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ABSTRACT This paper proposes GraspCNN, an approach to grasp detection where a feasible robotic
grasp is detected as an oriented diameter circle in RGB image, using a single convolutional neural network.
By detecting robotic grasps as oriented diameter circles, grasp representation is thereby simplified. In addi-
tion to our novel grasp representation, a grasp pose localization algorithm is proposed to project an oriented
diameter circle back to a 6D grasp pose in point cloud. GraspCNNpredicts feasible grasping circles and grasp
probabilities directly from RGB image. Experiments show that GraspCNN achieves a 96.5% accuracy on
the Cornell Grasping Dataset, outperforming existing one-stage detectors for grasp detection. GraspCNN is
fast and stable, which can process RGB image at 50 fps and meet the requirements of real-time applications.
To detect objects and locate feasible grasps simultaneously, GraspCNN is executed in parallel with YOLO,
which achieves outstanding performance on both object detection and grasp detection.

INDEX TERMS Convolutional neural network, grasp detection, grasp pose, oriented diameter circle.

I. INTRODUCTION
The goal of 2D grasp detection is to localize feasible grasps
in the images of objects. A camera observes a cluttered scene
and finds feasible robotic grasps in the images, as shown
in Fig. 1. More specifically, in this work, we aim to predict
feasible robotic grasps directly from RGB image.

RGB image has been widely used for 2D object detec-
tion. Convolutional neural networks, such as YOLO [1]–[3],
SSD [4], Mask RCNN [5] and CornerNet [6], have achieved
great success. Currently, deep learning has also been uti-
lized successfully for robotic grasp detection, which has
achieved significant improvements over conventional meth-
ods. However, some grasp detection methods are a two-stage
cascaded system based on deep learning which detect objects
in the first stage and then each cropped object region is sent to
a second stage network to predict a feasible robotic grasp for
this specified object. These complex pipelines are very slow
and hard to optimize.

Visual-based grasping is a very simple action for human
beings. However, robotic grasping is still a challenging prob-
lem in robotics. Robotic arm needs providing an accurate
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grasp pose. Besides, there should be enough room to accom-
modate the open gripper without collision in a grasped area.

In this paper, we propose an oriented diameter circle
representation for robotic grasp in image space. A single
neural network is used to locate feasible grasps by oriented
diameter circles directly on RGB image. Extensive experi-
mentation shows that GraspCNN achieves competitive grasp
detection accuracy compared to existing one-stage detectors.
GraspCNN is executed in parallel with YOLO to perform
object grasping detection, which can detect objects and locate
feasible grasps simultaneously in a cluttered scene.

To summarize, our main contributions are as follows:
1) A single end-to-end model for grasp detection is pre-

sented, which can process RGB image at 50 fps and meet the
requirements of real-time applications.

2) An oriented diameter circle representation is introduced
and a new metric is proposed to evaluate the predicted grasp.
The grasping circle representation is suitable for all kinds
of grippers and able to discriminate between good and bad
grasps better.

3) A grasp pose localization algorithm is proposed to
project an oriented diameter circle back to a 6D grasp pose,
which means that the oriented diameter circle is a reliable
representation for robotic grasp.
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FIGURE 1. GraspCNN directly operates on the raw RGB image and
produces the grasp detection results using a single end-to-end trainable
network. 6D grasp poses are projected back into point cloud. The y-axis is
shown in green and represents the gripper closing direction. The z-axis is
shown in blue and represents the grasp approach anti direction.

This paper is organized as follows. Section II contrasts
related grasp detection methods, and Section III presents
the oriented diameter circle representation and provides a
detailed description of computing the grasp pose using the
oriented diameter circle representation. Section IV presents
the design of GraspCNN, and Section V demonstrates its
effectiveness in experiments. Section IV concludes the paper
and discusses the future work.

II. METHODS OVERVIEW
Grasp detection considers the grasping task as the problem of
predicting the object grasp pose, where the system looks at the
scene and chooses the best locations at which to grasp. A typ-
ical approach for grasp detection is to use a sliding window
to select local image patches, evaluate grasp probabilities,
and choose the image patch with the highest grasp probabil-
ity for grasp. Template-based methods also performed well
to detect grasps in ideal scenarios. Currently deep learning
has performed state-of-the-art grasp detection results over
conventional methods. Real-time robotic grasp detection has
achieved remarkable performance improvements.

A. ROBOT GRASPING WITH 3D MODEL OR
GRASP TEMPLATES
Most previous work performed stable grasps in ideal scenar-
ios by assuming full knowledge of the object to be grasped.
Rosales et al. [7] performed optimization of grasps given both
a 3Dmodel of the object and the desired contact points for the
robot gripper. Pokorny et al. [8] defined spaces to discover

grasps of graspable objects, then map new objects to these
spaces to discover grasps. However, the robot cannot interact
with a new environment very well because of the numerous
unpredictable objects in our daily life. Othermethods follow a
template-based approach where grasps that are demonstrated
on a set of training objects are generalized to new objects.
Herzog et al. [9] proposed a template-based grasp selection
algorithm operating on depth map which uses demonstrated
grasp configurations and generalizes them to grasps for novel
objects. Detry et al. [10] grasped novel objects by modeling
the geometry of local object shapes and fitting these shapes
to new objects. Osadchy et al. [11] used shape primitives like
spheres, cones and boxes to approximate object shape and
used the simulation environment GraspIt for grasp stability
tests. Template-basedmethods are useful in detecting texture-
less objects. However, they cannot handle occlusions between
objects very well. Other works use hand-design visual fea-
tures and hand-code grasping rules, which are difficult to
apply in massive objects in real world.

B. ROBOT GRASPING USING DEEP LEARNING
Recent research in robotic grasp has largely focused on per-
forming grasp detection using deep learning. Lenz et al. [12]
presented a two-stage system for detecting robotic grasps
from RGBD data using a deep learning approach. Redmon
and Angelova [13] performed real-time grasp detection for
the grasping area of an object using convolutional neural net-
works. Morrison et al. [14] proposed a Generative Grasping
Convolutional Neural Network, which predicts the quality
and pose of grasps at every pixel. However, there should be
an optimal grasp in a neighboring region if it exists. This one-
to-one mapping from depth image to find the best grasp is not
necessary. Wang et al. [15] proposed DenseFusion, a generic
network framework for estimating 6D pose of a set of known
objects from RGBD images. DenseFusion processes the two
data sources individually and uses a novel dense fusion net-
work to extract pixel-wise dense feature embedding, from
which the pose is estimated. Xiang et al. [16] proposed
PoseCNN, a convolutional neural network for 6D object
pose estimation. PoseCNN is robust to occlusions, can han-
dle symmetric objects and provide accurate pose estimation
using only color images as input. Kalashnikov et al. [17]
proposed QT-Opt, a scalable self-supervised vision-based
reinforcement learning framework for robotic manipulation,
which enables dynamic closed-loop control. It automatically
learns grasping strategies and probes objects to find the most
effective grasps using only RGB vision-based perception
from an over-the-shoulder camera. Asif et al. [18] proposed
a novel CNN architecture termed GraspNet which produces
pixel-level labeling of grasping regions using RGB-D images.
With squeeze and dilated convolutions, GraspNet achieves
competitive grasp detection accuracy and real-time inference
speed on embedded GPU hardware. Mousavian et al. [19]
take 3D point clouds as input and formulate the problem of
grasp detection as sampling a set of grasps using a variational
autoencoder and assess and refine the sampled grasps using
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a grasp evaluator model. Park et al. [20] proposed fully
convolutional neural network termed FCNN, which can be
applied to images with any size for detecting multiple grasps
onmultiple objects. Chu et al. [21] proposed two-stage neural
networks combining region proposal network and robotic
grasp detection network base on Faster R-CNN.

C. ROBOT GRASPING REPRESENTATION
Several representations have been proposed to give an
intuitive description about robotic grasp in image space.
Saxena et al. [22] represented a grasp as a grasping point,
using supervised learning algorithms to detect a grasping
point from the image. Le et al. [23] proposed a new repre-
sentation based on a pair of points. However, grasping point
representation only indicates where to grasp, which is incom-
plete to perform a stable grasp. Jiang et al. [24] represented
a grasp as a 2D oriented rectangle in image space, using
support vector machines to select a good grasp from extracted
features. The oriented rectangle representationworks for two-
jaw grippers and it can potentially represent grasps for multi-
fingered hands as well. Multiple fingers could be represented
using different locations within the rectangle.

Most researchers adopt the rectangle-based method, with
two edges corresponding to the gripper plates. However,
the oriented rectangle representation is not intuitive and con-
cise enough for multiple fingers. And in order to perform
one of these grasps, the gripper must approach the grasp
target from a direction roughly orthogonal to the image.
Considering this, an oriented diameter circle representation
is proposed for robotic grasp, which is suitable for all kinds
of grippers, such as a parallel plate gripper, a multi-finger
gripper, or a robotic hand.

III. PROBLEM DESCRIPTION
A. MOTIVATION OF ORIENTED DIAMETER CIRCLE
REPRESENTATION
The oriented diameter circle representation is inspired from
grasp action. The robotic arm would approach an object with
accurate position and then the gripper would pick it up in a
feasible way with appropriate rotation.

The oriented diameter circle is a 4D representation encod-
ing the gripper configuration, which is represented as:

G = {x, y, d, θ} (1)

with (x, y) denoting the center of the circle, d denoting the
oriented diameter of the circle, and θ denoting the angle of the
oriented diameter relative to horizontal diameter. Fig. 2 shows
an example of this grasp representation. It is a simplifica-
tion of the full 7D gripper configuration (the 3D position,
3D orientation and the gripper opening width) and can be
projected back to the full 7D gripper configuration. The circle
center (x, y) can be used to obtain the 3D grasp position from
point cloud; the oriented diameter angle θ and surface normal
of grasp position are used to obtain the 3D orientation; the
gripper opening width can be calculated using the intrinsic
parameters of camera and circle diameter d .

FIGURE 2. A 4D grasp representation based on the oriented diameter
circle. A grasp is defined by circle center coordinates (x, y), oriented
diameter angle θ relative to the horizontal diameter and circle diameter d
corresponding to the gripper opening width before a grasp is performed.

Compared with some previous representations for robotic
grasp, the oriented diameter circle representation has two
advantages:

First, robotic grasping is presented in a more intuitive way.
Grasping circle representation provides the gripper opening
width before it closes on an object, which ensures there is
enough room to accommodate the open gripper and execute
a stable grasp without collision in a grasped area.

Second, the oriented diameter circle representation is suit-
able for all kinds of grippers without nuisance parameters
like the gripper size in the oriented rectangle and it can be
associated with grasp behavior of the robotic arm.

B. GRASP EVALUATION METRIC
The oriented diameter circle gives a brief description of
robotic grasping in image space. The circle represents a
grasped area and the oriented diameter represents the gripper
opening width and closing direction. To evaluate the pre-
dicted grasp, it is considered to be correct if both:

a. The oriented diameter angle θ is within 30◦ of the
ground-truth grasp.

b. The Intersection Over Union (IOU) of the predicted
grasping circle and ground-truth grasping circle is
greater than 50 percent.

The area of a grasping circle is S = π∗ d
2

4 . The IOU reflects
how confident the predicted grasping circle represents an
appropriate grasped area. The circle metric can discriminate
between good and bad grasps better than the rectangle metric
since the circle metric weights errors in large grasped areas
and small grasped areas unequally. The oriented diameter
circle indicates the actual grasp more faithfully.

The oriented diameter circle representation is compared
with the oriented rectangle representation in Fig. 3. The
ground-truth grasp is shown in red and the predicted grasp
is shown in blue. As the Fig. 3 shows, the oriented diameter
circle representation can give us a more intuitive impression
of differences between the predicted grasp and ground-truth
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FIGURE 3. Three sets of examples (a), (b), and (c) with grasps represented
by the proposed oriented diameter circle and the oriented rectangle. The
ground-truth grasp is shown in red and the predicted grasp is shown in
blue. The oriented diameter circle representation indicates the actual
grasp more faithfully.

grasp. The grasped area is localized perfectly, as shown
in Fig. 3(a). The IOU of oriented rectangle cannot indicate
that well, while the IOU of oriented diameter circle is 1.
Moreover, in contrast to oriented rectangle, it is intuitive to
check a good predicted grasp using the oriented diameter
circle representation, shown in Fig. 3(b) and Fig. 3(c).

C. GRASP POSE
Recently low-cost RGBD sensors, such as Kinect, have been
widely used. With the accessibility of depth image and point
cloud, grasp quality and stability have been improved signif-
icantly. In this section, a grasp pose localization algorithm
is presented to compute the accurate grasp pose using the
oriented diameter circle and corresponding point cloud.

Let PA = (xA, yA, zA)T denote a random point in coordi-
nate system A. The coordinate system A is rotated around
its z-axis counterclockwise through an angle θ , as shown in
Fig. 4. After rotation, in new coordinate system B, PB =
(xB, yB, zB)T describes the same point. Let B

AR denote the
rotation matrix from A to B. The transformation is defined as:

(xB, yB, zB)T = B
AR (xA, yA, zA)T (2)

The Grasp Reference Frame is defined with its origin at
the grasp point P. The unit vector along the z-axis is defined
as the surface normal vector of grasp point P. The y-axis

FIGURE 4. Illustration of rotation around z-axis of coordinate system A
counterclockwise through an angle θ . P describes the same point in
coordinate system A and B.

FIGURE 5. Illustration of projection back to a 6D grasp pose in point
cloud. The Grasp Reference Frame is constructed using the surface
normal of grasp point and horizontal diameter, as shown in (a). Then the
Grasp Reference Frame is rotated around its z-axis through an angle θ to
get the Grasp Frame, as shown in (b).

parallels the intersection line of the plane y = 0 and the
cutting plane of grasp pointP in the Camera Frame. Similarly,
the Grasp Frame is defined according to the surface normal
of grasp point P and the corresponding oriented diameter, as
shown in Fig. 5.

Algorithm 1 describes the process of computing the grasp
pose using the oriented diameter circle.

Given an oriented diameter circle in image space, the grasp
point P can be obtained directly from point cloud using the
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Algorithm 1 Grasp Pose Localization
Input: a point cloud; an oriented diameter circle

G ={x, y, d,θ}
Output: a 6-DOF grasp pose in the Camera Frame

1: Get the grasp point P using (x, y)
2: Set surface normal vector of P as the unit vector

along the z-axis of Grasp Reference Frame
3: Set the intersection line vector of cutting plane

of P and the plane y= 0 as the unit vector along
the y-axis of Grasp Reference Frame

4: Get the unit vector along the x-axis of Grasp Ref-
erence Frame according to right hand coordinate
system

5: Construct the Grasp Reference Frame
6: Rotate around the z-axis of Grasp Reference

Frame through an angle θ to construct the Grasp
Frame

circle center (x, y). Let cgR denote the rotation matrix from
the Grasp Frame to the Camera Frame,crR denote the rotation
matrix from theGraspReference Frame to the Camera Frame,
and rgR denote the rotationmatrix from the Grasp Frame to the
Grasp Reference Frame.

The surface normal vector of P termed (fx , fy, fz)T is calcu-
lated in its neighboring region and set as the unit vector along
the z-axis of Grasp Reference Frame. The transformation is
represented as:

(fx , fy, fz)T = c
rR(0, 0, 1)

T (3)

The intersection line between the plane y = 0 and cutting
plane of P is calculated and expressed as:{

fxx + fyy+ fzz= 0
y= 0

(4)

The intersection line vector ( fz√
fx fx+fzfz

, 0, fx√
fx fx+fzfz

)
T
is set

as the unit vector along the y-axis of Grasp Reference Frame.
The transformation is given by:

(
fz

√
fx fx + fzfz

, 0,
fx

√
fx fx + fzfz

)
T
=

c
rR (0, 1, 0)T (5)

The unit vector along the x-axis of Grasp Reference Frame
termed (nx , ny, nz)T is the cross product of the unit vector
along y-axis and the unit vector along z-axis. The transfor-
mation is calculated as:

(nx , ny, nz)T = c
rR (1, 0, 0)T (6)

The above transformations are combined to get the rotation
matrix from theGraspReference Frame to the Camera Frame.
The rotation matrix is expressed as:

nx
fz

√
fx fx + fzfz

fx

ny 0 fy

nz
fx

√
fx fx + fzfz

fz

 = c
rR

 1 0 0
0 1 0
0 0 1

 = c
rR (7)

The Grasp Reference Frame is rotated around its z-axis
through an angle θ to construct the Grasp Frame. Similarly,
the rotation matrix from the Grasp Frame to the Grasp Refer-
ence Frame becomes: cosθ −sinθ 0

sinθ cosθ 0
0 0 1

 = r
gR

 1 0 0
0 1 0
0 0 1

 = r
gR (8)

Two subsequent rotations can be combined into a single
rotation. Therefore, the final rotation matrix from the Grasp
Frame to the Camera Frame can be written as follows:

c
gR =


nx

fz
√
fx fx + fzfz

fx

ny 0 fy

nz
fx

√
fx fx + fzfz

fz


 cosθ − sinθ 0
sinθ cosθ 0
0 0 1

 (9)

Let cgT denote the transformation from the Grasp Frame
to the Camera Frame. With the rotation matrix and grasp
position, the grasp pose in the Camera Frame is constructed
using:

c
gT =

( c
gR P

03×1 1

)
(10)

An oriented diameter circle can be projected back to a 6D
grasp pose, which means that the oriented diameter circle is
a faithful representation for robotic grasp.

IV. GRASP DETECTION
GraspCNN takes RGB image as input and predicts feasi-
ble grasping circles for every object in a cluttered scene.
For training and testing, our model runs on an Intel Core
i7-4770K CPU and a NVIDIA GTX1080 GPU.

A. ARCHITECTURE
In this section, we present the design of GraspCNN.
Fig. 6 shows the architecture of grasp detection network.
GraspCNN is implemented as a fully convolutional neural
network, which is all made up of 1 × 1 and 3 × 3 con-
volutional layers. It has 5 initial convolutional layers to
extract basic features from RGB image followed by 1 ×
1 and 3 × 3 convolutional layers to do feature fusion and
extract advanced features while the final convolutional layer
predicts grasping circles with grasp probabilities. The feature
extraction module subsamples the input by a factor of 32 to
produce 512 basic feature maps of size 13 × 13. The feature
fusion module consists of three convolutional blocks. The
first two blocks termed conv6 and conv7 are 1× 1, 3× 3, and
1 × 1 convolutions, which are introduced to compute more
abstract features for local patches. The 1 × 1 convolution
layer termed conv8 is responsible for reducing feature dimen-
sions and pursing better abstractions for the final prediction
layer. The prediction module produces 6 feature maps of size
13 × 13 separately, where probability is the grasp confi-
dence prediction, (tx , ty) is the grasp point offset prediction,
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FIGURE 6. Overview of the proposed GraspCNN. Given RGB image, the first five convolutional layers learn basic features
of local image regions. Then the next three convolutional blocks extract advanced features. The final layer predicts
feasible grasping circles. The convolution layer parameters are denoted as ‘‘[kernel size] × [kernel size] –s– [stride]’’. ‘‘s’’
represents the stride length of the convolution.

(sin2θ , cos2θ ) is the grasp angle prediction, and td is the grasp
width prediction.

GraspCNN is trained and evaluated on the Cornell Grasp-
ing Dataset [12]. This dataset is specially designed for the
parallel plate gripper and adopts the oriented rectangle rep-
resentation. Therefore, the positive grasping rectangles need
converting to the oriented diameter circles at first. Then
extensive data augmentation is performed by translating and
rotating RGB image randomly. Finally, a center crop of 416×
416 pixels is used to fit the input layer.

The input RGB image is divided into a 13× 13 grid. If the
grasping circle center falls into a grid cell, that grid cell is
responsible for detecting that grasp. The ground-truth grasp in
the grid cell is treated as a mask and the corresponding value
is set as 1. The final layer predicts both grasp probabilities and
grasping circles. The probability reflects how confident that
the grid cell contains a feasible grasp. We compute the diam-
eter in pixels (maximum of 160) of each grasping circle in
dataset. Therefore, the circle diameter d is normalized by the
scaling factor 160 to put it in the range [0, 1]. Grasp is closely
related to local information in a neighboring region. The
grasping circle center coordinates (x, y) are parameterized to
be offsets of corresponding grid cell. Then the offsets are nor-
malized by the subsample factor 32 so they are also bounded
between 0 and 1. The oriented diameter angle θ is in the range
[−π /2, π /2], which is two-fold rotationally symmetric. It is
parameterized by using sin2θ and cos2θ to keep values in
the range [−1, 1] and remove any discontinuities. GraspCNN
predicts (tx , ty, td , tsin, tcos) for each grasping circle and its
probability p. If that cell is offset from the top left corner

of the image by (cx , cy) and the oriented diameter circle has
circle center (x, y), diameter d and oriented diameter angle θ ,
the predictions can be represented as:

x = 32 tx + cx
y = 32ty + cy
d = 160 td
tsin = sin2θ
tcos = cos2θ

(11)

Fig. 7 shows the predictions of GraspCNN in image
space. The Cornell Grasping Dataset needs converting into
the expected output format of the proposed network, which
makes grasp distribution easier for the network to learn.

B. TRAINING
GraspCNN is trained from the beginning without pre-training
on the ImageNet classification task. 85% images of Cornell
Grasping Dataset are randomly selected as training data and
remains are test data. It trains on RGB image at the resolution
of 416 × 416 and subsamples the input by a factor of 32 to
get output feature map of 13 × 13. The RELU activation
function is used for all convolutional layers except the last
prediction layer, which is designed to use a linear activation
function. We use SGD with momentum of 0.9 to optimize
for sum-squared error in the output of our model and use a
learning rate of 0.0001 and a weight decay of 0.0001 to train
GraspCNN for 5 epochs.

At inference time, we first extract the peaks in the proba-
bility feature map for each grid cell independently. We detect
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FIGURE 7. Oriented diameter circle predictions. GraspCNN predicts the
diameter and center coordinates of the oriented diameter circle. It also
predicts sin2θ and cos2θ to remove discontinuities of oriented diameter
angle θ .

all grasp probability scores whose value is greater or equal
to its 8-connected neighbors and keep the top 20 peaks. The
grasp probability score of the top 20 peaks whose value is
larger than a certain threshold (e.g., 0.4) will be considered
as a feasible grasp detection. GraspCNN predicts (tx , ty, td ,
tsin, tcos) and probability score p for each grid cell. If that grid
cell is responsible for a feasible grasp detection, the grasping
circle can be constructed as shown in Fig. 7. An example is
presented to illustrate the accurate predictions of GraspCNN.
With the combined network output, optimal grasping circles
can be obtained as shown in Fig. 8(a). Fig. 8(b) shows the pre-
diction of probability score feature map. GraspCNN predicts
a higher probability score for a graspable region. Fig. 8(c)
shows the prediction of diameter map in pixels, which is
associated with the probability map. The visualization of
network output reflects that GraspCNN is effective to detect
grasps from RGB image.

V. RESULTS
A. GRASP DETECTION RESULTS
Table 1 shows a comparison of our method with the pre-
vious work for grasp detection on the Cornell Grasping
Dataset. Fast Search [24], SAE [12], Multiple Grasp [13],
GGCNN [14], GraspNet [18], FCNN [20] are existing
state-of-the-art grasp detection methods. To evaluate the
correctness of our predicted grasping circles, a comparison is
performed between the predicted grasping circles and labeled
input ground-truth grasping circles. The grasp detection accu-
racy is evaluated using proposed grasping circle metrics.
Across the board, our model outperforms the current state-
of-the-art robotic grasp detection algorithms in terms of accu-
racy. Park et al. [20] predict multiple oriented rectangles and
confidence scores associated with those oriented rectangles.

FIGURE 8. (a) Illustration of the GraspCNN output. From the combined
output, the optimal grasping circles can be obtained. (b) Visualization of
the probability map of GraspCNN output. (c) Visualization of the diameter
map in pixels of GraspCNN.
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FIGURE 9. Qualitative results of GraspCNN. GraspCNN can detect multiple grasps in a cluttered scene. It performs well to detect grasps for novel
objects.

FIGURE 10. Illustration of object grasping detection model. GraspCNN is executed in parallel with YOLO. It can detect objects
and locate grasps simultaneously in a cluttered scene.

This approach is most similar to our own, GraspCNN also
predicts multiple oriented diameter circles and weights them
by a confidence score. The key difference is that GraspCNN
maintains a compact design using only the standard convo-
lutions without batch normalization, max pooling and skip
connection and only predicts one optimal grasping circle for
each cell instead of multiple anchor box candidates. The pre-
dictions of GraspCNN are straightforward and closely related

to local image regions, which makes it easier to train. After
5 epochs, it performs stable predictions with high accuracy.

Grasp detection is similar to object detection. The goal
of 2D object detection is to localize and recognize objects in
an image using object bounding boxes, while the goal of 2D
grasp detection is just to localize feasible robotic grasps in an
image using grasping circles. Compared to object detection,
grasp detection is simpler and closely related to local image
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TABLE 1. Grasp detection performance on cornell grasping dataset.

FIGURE 11. Visualization of object grasping detection results. With the
combined model GraspCNN + YOLO, it achieves outstanding performance
on both object detection and grasp detection.

regions. The output format of GraspCNN is designed to asso-
ciate with local image regions. It reflects the regular pattern
of robotic grasp, which makes GraspCNN more efficient and
accurate. The grasp detection results in a real cluttered scene
are shown in Fig. 9.

B. OBJECT GRASPING DETECTION RESULTS
In the experiments, KinectV2 publishes RGBD images at
a resolution of 960 × 540 pixels with the corresponding
point cloud. The RGB image is used as input of YOLO,

which utilizes pre-trained weights on COCO dataset to detect
objects. Meanwhile, a center crop of 416× 416 pixels is sent
to GraspCNN to locate grasps.

GraspCNN is executed in parallel with YOLO. Fig. 10
shows the framework of object grasping detectionmodel. The
oriented diameter circle with the highest probability score in
the bounding box of an object is chosen for grasp detection
results. The object grasping detection results from real-world
testing are shown in Fig. 11.

VI. CONCLUSION AND FUTURE WORK
We present GraspCNN, a single end-to-end network for grasp
detection, which is simple to construct and utilizes local
region information to predict at least one feasible grasp for
every object in a cluttered scene. GraspCNN maintains a
compact design using only the standard convolutions and
achieves the state-of-the-art performance on Cornell Grasp-
ing Dataset. With the combined model GraspCNN+ YOLO,
it can detect objects and locate grasps simultaneously in
clustered environments, while each individual network must
be trained separately.

Our future work will focus on using a single unified detec-
tion network to perform object grasping detection.
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