4)

where χ̄i and σi represents the average and standard deviation
of ith feature, separately. Totally, we obtained 141 different
features of each sample.

On the basis of greedy algorithm, we here proposed a new
feature selection model. Firstly, considering SNR (Signal to
Noise Ratio) approach [25], we initialized the feature set as
follows

SNRi =

∣∣∣χ̄ ip − χ̄ in∣∣∣
σ ip + σ

i
n
, (5)

where χ̄ ip and χ̄ in are the mean value of positive and nega-
tive samples of the ith feature, respectively. σ ip and σ in are
the corresponding standard deviations. Given this, we chose
feature with the maximum SNR for initialization. Secondly,
we put the other features in turn into the set. Hence, the mean
F1 of each feature combination was computed. The process
engaged equation (6) and 10-fold cross-validation with ran-
dom forest algorithm [26]. Then, the one with maximum
mean F1, namely F1

2
max, was selected as the second feature.

Thirdly, we repeated the second step to update the set by
adding one feature each time. Meanwhile, the maximum
mean F1 vector

[
F1

2
max,F1

3
max, · · · ,F1

i
max, · · · ,F1

141
max

]
was also obtained. Finally, if the value in the maximummean
F1 vector reached the top, we picked up the corresponding
features set as the ultimate result.

precision =
TP

TP+ FP

recall =
TP

TP+ FN
,

F1 =
2× precision× recall
precision+ recall

(6)

Here, TP, FP and FN is the amount of true positive, false
positive and false negative samples, respectively.

3) PRAM CONSTRUCTION
Integrated with the feature selection above, we proposed
PRAM model, used to predict whether arbitrage is in the
riskless state or not. The flow chart of PRAM was displayed
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TABLE 1. Feature list.

TABLE 2. The DNN classifier of PRAM.

in FIGURE 1. From FIGURE 1, we can see that a classi-
fier was developed with DNN (Deep Neural Network) algo-
rithm [27] and its details were described in TABLE 2. Here,
Layer in TABLE 2 represents the index of each layer in the
DNN classifier. Nodes means the amount of units in each

layer. We here employed Inter and Intra to represent the dif-
ferent unit number of input layer, considering features from
inter- and intra-commodity arbitrage samples, respectively.
To prevent PRAM from overfitting in the training process,
we hired dropout approach [28] and recorded the coefficients
in the Dropout column. Activation column preserves the
activation function we used for each layer. As to the prac-
tical programming, we adopted Keras, based on TensorFlow
with v1.13.0, as well as the gradient descent depending on
Adam approach. As to the problem of imbalanced sample set,
we solved it by taking advantage of over sampling algorithm
realized by R package of ROSE (Random Over Sampling
Examples) [29], [30].

III. RESULT
A. BENCHMARK RESULTS
To validate the performance of PRAM, we applied it to
the intra- and inter-commodity arbitrage samples. Alter-
natively, we also created two simple methods derived
from PRAM, named as PRAM-ORI and PRAM-ALL-ORI.
In PRAM-ORI, a sample is predicted to be riskless
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FIGURE 1. The flow chart of PRAM.

without using the DNN classifier, but only relying on the
random forest algorithm. As for PRAM-ALL-ORI, it is even
more primitive that we just made the prediction by ran-
dom forest model with the original 141 features. Further-
more, our PRAM approach was compared with two popular
methods, GEW-LSTM and an ensemble model proposed by
Chazis et al. GEW-LSTM takes advantage of LSTM algo-
rithm for financial crisis prediction, which regards results
produced from three volatility estimation models as inputs,
involving GARCH (Generalized Auto-Regressive Condi-
tional Heteroscedasticity), EGARCH (Exponential GARCH)
and EWMA (Exponential Weighted Moving Average) [20].
As a EWS, Chazis’s ensemble model adopts multi-scale
data including stock price, bond price, currency rate and
interbank offered rate, etc. Furthermore, it implements LR
as the final classifier, gathering outputs generated from six
algorithms, including CART (Classification And Regres-
sion Tree), random forest, SVM (Support Vector Machine),
extreme gradient tree, NN (Neural Network) and DNN [24].
TABLES 3 and 4 kept the performance of different models
depicted above, where all the metrics were computed as the
average with 10-fold cross-validation.

From results shown in TABLES 3 and 4, we could firstly
see that our PRAM approach performed best in terms of all
metrics for both inter- and intra-commodity arbitrage, which
fully demonstrates the efficiency of PRAM.

Secondly, the phenomenon, where PRAM outperformed
PRAM-ORI, implied that the DNN classifier we designed is
significantly effective. Similarly, we noticed that the feature
selection method is also remarkably valid, considering the
comparison between PRAM-ORI and PRAM-ALL-ORI.

Thirdly, PRAM achieved better performance than both
Chazis’s ensemble model and GEW-LSTM. And we here
analyzed the possible reasons. Although Chazis’s ensemble
model digested six sub models with LR, it conducted no
feature selection at all. This hence gave rise to the defect that

TABLE 3. Benchmark results of different algorithms for intra-commodity
arbitrage.

TABLE 4. Benchmark results of different algorithms for intra-commodity
arbitrage.

a large amount of noise and features, unconcerned with pre-
diction, were imported. Besides, except for several dominant
two-contract arbitrages, others in general were pushed to the
market for trade less than 20 days. Therefore, they were hard
to support GEW-LSTM, requiring at least 22 trade days for
each arbitrage.

B. FEATURE SETS ANALYSIS
To validate whether features of different arbitrage types tend
to be in common, a permutation test here was given with
hypergeometric distribution (P-value = 0.2132). Hence, it is
obvious that feature sets belonging to different arbitrage cat-
egories are mutually independent.

In addition, features of different arbitrage types were kept
in TABLE 5, where the ones initialized with ‘‘L’’ and ‘‘H’’
were subject to the low and high leg contracts, respectively.
From TABLE 5, we can see that all three generated fea-
tures exist in both intra- and inter-commodity arbitrage sets.
It implies that they are useful for the riskless state prediction
with no limitation of arbitrage type.

C. THE IMPACT ON PRAM FROM DIFFERENT TRADE
SITUATIONS
In the commodity future market, if the contract is in dif-
ferent periods, such as OM (Ordinary Months) and DNDM
(Delivery and Near Delivery Months), the trade situations
will be diverse [31], [32]. We here characterize three primary
causes. Firstly, as long as the contract steps into near-delivery
month, speculators will generally close their position rather
than delivering the real commodity. Therefore, compared
with OM, the number of participant gradually decreases,
as well as the shrinkage of open interest and turnover. Sec-
ondly, although the vitality of market goes down in DNDM,
fluctuations of quotation tend to become more complicated
and unpredictable, owing to several uncertain and short-lived
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TABLE 5. Feature sets for different arbitrage types.

arbitrage chances. Thirdly, if the contract enters into its
DNDM, the exchange will bit by bit enhance the margin ratio.
This policy slows down the cash flow of clients, in case the
event of market corner occurs. For this reason, the normal
order of market can be well maintained.

Taking these factors into consideration, we here explored
the impact on PRAM from different trade situations. At first,
samples were broken down into two parts according to
whether the trade date of sample belongs to DNDM or OM.
Finally, there are 92130 and 27885 samples in OM
and DNDM for intra-commodity arbitrage, respectively.
In terms of inter-commodity arbitrage, there exists 30600 and
4145 samples in OM and DNDM, separately. Then, refer-
ring to 10-fold cross-validation, we trained different PRAMs,
namely OM-PRAM and DNDM-PRAMwith samples in OM
and DNDM, correspondingly. Finally, results of different
arbitrage types were kept in TABLES 6 and 7, respectively.

FromTABLES 6 and 7, we noticed that due to the complex-
ity of trade environment of DNDM, it is hard to capture the
pattern of spread fluctuation. So it results in the insufficiency
of DNDM-PRAM compared with OM. Moreover, we also

discovered that OM-PRAM outperformed PRAM, because
samples of DNDM were involved with respect to PRAM
rather than OM-PRAM. Accordingly, we can deduce that the
more DNDM samples are drawn, the more serious impact
exists for PRAM.

D. PERSONALIZED PRAMS
For the further promotion of PRAM, we developed personal-
ized models for each sixteen varieties from intra-commodity
arbitrage. At first, we partitioned samples into sixteen groups,
as Si, i ∈ {1, 2, 3, · · · , 16}, where the sample ratio of each
variety was displayed in FIGURE 2. Then, based on leave
one out method, we initialized the basic model of each variety
with the complementary set of Si. Finally, the fine tuning
process [33] was applied with Si so that the personalized
model PRAMi was achieved. The average results of PRAMi
based on 10-fold cross-validation were kept in TABLE 8.

From TABLE 8, we can see that eight PRAMi in front
performed better than PRAM while the others didn’t. In so
far as this phenomenon, it is possible that the sample ratio for
the last eight PRAMi cannot satisfy the requirement of fine
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FIGURE 2. The sample ratio of each variety.

FIGURE 3. The sample ratio of DNDM in each variety.

TABLE 6. Results of PRAM in different trade situations of
inter-commodity arbitrage.

TABLE 7. Results of PRAM in different trade situations of
inter-commodity arbitrage.

tuning process. The models thus tend to be impersonal for
these varieties [34], [35].

Besides, FromTABLE 8, we can also observe that although
some varieties possessed a high sample ratio, their personal-
ized models didn’t perform as well as we expected, includ-
ing LLDPE, hard coking coal, fibre board and block board.
To uncover it, we counted the DNDM samples in every Si,

TABLE 8. The results of PRAMi .

and the results were showed in FIGURE 3. From FIGURE 3,
we can clearly see that theDNDMsample ratio in each variety
we listed above is obviously higher than the others. This
therefore can be sufficiently responsible for the unexpected
performance.

IV. DISCUSSION AND CONCLUSION
In this paper, a novel computational model, namely PRAM,
was created for the riskless state prediction of commodity
future arbitrages. Compared with the existing risk manage-
mentmechanisms and researches, PRAMstarts from the view
of minimum risk. It can make a powerful supplement for the
available risk assessment models in some exchanges. Hence,
a further discount will be offered for clients, which can deeply
improve their market competitiveness. Furthermore, as we
designed the PRAM, it is the first time to describe the riskless
state quantitatively and systematically with the innovation of
TMS and RTD.

The benchmark results on real data from DCE have well
confirmed the effectiveness of PRAM. Additionally, it has
been fully proved that the DNN classifier can significantly
improve the accuracy of prediction. As to the feature selection
approach, we have also demonstrated its effectiveness in
extracting useful information from multi-scale data. In terms
of the features from different arbitrage types, we conclude
that features of each arbitrage tend to be independent. While,
the generated features are perfectly fit for PRAM without
the limitation of arbitrage type. With respect to the impact
of trade situations, we can see that DNDM impacts PRAM
seriously. For the purpose of further improvement of pre-
diction accuracy, personalized PRAMs were built. And the
results of experiments indicate that the method takes obvious
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effect merely on some specific varieties, which possessed
both adequate sample size and low DNDM disturbance.

In spite of the good performance of PRAM, we noticed
that there still exists room to improve this approach. Firstly,
before we conducted the feature selection, the weights of
these multi-view data were regarded as equal for default.
In future work, we will present more effective methods to
make this integration. Secondly, our PRAM merely focused
on two-contract arbitrages with shorting the spread, while
there are a lot of portfolios with more than two contracts in
practice. Hence, if such factor is taken into consideration,
the generalization of our PRAM is trusted to be improved.
Last but not least, although PRAM can make an accurate
prediction, it still retains a bias. Therefore, in the actual
settlement, we need to formulate a more strict constitution,
referring to both PRAM and the current risk management
models. It thus can not only guarantee the risk to be fully
covered, but also provide clients a more plausible discount
of margin.
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