
Received September 16, 2019, accepted October 3, 2019, date of publication October 30, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950391

Research on Prediction of Metro Wheel Wear
Based on Integrated Data-Model-Driven
Approach
AIHUA ZHU 1,2, SI YANG 2, QIANG LI1, JIANWEI YANG2, CAOZHENG FU2,
JIAO ZHANG3, AND DECHEN YAO2
1School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing University of Civil Engineering and Architecture, Beijing 100044,
China
3Beijing subway Operation Technology Centre, Beijing 102208, China

Corresponding author: Qiang Li (qli3@bjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51605023 and Grant 51975038, in part
by the Talent Projects in Organization Department, Beijing Municipal Party Committee under Grant 2012D005017000006, and in part by
the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture under Grant X18207.

ABSTRACT Existing research on wheel wear prediction uses either data-driven or model-based methods.
However, due to the high reliability and limited sample characteristics of metro wheel wear, data-driven
methods are not accurate enough and require relatively high data costs, and model-based methods mainly
lack verification with measured data and generalization ability. To address the shortcomings of the two
types of methods, a new approach combining model-based and data-driven methods is used to predict
wheel wear in this paper. First, the least-squares algorithm is used to analyze and calculate the difference
between thewearmeasurement for a specific runningmileage and the corresponding simulatedwear, with the
minimum difference taken as an objective function. By means of optimization algorithms including Genetic
Algorithm, Particle Swarm Optimization, Tabu Search and Simulated Annealing, the wear coefficient k in
Jendel wear model is optimized, thereby obtaining an optimized Jendel wear model. Later, metro wheel
wear for additional running mileage is simulated and predicted through combined application of the vehicle
system dynamics, wheel-rail contact, and optimized Jendel wear models. Finally, the paper analyzes the wear
prediction results obtained by the integrated data-model-driven approach and compares themwith the results
of traditional methods andmeasured data. The results suggest that the integrated data-model-driven approach
effectively reduces the uncertainty in selecting the wear coefficient by experience, lowers the experimental
data costs, and improves the wear prediction accuracy. Therefore, it is a promising approach to wheel wear
prediction.

INDEX TERMS Metro wheel, wear prediction, data-model driven, optimization algorithms, Jendel wear
model.

I. INTRODUCTION
Prognostics and health management (PHM) technology can
be adopted to predict the state of a system with sound func-
tions and make reasonable decisions concerning maintenance
based on the predicted information [1]. It is one of the
core technologies applied in reliability and systems engineer-
ing, which covers numerous fields and disciplines, including
mechanical materials, automation, reliability, and artificial
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intelligence. Existing prediction schemes are classified into
two categories: schemes based on physical models and data-
driven schemes [2], [3].

In model-based prediction methods, the state of the system
is predicted using models developed with physical equip-
ment, such as the spatial response and failure mechanism
models [4]. Suchmethods are not dependent on large amounts
of equipment’s health data for different stages. In order to
ensure precision of system predictions, it is necessary to
determine the parameters for physical models that character-
ize the system’s faults in a better manner. However, it is often
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difficult to take into consideration all actual operational con-
ditions of equipment and to comprehensively and precisely
obtain the parameters involved in the physical models [5], [6].

A data-driven prediction method consists of an artificial
intelligence algorithm and probability statistics. This predic-
tion method can provide a timely representation of changes
in equipment performance based on efficient use of equip-
ment or systematic sound information contained in the test
and monitored data from different stages (including system
design, simulation, operation, and maintenance), so as to
obtain residual life function of the system and help decision-
making [7]. In 2013, Tamilselvan and Wang [8] presented
a novel multi-sensor health diagnosis approach using deep
belief network (DBN) based state classification. In 2016,
Li et al. [9] used a deep random forest fusion (DRFF)
method to improve the performance of gearbox fault diag-
nosis using both acoustic and vibratory signals. In 2018,
Peimankar et al. [10] presented an ensemble time series fore-
casting algorithm which uses evolutionary multi-objective
optimization algorithms to predict dissolved gas contents
in power transformers. These data-driven methods do not
require an in-depth understanding of the internal operating
and failure mechanisms of an equipment system. However,
for equipment that provides high reliability, small samples,
and deficient information, this method is not accurate enough
and the data costs are relatively high [11], [12].

In recent years, scholars have proposed a new failure pre-
diction technology that complements and integrates the two
approaches to address their shortcomings [13]. The integra-
tion of the physical model and data-driven methods signifi-
cantly increases the prediction efficiency and precision and
reduces the cost [14], [15].

Wheel wear is a typical form of failure of railway wheel
rail system. Some research has been conducted on service
life prediction for railway vehicle wheels using a data-
driven method. In one study [16], [17], a Monte Carlo sta-
tistical method was adopted to predict the service life of
wheels from significant amounts of measured wheel wear
data from the Guangzhou Metro. In 2015, based on the data
obtained from a knowledge base and the fuzzy logic system,
Dordević et al. [18] analyzed the influence of various fac-
tors on rolling stock failure, and evaluated the reliability
of wheels. Andrade and Stow [19] applied linear statis-
tics to analyze and predict railway wheel data, and deter-
mined the optimal wheel parameter values required for
rolling 250,000 km without turning repair. On this basis,
Han and Zhang [20] predicted the wheel wear of the track by
polynomial fitting.

There is also a great deal of research that looks at wheel
wear prediction using the model-based methods. In 2013,
Ding et al. [21] and Tao et al. [22] predicted the residual
service life of wheels through a simulation method that uses
the SIMPACK vehicle system dynamics software SIMPACK
combinedwith the wheel-rail contact andwheel wearmodels.
With rapidly increasing railway traffic around the world,
traditional post-maintenance of railway equipment has been

upgraded to preventive maintenance, such as reliability-
centered maintenance (RCM) [23]. Owing to the recent
global application of RCM technology in railway traffic, there
is growing demand for vehicle safety and comfort shortening
of the cycle of wheel turning repair. Within this context,
scholars from different countries have begun to pay great
attention to wheel wear prediction for metro vehicles with
short-term service. In 2017, scholars provided improved wear
prediction models with less wear calculation time and higher
precision of prediction [24], [25].

The research on data-driven wheel wear prediction men-
tioned above relies on large amounts of wear data measured
in the absence of turning repair as well as statistical methods
for wheel wear prediction, and thus its cost is bound to be
high. As RCM technology is still under development, it is
difficult to obtain scientific, high-quality, and accurate wheel
wear predictions with data-driven methods.

The wheel wear prediction method based on a physical
model mainly lacks verification with measured data, as well
as generalization ability. The parametric modeling method
makes it difficult to take into account all possible complicated
changes that may occur during actual vehicle operation; thus,
reasonable data processing is required for optimization and
improvement.

To address the shortcomings of the above two methods,
this paper combines model-based and data-driven methods to
predict metro wheel wear. The integrated data-model-driven
approach reduces the data costs and improves the accuracy
and generalization abilities of the models.

This paper is organized as follows. Section I introduces the
research background and significance of this paper. Section II
presents the process of wheel wear prediction based on data-
model-driven integration. Section III reviews the Jendel wear
model and wear coefficient k. In Section IV, the wear coeffi-
cient k in the Jendel wear model is optimized using Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Tabu
Search (TS) and Simulated Annealing (SA), separately, with
the measured wheel wear data for a specific running mileage
being used as the training sample. In Section V, the metro
wheel wear for additional running mileage is simulated and
predicted through a combined application of the vehicle
system dynamics, wheel-rail contact, and optimized Jendel
wear models. Section VI analyzes the wear prediction results
obtained by the integrated data-model-driven approach and
compares them with the results obtained with traditional
methods and measured data. Finally, Section VII summarizes
the conclusions reached in this paper.

II. PROCESS OF WHEEL WEAR PREDICTION METHOD
BASED ON DATA-MODEL-DRIVEN INTEGRATION
A. DATA-DRIVEN OPTIMIZATION OF WEAR MODEL
The actual wear data were obtained from a vehicle with
mileage of 50,000 km. Then, the software Matlab was used
to compile the Jendel wear model for subsequent simu-
lation calculation of vehicle wheel wear for 50,000 km.
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FIGURE 1. Schematic of wheel wear simulation and prediction based on data-model-driven integration.

FIGURE 2. Relationship between wear coefficient, and contact stress and sliding speed.

Thereafter, we calculated the difference between the mea-
sured and simulated wear values using the theory of regres-
sion and the least-squares algorithm, and the least difference
was taken as the objective function. The optimal value for
the Jendel model’s wear coefficient k was determined by
means of Genetic Algorithm (GA), Particle Swarm Opti-
mization (PSO), Tabu Search (TS) and Simulated Annealing
(SA); accordingly, the optimized Jendel model was obtained.
A flow diagram of the process is shown in the left of
Figure 1.

B. VEHICLE MODEL CONSTRUCTION AND WEAR
SIMULATION CALCULATION
After the data-driven optimization was completed, model-
based wear prediction was performed using physical mod-
els, including a multi-body dynamics model, wheel-rail
contact model, optimized Jendel wear model, and wheel tread
upgrading model. This process is illustrated in the right of
Figure 2.

First, the actual vehicle and track parameters were input
into SIMPACK to construct a vehicle multi-body dynamics
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model. The vehicle dynamics model was then used to calcu-
late the spatial geometry of wheel-rail contact.

Later, the wheel-rail contact model was applied for detailed
calculation of the wheel-rail contact patch, creep force dis-
tribution and other parameters. The normal and tangential
forces at wheel-rail contact were obtained.

Next, the results from the wheel-rail contact model were
input into the optimized Jendel wear model to calculate wheel
wear.

As wheel profile will change after the vehicle travels a
certain distance, smoothingwas performed on thewornwheel
profile. The resulting new wheel profile was then input into
the vehicle dynamics model to upgrade the original profile
for cyclic wear calculation.

Then wheel wear for other running mileage (e.g.
80,000 km) is simulated and predicted through combined
application of the vehicle system dynamics, wheel-rail con-
tact, and optimized Jendel wear models.

III. JENDEL WEAR MODEL
The Archard model [26] is used extensively to analyze the
wear caused by rolling and sliding contact. It is considered
that the material wear loss VA is directly proportional to the
coefficient of wear k , contact normal pressure N , and relative
sliding distance d, while it is inversely proportional to the
hardness H of the worn material. It is given by

VA = k
Nd
H
, (1)

In order to determine the wear coefficient uncertainty,
a series of experimental data were collected by Jendel on
the basis of Archard’s theory of wear in rolling contact.
Jendel developed the wheel tread wear model in 2002, and
determined the wear coefficient values for different types
of contact. In the Jendel model [27], the wear coefficient is
related to the sliding speed and contact stress, as indicated
in Figure 2.

The wear coefficient k is determined from experimental
statistics. When the contact pressure and stress limits are
below 0.8 H , three zones can be recognized based on sliding
speed. In zone I, the sliding speed is relatively low, indi-
cating slight wear, and the wear coefficient k1 ranges from
1 × 10−4 to 10 × 10−4. In zone II, the sliding speed
varies from 0.2 to 0.7 m/s, indicating serious wear, and the
wear coefficient k2 ranges from 30 × 10−4 to 40 × 10−4.
In zone III, the sliding speed is high and a temperature
increase in this zone results in a decline in the wear coeffi-
cient k3, whose range is close to that in the slight wear zone
(1 × 10−4 to 10 × 10−4). The contact pressure and stress in
zone IV exceed the limit value of 0.8H , indicating occurrence
of destructive wear.

The wear coefficient k4 increases significantly, ranging
from 300 × 10−4 to 400 × 10−4.

A majority of scholars have selected the value of wear
coefficient k according to their experience. In [22] and [28],
a mean value of k was adopted for zones I to III. [29] only

considered the condition of k in zone I, which was set at
1.09 × 10−4. In [30], a higher k value was adopted in the
boundary area. There are uncertainties in these k values as
they were determined only by experience.

By simulating actual tracks, scholars have obtained exper-
imental wear data, conducted research on the wear coef-
ficient k in the Jendel model using a statistical method,
and developed wear coefficient probability graphs applica-
ble to specific track and wheel materials in recent years
[31], [32]. These graphs are more detailed compared to the
diagram showing the wear coefficient distribution determined
by statistics using the Jendel model. The statistical method
described above needs to be supported by large amounts
of experimental data, significantly increasing the cost of
data acquisition.Moreover, the experimentally simulated data
cannot accurately reflect the state of wheel running on an
actual track. The confidence interval for the wear coefficient
is also less instructive for wheels on other tracks.

In this study, 50,000 km wheel wear data measured from
an actual track were used as the training sample, and opti-
mization algorithms were applied to optimize the wear coef-
ficient k in the Jendel wear model and reduce its uncertainty.

IV. WHEEL WEAR DATA ANALYSIS AND MODEL
OPTIMIZATION
First, the measured wheel wear data for running mileage of
5000 km was analyzed and used as the training sample. Next,
the wear coefficient in the Jendel wear model described in
Section III was optimized using optimization algorithms.

Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Simulated Annealing (SA) and Tabu Search (TS)
were applied, separately. Over decades of development, these
algorithms have become well-developed classical intelligent
optimization algorithms with good reliability and robustness
features. Many researchers have verified and improved their
performance and widely applied them to practical problems
like combinatorial optimization.

A. ACQUISITION AND ANALYSIS OF WHEEL WEAR DATA
The measuring instruments currently available for wheel-rail
wear can be classified into contact and non-contact types
according to the measurement method. Non-contact instru-
ments, such as the OPTIMESS laser sensing system [33] and
CALIPRIC laser device for wheel and rail profile measure-
ment [34], feature high efficiency and precision, but at a high
cost. Contact instruments, such as the Danmark MiniProf
series profile-measuring instrument [35], allow for easy oper-
ation at a lower cost, but they require a larger amount of work
and their precision is relatively low.

In this study, a non-contact measuring instrument was used
to measure the wheel wear, and a method based on pattern
search was adopted to improve the measurement accuracy
and correct the position deviation. Figure 3 shows this instru-
ment.

The curve deviation F is a function involving three inde-
pendent variables: the coordinate axis’s lateral movement X ,
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FIGURE 3. Wheel profile measuring equipment.

longitudinal movement Y , and rotation relative to the coordi-
nate origin alpha. Assuming that the post-wear curve is com-
posed of n scatter points, the curve deviation F(X ,Y , alpha)
is expressed as follows:

F(X ,Y , alpha) =
n∑

k=1

(‖dk‖)/n, (2)

where dk indicates the distance between two adjacent points
on the post-wear and pre-wear curves [36], [37]. A pattern
search method (Hooke–Jeeves) [38], [39] was applied to
calculate a set of optimal values (X, Y, alpha) and minimize
the deviation between the two curves F (X, Y, alpha).

B. OPTIMIZATION OF WEAR COEFFICIENT BASED ON
GENETIC ALGORITHM
In a genetic algorithm, the independent variable is regarded as
the organism, and the optimized objective function is defined
as the fitness based on the basic principle of biogenetics
during parameter optimization [40]. The unknown function
is regarded as the living environment. The global optimal
solution is finally found through repetitive iterations [41].

Given the actual track and operating speed, 50,000 km
measured data were obtained. The Jendel wear model was
compiled using Matlab and the wheel wear was calcu-
lated using k . The linear regression theory and least-squares
algorithm [42] were used to determine the difference between
the measured and simulated wear values, and the minimum
difference was regarded as the objective function for the
optimization of coefficient k .
Assume {(Xi, Yi)} (i = 1, 2, . . . ,m) in which Xi represents

the measured wheel profile data and Yi is the wear value
simulated with k . The difference between the two data sets
is denoted E . Ensure that Yi(k) ∈ 9 is within the defined
function class 9. The squared difference can be formulated
as

E2
=

m∑
i=1

[Xi − Yi(k)]2, (3)

Here, E2 is regarded as the objective function. The
algorithmic mechanism is presented in Figure 4.

FIGURE 4. Genetic algorithm-based calculation process.

For the decision variable k , the initialization threshold
consists of the upper and lower bounds of the Jendel model
in different zones. The genetic algorithm population refers to
different areas of the Jendel wear model. Various k values
were determined for different ranges of sliding speed and
contact pressure. The algorithm constraint consists of the
updated mileage and the threshold for smoothing.

Call the GA function [x, fval, exitflag] = ga (Objective-
Function, nvars, [], [], [], [], LB, UB) in Matlab, where the
main parameters are as follows:

x is the best point that GA locates during its iterations,
namely the optimal solutions for k , including k1, k2, and k3.
fval is fitness function evaluated at x. exitflag is Integer giving
the reason GA stops iterating. ObjectiveFunction is handle
to the fitness function. The fitness function should accept a
row vector of length nvars and return a scalar value. nvars
is positive integer representing the number of variables in
the problem. nvars = 3. LB is the lower bound of k , i.e.
k1 = 1 × 10−4, k2 = 30× 10−4, and k3 = 1× 10−4. UB is
the upper bound of k, i.e. k1 = 10× 10−4, k2 = 40× 10−4,
and k3 = 10× 10−4.

The lengths of all track segments and operating speeds
were input into the software Matlab for optimization of the
wear coefficient k . The vehicle dynamics, wheel-rail contact,
and the optimized Jendel wear models were combined to
predict wheel wear.

C. OPTIMIZATION OF WEAR COEFFICIENT BASED ON
PARTICLE SWARM OPTIMIZATION
Both particle swarm optimization (PSO) and genetic algo-
rithm (GA) belong to the class of bio-inspired optimization

VOLUME 7, 2019 178157



A. Zhu et al.: Research on Prediction of Metro Wheel Wear Based on Integrated Data-Model-Driven Approach

algorithms [43]. They have many similarities, such as in
algorithmic mechanism and implementation. PSO requires
fewer codes and parameters thanGA. Compared to traditional
algorithms, PSO shows much faster computational speed and
greater global search capability.

With good optimization performance, PSO was used to
optimize the wear coefficient k (k1, k2, k3). If a particle can
minimize the difference between simulated and measured
values, this particle’s position is considered the optimal k
value found. In this paper, particle’s velocity and position are
updated by fitness function for PSO, which is defined as the
difference between simulated and measured values.

Figure 5 presents the flow chart of PSO.

FIGURE 5. Flow chart of PSO.

The specific steps of the algorithm are as follows:
1) Initialization of PSO parameters: randomly set the initial

position xi and initial velocity vi of particle i, which are given
by

xi = (xi,1, xi,2, xi,3, . . . , xi,d ), (4)

vi = (vi,1, vi,2, vi,3, . . . , vi,d ), (5)

where i indicates particle’s serial number; d is the num-
ber of spatial dimensions where particle i is located; and
xi,d and vi,d are the position and velocity, respectively,
of particle i in d dimensions.

Set the value range for parameter k (k1, k2, k3). The lower
bounds: k1 = 1× 10−4, k2 = 30× 10−4 and k3 = 1× 10−4;
the upper bounds: k1 = 10 × 10−4, k2 = 40 × 10−4 and
k3 = 10 × 10−4. Set the learning factors: c1 = c2 = 2. The
initial number of particle swarms is set at 40. Initialize the
number of dimensions of the swarms, d , to 3. Set the number

of iterations t at 30 and the inertia weight w at between 0.5-
1.2.

2) Calculate the fitness of each particle, fness, and let the
current position of particle i, denoted Pi, be its best position.
Then the swarm’s best position, Pg, can be determined by
comparing the fitness of all particles in the swarm.

3) In each iteration, each particle updates itself by tracking
the optimal solution found by itself and the optimal solution
found by the whole swarm.

vi,d (t + 1) = wvi,d + c1r1(Pi,d − xi,d (t))

+ c2r2(Pg,d − xi,d (t)), (6)

xi,d (t + 1) = xi,d (t)+ vi,d (t + 1), (7)

where Pi,d represents the best historical position of parti-
cle i; Pg,d represents the best historical position of the whole
swarm; and r1 and r2 are uniformly distributed random num-
bers between 0 and 1.

4) Return to step 2) and repeat the iterative optimiza-
tion using the updated position and velocity of the particle.
If xi (t) ≥ Pi, then xi (t) = Pi; if xi (t) ≥ Pg, then xi (t) = Pg.
Continuously update Pi and Pg until the maximum number
of iterations is reached. Then the search process stops and
the optimal k value is output.

D. OPTIMIZATION OF WEAR COEFFICIENT BASED ON
TABU SEARCH
Tabu Search (TS) is a heuristic search method that extends
neighborhood for progressive global optimization. It employs
the ‘‘prohibitions’’ technique to expand search space, which
involves preventing repetition of previous work and finding
new neighborhood using the memory stored in a Tabu Search
list. TS has been widely studied and applied to production
since it was created in the 1980s [44], [45]. Its optimization
efficiency and results are closely associated with algorithm
design.

TS was implemented to optimize the wear coefficient.
The objective function is the same as in the GA process.
The lower bounds of k are as follows: k1 = 1 × 10−4,
k2 = 30 × 10−4 and k3 = 1 × 10−4; the upper bounds:
k1 = 10 × 10−4, k2 = 40 × 10−4 and k3 = 10 × 10−4. The
initial point k0 is generated randomly between the lower and
upper bounds. The number of neighboring solutions, denoted
Ca, is set to 5. The tabu length, L, is an integer between
5 and 11. The initial value for adaptive weight coefficient,
w, is 1. The search radius is reduced by 0.2% every time the
tabu list is updated. The maximum number of iterations, G,
is set to 200. The optimal solution found by Tabu Search is
denoted k (k1, k2, k3).

Figure 6 shows the flow chart of Tabu Search.

E. OPTIMIZATION OF WEAR COEFFICIENT BASED ON
SIMULATED ANNEALING
Simulated Annealing (SA) is a classical natural computing
algorithm using physical analogy. It starts with improvement
in the local search algorithms and simulates the slow cooling
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FIGURE 6. Flow chart of Tabu Search.

(annealing) of a metal after heating until the metal system
reaches a state with minimum energy (solid at room temper-
ature). This algorithm tries to find a global optimum for the
optimization problem [46].

In SA, the objective function for the optimization prob-
lem is analogous to the energy of the metal system and the
Metropolis criterion is reasonably introduced to determine
whether to accept the new solution. Assume min

i∈S
f (i) an opti-

mization problemmin
i∈S

f (i), and let S represent a set of feasible

solutions for the objective function f(i). If a new solution j
is generated from the current solution i, whether j should
be accepted as the current solution will be decided based on
transition probability, which is defined as

Pi(i⇒ j) =

1, if f (j) < f (i)

exp(
f (i)− f (j)

T
), or,

(8)

where T is a control parameter representing the metal
system’s temperature. Normally, T takes a large value,
T0 (corresponding to heating), at the beginning, and then it
declines slowly (corresponding to slow cooling) to Tk (k =
1, 2, . . . . . .). For each Tk value, the Metropolis criterion is
implemented Lk times. Then T transitions to the next con-
trol parameter Tk+1. This process seeks to find potential
regions for search by fully simulating the thermal motion of
molecules [47].

Call the SA function simulannealbnd from theGlobal Opti-
mization Toolbox in MATLAB:

x = simulannealbnd (ObjectiveFunction, x0, LB, UB);
Input parameters include ObjectiveFunction, x0, LB, and

UB, with ObjectiveFunction being the same objective func-
tion as that used in GA. x0, the initial value, is set as follows:

k1 = 5 × 10−4, k2 = 35 × 10−4 and k3 = 5 × 10−4. LB is
the lower bound of k: k1 = 1 × 10−4, k2 = 30 × 10−4,
and k3 = 1 × 10−4. UB is the upper bound of k: k1 =
10× 10−4, k2 = 40× 10−4, and k3 = 10× 10−4. The output
parameter x is the optimum found, i.e. the optimal values for
wear coefficient k (k1, k2, k3).

V. PHYSICAL MODEL FOR WHEEL WEAR PREDICTION
Developed by the German company INTECGmbh (officially
renamed SIMPACK AG in 2009), SIMPACK is a multibody
dynamics analysis software package for kinetic/dynamic
analysis of any mechanical or electromechanical system.
With high computational accuracy and stability, it has been
applied for years by many colleges and universities, as well
as companies like BMW and Siemens.

In this paper, SIMPACK was used to create physical
models for wheel wear prediction. These models include a
vehicle-track multi-body dynamics model, wheel-rail con-
tact model, optimized Jendel wear model, and wheel profile
upgrading model. The vehicle-track dynamics model was
used to calculate the spatial geometry of wheel-rail contact.
The wheel-rail contact model was applied for further detailed
calculation of the wheel-rail contact patch, creep force distri-
bution and other parameters. The calculation results from the
wheel-rail contact model were then input into the optimized
Jendel wear model to calculate the unit volume of wheel wear.
After the vehicle travels a certain distance, the profile of each
wheel will change. So the wheel profile upgrading model was
applied to generate a newwheel profile, which was then input
into the vehicle dynamics model to for repeated calculations
of wheel wear.

A. VEHICLE-TRACK MULTI-BODY DYNAMICS MODEL
According to the Chinese general standard, urban rail vehi-
cles in China are classified into five types: A, B, C, D, and
L (B2). The primary distinguishing factor between the five
types is vehicle width. Type Bmetro vehicles, eachmeasuring
19 m long and 2.8 m wide, were studied in this paper.

A multi-body dynamics model of a single vehicle sys-
tem was developed for type B metro vehicle. In this model,
the vehicle body, framework, motor, gear drive unit, axle box,
andwheel set aremulti-DOF rigid bodies; the axle box spring,
air spring, oil damper, anti-roll bar, rubber joint, and lateral
stop are simplified as functional expressions of force.

In order to ensure the accuracy of the models, all modeling
parameters used in the study were obtained from actual mea-
surements. Table 1 displays the values of some parameters.

In Table 1, AW0 indicates the load of an empty metro
vehicle. AW1 indicates metro vehicle load when passengers
are full of seats. AW2 indicates the load of the metro vehicle
with six passengers per squaremeters. AW3 indicates the load
of the metro vehicle with nine passengers per square meters.

Lines consist of straight lines and curves, and actual track
conditions are shown in Table 1. In order to simulate dif-
ferent operating environments, the curves are designed as
S-curve. The S-curve, also known as continuously turning
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TABLE 1. Actual parameters of several vehicles.

curve, represents a track line composed of two continuous
circular segments and an easement curve linking them. The
two circular segments have the same radius and length but
bend in opposite directions, with one bending to the left and
the other to the right. Figure 7 shows the schematic of the
S-curve.

FIGURE 7. Schematic of S-curve.

The dynamics model and its topological graph are illus-
trated in Figure 8.

FIGURE 8. Vehicle-track dynamics model and its topological graph.

The vehicle dynamics model was used to calculate the
spatial geometry of wheel-rail contact, and then determine the
position of the wheel-rail contact patch, approximate shape of
the elliptical contact patch, and sum of external forces acting
on the contact patch, accordingly.

B. WHEEL-RAIL CONTACT MODEL
Furthermore, the wheel-rail contact model was applied to
calculate the shape of thewheel-rail contact patch, creep force
distribution, and stick-slip area distribution in detail.

The wheel-rail contact normal force was calculated based
on the Hertzian contact theory, which is illustrated in
Figure 9 [48].

The theory holds that the contact patch between the two
elastic bodies is elliptical in shape, and the curvature of two
objects within the contact patch is constant. The normal gap
between the two elastic bodies can be expressed as follows:

1z(x, y) = A1x2 + A2y2, (9)
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FIGURE 9. Hertzian contact theory-based elastomer contact effect.

where A1 and A2 are the relative curvatures; and x and y indi-
cate the longitudinal and transverse coordinates, respectively.

The two half axes of the elliptical contact patch, a and b,
are given by

a = m1

[
3πN (kA + kB)
4(A1 + A2)

]1/3
b = m2

[
3πN (kA + kB)
4(A1 + A2)

]1/3
,

(10)

where m1 and m2 indicate the Hertzian contact coefficients;
N denotes the normal load; and kA and kB are constants. The
normal force is calculated as follows:

pz(x, y) =
3N
2πab

√
1− (

x
a
)2 − (

y
b
)2. (11)

To solve the wheel-rail tangential contact problem, the con-
tact patch was divided into stick-slip areas based on the solu-
tion to the normal contact problem; that is, the contact patch
was divided into stick and creep areas to solve the creep force
distribution in the contact patch. In this study, the FASTSIM
algorithm [49] based on Kalker’s simplified theory of rolling
contact was applied to determine the tangential force.

In the 1960s, Kalker proposed the Linear Theory to
examine creep force - creepage relationship and the spin
effect was also considered in this model. Using the traction-
displacement relationship based on the general elastic theory
and integrating the traction over the contact area, the tangen-
tial force FT = [Fx Fy]T and the torsion couple M can be
expressed as linear functions of the creepages and spin:FxFy
M

 = −Gab
C11 0 0

0 C22
√
abC23

0 −
√
abC23 abC33

 ξxξy
ϕ

 ,
(12)

where a and b are two half axes of the elliptical contact
patch in the rolling direction and lateral direction; Cij are the
Kalker’s coefficients; G is the material’s shear modulus; ξx ,
ξy, ϕ denote the longitudinal, transverse, and spin creep rates,
respectively.

The Simplified Theory of rolling contact is generally
applied in wheel-rail contact calculation where the contact

area is elliptic [50]. By using the so-called compliant param-
eters in the longitudinal and lateral directions (Lx and Ly),
the complex expression derived from the general elastic the-
ory can be simplified. The compliant parameters depend
on the creepage and spin coefficients in linear theory. The
tangential forces FT = [Fx Fy]T and tangential surface dis-
placement uwr are related by the following equation:

uwr = uw − ur =
[
LxFTx LyFTy

]T
. (13)

The tangential forces are determined by integrating over
the contact area:

Fx =
∫ b

−b

∫ a

−a
FTxdxdy = −

8a2bξx
3Lx

, (14a)

Fy =
∫ b

−b

∫ a

−a
FTydxdy = −

8a2bξy
3Ly

−
πa3bϕ
4Ly

, (14b)

The compliant parameters are obtained by equating equa-
tions 12 and 14 as follow:

Lx =
8a

3GC11

Ly =
8a

3GC22

Ly2 =
πa2

4G
√
abC23

.

(15)

The FASTSIM algorithm based on the simplified theory
of rolling contact is extensively applied in railroad computer
programs. This theory can help to reduce the calculation
time significantly with the application of the compliant
parameters.

C. WEAR CALCULATION AND TREAD UPGRADING
The calculation results from the wheel-rail contact model
were input into the optimized Jendel wear model. Then equa-
tion (1) in Section III was used to calculate wheel wear and
the wear depth distribution on the wheel profile. The wear
coefficient in equation (1) takes optimized values.

Given that wheel profile will change due to wear after
the vehicle travels a certain distance, a profile upgrading
model was implemented to upgradewheel profile and the new
profile was then input into the vehicle-track dynamics model
for every 5000 km traveled to allow for cyclic calculation.
First, the cubic spline interpolation algorithm for smoothing
was used to provide post-wear wheel profile. The new profile
was input into SIMPACK to upgrade the original profile.
In this way, the wheel wear was calculated cyclically until
the running mileage reached a specified distance.

VI. COMPARISON OF SIMULATED AND MEASURED
WEAR DATA
A. COMPARISON OF SIMULATED AND MEASURED DATA
FOR LINE ¬

Wheel wear for 50,000 and 80,000 km were measured on
metro line ¬ in X, a Chinese city with a population of about
10 million. The data are illustrated in Figure 10.
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FIGURE 10. 50,000 and 80,000 km wear measurements for Line ¬.

1) The traditional wear simulation principle based on the
physical model was adopted, and mean values deter-
mined for the Jendel model’s wear coefficients are as
follows: k1 = 5 × 10−4, k2 = 35 × 10−4, and
k3 = 5 × 10−4. Finally, wheel wear simulation was
conducted with the mean k values.

2) Based on the analysis of the measured wear data for
50,000 km, the wear coefficient k was optimized using
the genetic algorithm. The optimized k values, includ-
ing k1G = 2.547 × 10−4, k2G = 36.298 × 10−4, and
k3G = 8.855×10−4, were then used for the wheel wear
simulation.

3) Based on the analysis of the measured wear data
for 50,000 km, the wear coefficient k was optimized
using the PSO. The resulting k values, including
k1P = 2.371× 10−4, k2P = 38.258 ×10−4, and k3P =
5.845×10−4, were used for the wheel wear simulation.

4) Based on the analysis of the measured wear data for
50,000 km, the TS was adopted for optimization of the
wear coefficient k . The resulting k values, including
k1T = 2.476 × 10−4, k2T = 36.033 × 10−4, and
k3T = 1.000× 10−4, were then used for the wheel wear
simulation.

5) The SA was also adopted for optimization of the
wear coefficient k based on the measured wear data
for 50,000 km. The resulting k values, including
k1S = 2.354 × 10−4, k2S = 36.647 × 10−4, and k3S =
3.564 × 10−4, were then used to simulate the wheel
wear.

Figure 11 provides a comparison between the predicted and
measured wheel wear for 50,000 km on line ¬.
It is clear from Figure 11 that under other identical mod-

eling conditions, a large error exists between the simulated
wear depth (with the mean value k) and the measured
value, which implies that it is impossible to simulate the
degree of wear accurately by the traditional method. By com-
parison, the wear predictions for 50,000 km obtained by
GA, PSO, TS and SA are close to the measurements.

FIGURE 11. Comparison between predicted and measured wheel wear
for 50,000 km on line ¬.

The accurate simulation of wheel wear verifies the accuracy
of this method.

6) The Jendel wear model that takes the mean value of the
wear coefficient was usedto calculate and predict the
wheel wear for 80,000 km.

7) The Jendel wear model with the wear coefficient opti-
mized by genetic algorithm (k1G = 2.547 × 10−4,
k2G = 36.298 × 10−4, and k3G = 8.855 × 10−4)
was used to calculate and predict the wheel wear for
80,000 km.

8) The Jendel wear model with k values optimized by
PSO(k1P = 2.371 × 10−4, k2P = 38.258 × 10−4, and
k3P = 5.845× 10−4) was used for wear calculation and
prediction.

9) The Jendel wear model with k values optimized by
TS(k1T = 2.476 × 10−4, k2T = 36.033 × 10−4, and
k3T = 1.000× 10−4) was used for wear calculation and
prediction.

10) The Jendel wear model with k values optimized by
SA (k1S = 2.354 × 10−4, k2S = 36.647 × 10−4, and
kS = 3.564 × 10−4) was used for wear calculation and
prediction.

The prediction results are illustrated in Figure 12.
As shown in the figure, the 80,000 km wheel wear was accu-
rately predicted using the GA, PSO, TS and SA, but the result
obtained by the traditional method with the mean k value
significantly exceeded the measured wea. Thus, optimization
of the k value by means of the GA, PSO, TS and SA canmake
the predictions closer to the measurements.

B. LINE ­ METRO WHEEL MEASUREMENT AND
SIMULATION RESULTS
The generalization ability of this method was further verified
through comparison with the wheel wear data for 140,000 km
measured on line ­, as illustrated in Figure 13.
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FIGURE 12. Comparison between predicted and measured wheel wear
for 80,000 km on line ¬.

FIGURE 13. 140,000 km wear measurement from line ­ metro wheels.

Mean values were determined for the Jendel model’s wear
coefficients: k1 = 5 × 10−4, k2 = 35 × 10−4, and
k3 = 5× 10−4.

The optimized k values determined by GA are as fol-
lows: k1G = 3.715 × 10−4, k2G = 36.407 × 10−4, and
k3G = 8.180 × 10−4.

The k values optimized by PSO: k1P = 3.744 × 10−4,
k2P = 33.194 × 10−4, and k3P = 8.065 × 10−4.

The k values optimized by TS: k1T = 3.667 × 10−4,
k2T = 30.000 × 10−4, and k3T = 10.000 × 10−4.
The k values optimized by SA: k1S = 3.642 × 10−4,

k2S = 34.057 × 10−4, and k3S = 1.877 × 10−4.
The mean k and optimized k values were used separately

for the 140,000 km wear simulation. The results are illus-
trated in Figure 14.

As indicated in the figure, the 140,000 km wheel wear
predicted using mean values of k deviated significantly from
the measured result, while less error existed between the

FIGURE 14. Comparison between wheel wear predictions and
measurements for 140,000 km on line ­.

simulation result and the measured wheel profile when the
optimized k value was adopted, which suggest a more accu-
rate wheel wear prediction.

The updating process of wheel wear calculation described
above is based on the following assumption: with adequate
operating mileage, the cumulative growth in wheel wear
within a short distance is linear. The pattern of linear growth is
determined by the unary linear regression relation of the unit
wear in the Jendel model to wear coefficient k and normal
force N , and the unary linear regression relation between the
sliding speed and wheel pair lateral displacement. A compar-
ison with the measured data verifies the effectiveness of the
proposed method.

C. PERFORMANCE COMPARISON BETWEEN
TRADITIONAL METHOD AND OPTIMIZATION
ALGORITHMS
The results produced by the traditional method and the four
optimization algorithms are compared based on root-mean-
square error in wear value, maximum wear depth, rela-
tive error in maximum wear depth and optimization time
(Table 2).

Root-mean-square error (RMSE) is a good measure
of measurement accuracy. It is calculated by summing
the squares of the differences between measured values,
Xmeasured,i, and simulated values, Xsimulated,i, and then taking
the square root of the ratio of the sum to the number of
observations, nmeasured , [51]:

RMSE =

√∑n
i=1 (Xmeasured−Xsimulated )2

nmeasured
, (16)

Maximum wear depth is usually a key quantity considered
in relevant research. A wheel will need turning repair if the
maximum wear depth in it exceeds a certain limit.

Relative error in maximumwear depth refers to the ratio of
the absolute error in wear prediction to measured wear and is
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TABLE 2. Comparison Of the results produced by traditional method and
optimization algorithms.

expressed as a percentage. It is given by the formula below:

REmax depth=
Xsimulated,max dep−Xmeasured,max dep

Xmeasrued,max dep
× 100%,

(17)

where REmax depth is the relative error in maximum
wear depth; Xmeasured,maxdep is the measured maximum wear
depth; and Xsimulated,maxdep represents the maximum wear
depth simulated by the traditional method and optimization
algorithms.

As shown in Table 2, the values predicted by the optimiza-
tion algorithms are closer to the measured values than the
results of the traditional method. The RMSE in the predic-
tions from the four optimization algorithms are significantly
lower than the RMSE in the values calculated by the tradi-
tional method. In particular, TS outperforms other algorithms
for both lines.

In terms of the relative error in maximum wear depth,
the relative errors between the wear predictions by the
optimization algorithms and measured wear are smaller
than 11%, while the relative errors between the results
of traditional methods and measurement exceeds 60%.

A comparison of the results for the two lines suggests that
TS has the best performance.

From the perspective of computation time, GA requires
the longest computation time, while PSO demonstrates the
highest efficiency.

VII. CONCLUSION
Integrated data-model-driven approach combines the advan-
tages of data-driven and model-based methods while avoid-
ing their disadvantages. Data-model-driven integration was
applied to simulation and prediction of metro wheel wear,
in order to improve the accuracy of prediction and reduce
data costs. A parameter in the physical model was optimized,
with the wear data for a certain running mileage used as the
sample. The optimized physical model allows for more accu-
rate simulation and prediction of metro wheel wear for other
running mileage. A comparison between traditional method
and the optimization algorithms used in this study suggests
that the data-model-driven integration improves the accuracy
and efficiency of metro wheel wear prediction, reduces the
experimental cost, and offers a new approach to wheel wear
research.

The model parameter was optimized using Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Tabu
Search (TS) and Simulated Annealing (SA), separately. The
four optimization algorithms produced generally consistent
results and show high performance.

There are many other intelligent optimization algorithms,
such as differential evolution algorithms, immune algorithms,
ant colony optimization algorithms, and neural network
algorithms. In future work, these optimization algorithms
will be studied and compared with the current algorithms.
Moreover, more research will be conducted on the application
of machine learning methods in wheel wear prediction.
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