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ABSTRACT In this paper, we derived the analytical forms of the expectation and variance of average
Kendall’s tau (AKT) under a specific multivariate contaminated Gaussian model (MCGM), which can
simulate a scenariowhere themulti-channel noise exhibits an impulsivemanner. For a better understanding of
AKT, we compared AKT to other two classical concordance correlation coefficients, i.e., Kendall’s concor-
dance coefficient (KCC), and the average Pearson’s product moment correlation coefficient (APPMCC) with
respect to the root mean squared error (RMSE). We also applied AKT, KCC and APPMCC to the problem of
multi-channel random signal detection. Monte Carlo simulations not only validated our theoretical findings,
but also revealed the advantage of AKT over KCC and APPMCC in terms of the receiver operating
characteristic (ROC) curves.

INDEX TERMS Average Kendall’s tau (AKT), multivariate contaminated Gaussian model (MCGM), root
mean squared error (RMSE), multi-channel signal detection, receiver operating characteristic (ROC) curve.

I. INTRODUCTION
Correlation analysis has been widely utilized in a number of
sub-areas in signal processing [1]–[4]. Being interpreted as
the strength of the statistical relationship between two random
variables, correlation should be large and positive if there is a
high probability that large (small) values of one variable are
associated with large (small) values of another; and it should
be large (small) and negative if the direction reverses [5].
In the two-channel cases, correlation coefficients might be
the most popular tools in the literature, including the classical
Pearson’s product moment correlation coefficient (PPMCC),
Spearman’s rho (SR) and Kendall’s tau (KT) [6]. However,
in practice, we often encounter multi-channel scenarios, such
as measuring the strength of association among high dimen-
sional random vectors [7], and detecting the presence of
a common signal in multi-channels [8]–[10]. Under these
situations, it is natural to formulate metrics through averaging
the correlation coefficients for all pairs of signals at hand.
In parallel to the aforementioned classical correlation coef-
ficients, three concordance coefficients have been proposed,
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i.e., the average Pearson’s product moment correlation coef-
ficient (APPMCC) [11], average Spearman’s rho (usually
named Kendall’s concordance coefficient (KCC) [12], [13],
and average Kendall’s tau (AKT) [14]–[20].

There are many advantages and disadvantages of
APPMCC, KCC and AKT. APPMCC is optimal when the
signals obey the multivariate Gaussian model. However,
theoretical and empirical evidences suggest that many com-
munication and radar systems suffer from noise with impul-
sive characteristics, that is, the distribution of the noise has
a tail heavier than that of Gaussian distribution. In other
words, the majority of the multi-channel noise might follow
a multivariate normal distribution, but there exists a tiny
fraction of outliers with very large variance (impulsive noise)
[21]–[23]. In such case, the noise can be well modeled
by the so called multivariate contaminated Gaussian model
(MCGM) [24], [25]. Under this circumstance, as shown in
the simulation studies later on, the performance of APPMCC
will deteriorate severely, and thus becomes impractical. On
the other hand, we have shown in our previouswork [26]–[28]
that KT and SR are robust against impulsive noisemodeled by
bivariate contaminated Gaussian model. However, the prop-
erties of the corresponding multi-channel version, i.e., AKT
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and KCC under MCGM, are still unknown to the best of our
knowledge.

Motivated by such unsatisfactory situation, in this work we
focus on the statistical properties of AKT under the MCGM.
The major contribution is threefold. Firstly, we establish
the analytic expressions of the expectation and variance of
AKT under a specific MCGM emulating impulsive noise that
frequently encountered in practice. Secondly, we reveal the
superiority of AKT over APPMCC and KCC in terms of the
root mean squared error (RMSE) under the MCGM. Finally,
we demonstrate the robustness of AKT against impulsive
noise by an example of multi-channel random signal detec-
tion in the presence of additive impulsive noise.

The remainder of this paper is structured as follows.
Section II presents the definitions of three concordance
coefficients, theMCGM, aswell as the some auxiliary results.
In Section III, we establish the theoretical results with regard
to the expectation and variance of AKT under the MCGM.
Section IV verifies our theoretical findings under theMCGM.
The comparative results of AKTwith APPMCC and KCC are
also provided in the same section, in terms of the root mean
squared error (RMSE) and receiver operating characteristic
(ROC) curves. Finally in Section IV-D, we summarize our
main findings and our conclusion on AKT.

For convenience of later development, we use E(·), V(·),
C(·) and corr(·, ·) to denote the expectation, variance, covari-
ance and correlation of (between) random variables, respec-
tively. The symbol n[k] stands for n(n− 1) · · · (n− k + 1)
with k being a positive integer. The bivariate Gaussian
distribution are denoted by N (µ1, µ2, σ

2
1 , σ

2
2 , ρ). The nota-

tion P0m(Z1, · · · ,Zm) , P(Z1 > 0, · · · ,Zm > 0) rep-
resents the positive orthant probabilities with respect to an
m-dimensional normal random vector [Z1 · · · Zm]. The sym-
bol R(%rs)m×m represents the correlation matrix where %rs ,
corr(Zr ,Zs) with r, s = 1, . . . ,m. We will also use P0m(R) to
denote P0m(Z1, · · · ,Zm) for compactness. All other notation
is to be defined in the text where it first enters.

II. METHODS
In this section, we present the definitions of three concor-
dance coefficients and a particular MCGM employed to
emulate the heavy-tailed impulsive noise mentioned in the
previous section. Moreover, some auxiliary results are also
established for ease of further theoretical analysis.

A. DEFINITIONS OF PPMCC, SR AND KT
Denote by X a data matrix with size m × n, where m is the
number of channels and n is the length of signal in each
channel. Let

X i , [X i1 X
i
2 · · · X

i
n]

be the ith row of the matrix X. Sorting X i in ascending order
generates a new vector

X (i) , [X i(1) X
i
(2) · · · X

i
(n)]

where [X i(1) X
i
(2) · · · X

i
(n)] is called the order statistics of

X i [29]. Suppose that X ij is at the kth position in X (i). The
number k is termed the rank of X ij [30] and is denoted by Q

i
j.

Let X̄ i and X̄ j represent the mathematical mean of X i and X j.
Then, three classical correlation coefficients, i.e., PPMCC (rP
below) [11], SR (rS below) [30], and KT (rK below) [30] of
X i and X j can be defined as

rP (X
i,X j) ,

n∑
a=1

(X ia − X̄ i)(X
j
a − X̄ j)[

n∑
a=1

(X ia − X̄ i)2
n∑

a=1
(X ja − X̄ j)2

] 1
2

(1)

rS (X
i,X j) , 1−

6
n∑

a=1
(Qia − Q

j
a)2

n(n2 − 1)
(2)

rK(X
i,X j) ,

n∑
a=1

n∑
b=1

sgn(X ia − X
i
b) sgn(X

j
a − X

j
b)

n(n− 1)
. (3)

B. DEFINITION OF APPMCC, KCC AND AKT
For any two channel signal from the data matrix X, we can
obtain one of three classical correlation coefficients. Then,
corresponding to the definitions of (1) − (3), we can obtain
three correlationmatrices, each with sizem×m. By averaging
these matrices without the diagonal elements, three concor-
dance coefficients, namely APPMCC (ωP below), KCC (ωS
below) and AKT (ωK below), repsectively, can be defined
as [7]:

ωP (X) ,

∑m
i6=j rP (X

i,X j)

m(m− 1)
(4)

ωS (X) ,

∑m
i6=j rS (X

i,X j)

m(m− 1)
(5)

ωK(X) ,

∑m
i6=j rK(X

i,X j)

m(m− 1)
. (6)

C. MULTIVARIATE CONTAMINATED GAUSSIAN MODEL
Let {X ia,X

j
a}
n
a=1 be independent and identically distribution

(i.i.d.) data pairs from the ith and jth rows of the data matrix
X. Assume that the joint probability density function (pdf) of
X i and X j obeys the following form [24]

(1− ε)N (µi, µj, σ 2
i , σ

2
j , ρij)+εN (µ′i, µ

′
j, λ

2
i σ

2
i , λ

2
j σ

2
j , ρ
′
ij)

(7)

where 0 ≤ ε � 1, µi = µ′i, µj = µ′j, λi � 1, and
λj � 1. Under this model, the parameters ρij represents
association information of interest; whereas the parameters
ε and ρ′ij represents undesired interferences. Our purpose is
thus to investigate the robustness of AKT against the inter-
ference parameters. For convenience, in the following we use
φ(x i, x j) and ψ(x i, x j) to denote the pdfs of the two bivariate
Gaussian components in (7), respectively.
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D. AUXILIARY RESULTS
Lemma 1: Assume that Z1,Z2,Z3,Z4 follow a quadri-

variate normal distribution with zero means and correlation
matrix R = (%rs)4×4. Define

H (t) ,

{
1 t > 0
0 t ≤ 0

(8)

Then, the orthant probabilities can be defined as

P01(Z1) = E{H (Z1)} =
1
2

(9)

P02(Z1,Z2)=E{H (Z1)H (Z2)}=
1
4

(
1+

2
π
sin−1 %12

)
(10)

P03(Z1,Z2,Z3) = E{H (Z1)H (Z2)H (Z3)}

=
1
8

1+
2
π

2∑
r=1

3∑
s=r+1

sin−1 %rs

 (11)

P04(Z1,Z2,Z3,Z4) = E{H (Z1)H (Z2)H (Z3)H (Z4)}

=
1
16

1+ 2
π

3∑
r=1

4∑
s=r+1

sin−1 %rs+W (R)


(12)

where

W (R)=
4∑
`=2

4
π2

∫ 1

0

%1`

[1− %21`u
2]

1
2

sin−1
[

α`(u)
β`(u)γ`(u)

]
du

(13)

with

α2 = %34 − %23%24

− [%13%14 + %12(%12%34 − %14%23 − %13%24)]u2

α3 = %24 − %23%34

− [%12%14 + %13(%13%24 − %14%23 − %12%34)]u2

α4 = %23 − %24%34

− [%12%13 + %14(%14%23 − %13%24 − %12%34)]u2

β2 = β3 = [1− %223 − (%212 + %
2
13 − 2%12%13%23)u2]

1
2

γ2 = β4 = [1− %224 − (%212 + %
2
14 − 2%12%14%24)u2]

1
2

γ3 = γ4 = [1− %234 − (%213 + %
2
14 − 2%13%14%34)u2]

1
2

Proof: It is trivial to obtain the first statement (9).
The results (10)−(12) have been established in [31]–[33],
respectively. �

III. STATISTICAL PROPERTIES OF AKT UNDER
MULTIVARIATE CONTAMINATED GAUSSIAN MODEL
In this section, we establish our major theoretical results
with the assistance of Lemma 1. Specifically, we derive the
expectation and variance of AKT under the multivariate con-
taminated Gaussian model (7).

Theorem 1: Let {X ik ,X
j
k}
n
k=1 be i.i.d. samples generated

from the model (7). Then, the expectation of AKT is

E(ωK)=
2

m(m− 1)π

m∑ m∑
i6=j=1

[
(1− ε)2 sin−1 ρij

+ 2ε(1− ε) sin−1
ρij + λiλjρ

′
ij√

1+ λ2i
√
1+ λ2j

+ ε2 sin−1 ρ′ij
]
. (14)

Proof: See Appendix A. �
Corollary 1: When λi→∞ and λj→∞, the expectation

of AKT can be simplified as

E(ωK) =
2

m(m− 1)π

m∑ m∑
i6=j=1

[(1− ε)2 sin−1 ρij

+ ε(2− ε) sin−1 ρ′ij] (15)

Moreover, for ε = 0, which means that the multivariate
contaminated Gaussian model reduces to the multivariate
Gaussian model, it follows that

E(ωK)|ε=0 =
2

m(m− 1)π

m∑ m∑
i6=j=1

sin−1 ρij (16)

Proof: Letting λi→∞ and λj→∞ in (14) along with
some simple algebras, we can easily obtain the expression
of (15). Substituting ε = 0 into (15) produces the statement
of (16). �
Theorem 2: Let {ξ i`, ξ

j
`}
n
`=1 and {ζ

i
`, ζ

j
`}
n
`=1 be n i.i.d. sam-

ples generated from the bivariate normal distribution φ and
ψ , respectively. Then, under the MCGM (7), the variance of
AKT is

V(ωK) =
16(I1 + I2 + I3)

m2(m− 1)2n2(n− 1)2
− [E(ωK)+ 1]2 (17)

where

I1 = 2
m∑ m∑
i6=j=1

28∑
`=1

α`β` P04(A`) (18)

I2 = 4
m∑ m∑ m∑
i6=j6=k=1

28∑
`=1

α′`β
′

` P
0
4(B`) (19)

I3 =
m∑ m∑ m∑ m∑
i6=j6=k 6=l=1

32∑
`=1

α′′`β
′′

` P
0
4(C`) (20)

with α`-, β`-, and A`-terms in (18) defined in Table 1, α′`-,
β ′`-, and B`-terms in (19) defined in Table 2, α

′′

` -, β
′′

` -, and
C`-terms in (20) defined in Table 3, and E(ωK) defined
by (14).

Proof: See Appendix B. �
Remark 1: Because of the complicated integrals involved

in the calculation of P04-terms in (18)–(20), the variance of
AKT can not be expressed into elementary functions in gen-
eral. However, simplifications are available for various par-
ticular cases, as demonstrated in the following corollaries.
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Corollary 2: When λi→∞ and λj→∞, the variance of
AKT can be simplified as

V(ωK) =
8(n− 2)(1+ 8ε)(1− ε)2

9n(n− 1)m(m− 1)
+

4
n(n− 1)m(m− 1)

+
31

n(n− 1)m2(m− 1)2
+

16(32 +33)
n(n− 1)m2(m− 1)2π

−
32(n− 2)(1− ε)3

n(n− 1)m2(m− 1)2π2

m∑ m∑
i6=j=1

(
sin−1

ρij

2

)2
+

16(1− ε)3 [(2n−3)ε − 1]
n(n− 1)m2(m− 1)2π2

m∑ m∑
i6=j=1

(
sin−1 ρij

)2
−

8(2n− 3)(1− ε)4

n(n− 1)m2(m− 1)2π2

×


 m∑ m∑

i6=j=1

sin−1 ρij

2

−2
m∑ m∑
i6=j=1

(
sin−1 ρij

)2
−

16ε(1− ε)2 [(2n− 3)(1− ε)+ 1]
n(n− 1)m2(m− 1)2π2

×

m∑ m∑
i6=j=1

sin−1 ρij
m∑ m∑
i6=j=1

sin−1 ρ′ij

−
8ε2

[
2(n− 2)(ε2 − 3ε + 3)+ (2− ε)2

]
n(n− 1)m2(m− 1)2π2

×

 m∑ m∑
i6=j=1

sin−1 ρ′ij

2

(21)

where

31=

m∑ m∑ m∑ m∑
i6=j6=k 6=l=1

{
2(1−ε)2W (C1)+2ε2W (C2)

+ 4ε(1−ε)W (C3)+ 4(n−2)
[
(1−ε)3W (C5)+ε3W (C6)

]
+ 4(n− 2)(1− ε)ε [(1− ε)W (C7)+ 2εW (C11)]

}
+ 16(n− 2)

m∑ m∑ m∑
i6=j6=k=1

[
(1− ε)3W (B5)+ε3W (B6)

+ 2(1− ε)ε2W (B11)
]

+ 8(n− 2)ε2
m∑ m∑
i6=j=1

[εW (A6)+2(1− ε)W (A11)]

32= (1− ε)2(m− 2)
m∑ m∑
i6=j=1

sin−1 ρij

and

33=ε(m− 2)
[
2(n− 2)(1− ε)2+2− ε

] m∑ m∑
i6=j=1

sin−1 ρ′ij.

Proof: Letting λi → ∞ and λj → ∞ in (17),
we can arrive at (21) with some tedious but straightforward
algebra. �

Corollary 3: When ε = 0, viz., the multivariate con-
taminated Gaussian model reduces to pure Gaussian model,
the variance of AKT becomes

V(ωK)|ε=0=
11−12+13+14

m2(m−1)2n(n−1)
+

4(2n+5)
9m(m−1)n(n−1)

(22)

where

11 =
16(m− 2)

π

m∑ m∑
i6=j=1

sin−1 ρij

12 =
8(2n− 3)
π2

 m∑ m∑
i6=j=1

sin−1 ρij

2

13 =
32(n− 2)
π2

m∑ m∑
i6=j=1

[(
sin−1 ρij

)2
−

(
sin−1

ρij

2

)2]

14=

m∑ m∑ m∑ m∑
i6=j6=k 6=l=1

[2W (C1)+ 4(n− 2)W (C5)]

+ 16(n− 2)
m∑ m∑ m∑
i6=j6=k=1

W (B5).

Moreover, when ρij = ρ, the above expression (22) can be
further simplified as

V(ωK)|ε=0,ρij=ρ =
W

m(m− 1)n(n− 1)

+
4(2n+ 5)

9m(m− 1)n(n− 1)

+
16(m− 2) sin−1 ρ
m(m− 1)n(n− 1)π

−
8(2n− 3)

(
sin−1 ρ

)2
n(n− 1)π2

+
32(n− 2)

[
(sin−1 ρ)2 − (sin−1 ρ2 )

2
]

m(m− 1)n(n− 1)π2

(23)

where

W = (m− 2)(m− 3) [2W (C1)+ 4(n− 2)W (C5)]

+ 16(m− 2)(n− 2)W (B5).

Furthermore,

V(ωK)|ε=0,ρ=0 =
4(2n+ 5)

9m(m− 1)n(n− 1)
(24)

V(ωK)|ε=0,ρ=1 = 0. (25)

Proof: Substituing ε = 0 into (17) and using (10)−(12)
along with some tedious derivations, we can obtain the
expression (22). Similarly, the results (23), (24) and (25)
follow readily by replacing the parameters in (22) with the
corresponding counterparts. �
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TABLE 1. Quantities for evaluation of E(H2
ij ) in (18).

IV. RESULTS AND DISCUSSION
In this section, we 1) verify the correctness of Theorems 1
and 2 by Monte Carlo simulations, 2) compare AKT with
APPMCC and KCC, in terms of RMSE, and 3) present
an example of multi-channel signal detection in the pres-
ence of additive impulsive noise (under the MCGM). In the

sequel, the notation h = h1(4h)h2 stands for a list of
h varying from h1 to h2 with an increment of 1h. The
number of Monte Carlo trials is set to be 105 for purpose
of accuracy. For convenience, we set all the parameters ρij
and ρ′ij equal to ρ and ρ′, respectively, unless otherwise
stated.
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TABLE 2. Quantities for evaluation of E(Hij Hik ) in (19).

A. VERIFICATION OF THEOREM 1 AND THEOREM 2
The correctness of the expectation and variance of AKT under
MCGM (7) for small samples are verified in FIGURE 1 and
FIGURE 2, respectively. In these two figures, the parameters
are set to be ε ∈ {0.02, 0.08}, ρ′ ∈ {0, 1}, ρ = 0(0.1)0.9 and
m ∈ {2, 3, 4}. Good agreements are observed between the
simulation results and the theoretical counterparts. Moreover,
we also verify the correctness of Theorems 1 and 2 in some
scenarios where ρij and ρ′ij are unequal. From TABLE 4,

good agreements between simulation results and theoretical
counterparts are again observed.

B. COMPARATIVE RESULTS OF RMSE
For ε = 0 and ρij = ρ, the MCGM degenerates to a Mul-
tivariate Gaussian Model with all the correlation coefficients
being ρ. In this case, it is of interest to estimate the parent
correlation coefficient ρ based on the three concordance
correlation coefficients, namely ωP , ωK and ωS in (4)−(6),

159182 VOLUME 7, 2019
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TABLE 3. Quantities for evaluation of E(Hij Hkl ) in (20).

respectively. It is well known that [26], as n large,

E(rP (X i,X j)) = ρ, (26)

E(rS (X i,X j)) =
6
π
sin−1

ρ

2
, (27)

E(rK(X i,X j)) =
2
π
sin−1 ρ. (28)

Then, from (4)−(6), we have

E(ωP ) = ρ, (29)

E(ωS ) =
6
π
sin−1

ρ

2
, (30)

E(ωK) =
2
π
sin−1 ρ. (31)
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FIGURE 1. Verification of (14) in Theorem 1 for n = 10, λi = λj = 105. From top to bottom, each row corresponds to a different number of channels
m ∈ {2,3,4}, respectively; whereas from left to right, each column corresponds to theoretical and observed values of E(ωK) with different parameter
settings. Good agreements are observed between theoretical results (solid lines) and simulation counterparts (circles).

TABLE 4. Verification of mean and variance of AKT for distinct ρij and ρ′

ij , where n = 10, ε = 0.08, λi = 100, λj = 200.

Then, it is reasonable to construct three estimators of ρ by
inverting (29)–(31), namely,

ρ̂P , ωP , (32)

ρ̂S , 2 sin
(π
6
ωS
)
, (33)

ρ̂K , sin(
π

2
ωK). (34)

Given the definitions of ρ̂, it is of interest to compare their
performance in terms of RMSE, which is

RMSE ,
√
E(ρ̂ − ρ)2. (35)

TABLE 5 lists the results of RMSE for ρ̂P , ρ̂S and ρ̂K
defined in (32)–(34), respectively, under the MCGM

(1− ε)N (0, 0, 1, 1, ρ)+ εN (0, 0, 1010, 1010, ρ′) (36)

where ε ∈ {0.02, 0.04, 0.06, 0.08}, ρ′ ∈ {0, 0.9} and ρ =
0(0.1)0.9, and the number of channels m = 4. It appears
that 1) the RMSEs of ρ̂P are much larger than ρ̂S and
ρ̂K, meaning its poor performance under the MCGM, 2) the
RMSEs of ρ̂S and ρ̂K decrease with the increasing ε, 3) ρ̂S
outperforms ρ̂K for ρ small, and 4) ρ̂K outperforms ρ̂S for ρ
large.
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FIGURE 2. Verification of (17) in Theorem 2 for n = 10, λi = λj = 105. From top to bottom, each row corresponds to a different number of
channels m ∈ {2,3,4}, respectively; whereas from left to right, each column corresponds to theoretical and observed values of V(ωK) with
different parameter settings. Good agreements are observed between the theoretical results (solid lines) and simulation counterparts
(circles).

TABLE 5. RMSE for three estimators for n = 100, λi = λj = 1010, ε = {0.02,0.04,0.06,0.08} and ρ′ = {0,0.9}.

C. AN EXPAMPLE OF MULTI-CHANNEL SIGNAL
DETECTION

As mentioned in Section I, the multi-channel signal detec-
tion is a frequently encountered problem in radar, sonar or
communication, which can be mathematically modeled

as

X ia = θsa + N
i
a (37)

where 1 ≤ i ≤ m, 1 ≤ a ≤ n, sa is a Gaussian random signal
of length n to be detected, {N i

a}
n
a=1 is i.i.d. noise following
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FIGURE 3. Comparison of ROC curves for ε = 0 and ε = 0.06. From top to bottom, three columns correspond to different ρ ∈ {0.0,0.5,0.9},
respectively; whereas from left to right, two rows correspond to ε = 0 (normal case) and ε = 0.06, respectively. Here the parameters
λi = λj = 100, m = 4 and n = 100.

the MCGM. Our purpose is to determine the existence of the
random signal sa. Then, the signal detection problem in (37)
can be cast into the following hypothesis test{

H0 : θ = 0
H1 : θ 6= 0

(38)

base on APPMCC, KCC and AKT. We use the popular
receiver operating characteristic (ROC) curve as a figure of
merit to compare the performances with respect to APPMCC,
KCC and AKT.

FIGURE 3 illustrates the ROC curves of AKT, APPMCC
and KCC, corresponding to three scenarios with ρ ∈

{0, 0.5, 0.9}, respectively, n = 100, m = 4, θ = 0.4,
ρ′ = 0.5, and λi = λj = 100. We can observed that, when
ε = 0 (top row),
• APPMCC, having the highest ROC curves, performs the
best,

• AKT and KCC, having almost identical ROC curves
(only slightly lower than those of APPMCC), perform
comparably well;

when ε = 0.06 (bottom row),
• AKT, whose ROC curves sit on the top, performs the
best,

• KCC, whose ROC curves lie in between those of AKT
and APPMCC, performs the second,

• APPMCC, whose ROC curves are nearly diagonal, per-
forms the worst.

D. CONCLUSION
In this work, we investigated systematically the statistical
properties of the average Kendall’s tau (AKT) under the
multivariate contaminated Gaussian model (Theorems 1 and
2 as well as Corollaries 1 to 3). To gain further insights on
AKT, we also compared AKT with other two concordance
coefficients, namely, the average Pearson’s product moment
correlation coefficient (APPMCC), and Kendall’s concor-
dance coefficient (KCC) in terms of the root mean squared
error (RMSE). Moreover, we also revealed the robustness of
AKT against impulsive noise by an example of multi-channel
signal detection, in terms of the receiver operating character-
istic (ROC) curve. Theoretical derivations and experimental
results suggest that

• under a specific multivariate contaminated Gaussian
model, analytic expressions of the mean and variance of
AKT are available,

• when the noise is pure Gaussian, APPMCC is optimal,
in the context of multi-channel signal detection, whereas
AKT and KCC perform comparably well,

• under the MCGM that simulates impulsive noise,
APPMCC performs far poorly than AKT and KCC,

159186 VOLUME 7, 2019



H. Lai, W. Xu: Statistical Properties of AKT Under MCGM

• both AKT and KCC are robust against impulsive noise,
in terms of RMSE,

• under the MCGM, AKT performs the best in terms of
the ROC curve.

Possessing the above advantages, AKT might play a com-
plementary role to the popular APPMCC and KCC in the
field of multivariate analysis, including multi-channel signal
detection in the presence of impulsive noise.

APPENDIX A
PROOF OF THEOREM 1

Proof: The numerator T of (3) can be simplified to [26]

T = 4
n∑ n∑
a6=b=1

H (X ia − X
i
b)H (X ja − X

j
b)− n

[2] (39)

Then, by the i.i.d. assumption, the above equation becomes

E(T ) = 4n[2]E[H (X i1 − X
i
2)H (X j1 − X

j
2)]− n

[2] (40)

Denote by ϕ(x i1, y
j
1, x

i
2, y

j
2) the joint distribution of

(X i1,Y
j
1,X

i
2,Y

j
2), which can be written as

ϕ= [(1−ε)φ1 + εψ1][(1−ε)φ2 + εψ2]

= (1−ε)2︸ ︷︷ ︸
α1

φ1φ2︸︷︷︸
ϕ1

+ε(1−ε)︸ ︷︷ ︸
α2

φ1ψ2︸ ︷︷ ︸
ϕ2

+ε(1−ε)︸ ︷︷ ︸
α3

φ2ψ1︸ ︷︷ ︸
ϕ3

+ ε2︸︷︷︸
α4

ψ1ψ2︸ ︷︷ ︸
ϕ4

(41)

where ϕ is abbreviated symbol of ϕ(x i1, y
j
1, x

i
2, y

j
2). Write

U i ,
X i1 − X

i
2√

V(X i1 − X
i
2)

(42)

U j ,
X j1 − X

j
2√

V(X j1 − X
j
2)

(43)

Then, with regard to ϕ1, ϕ2, ϕ3, ϕ4, (U i,U j) obeys four
standard bivariate normal distributions with correlations

%1 = ρij (44)

%2 =
ρij + λiλjρ

′
ij√

1+ λ2i
√
1+ λ2j

→ ρ′ij as λi, λj→∞ (45)

%3 =
ρij + λiλjρ

′
ij√

1+ λ2i
√
1+ λ2j

→ ρ′ij as λi, λj→∞ (46)

%4 = ρ
′
ij (47)

Substituting (10) into (40) along with (44)−(47) gives

E(T ) = 4n[2]
4∑
i=1

αi

(
1
4
+

1
2π

sin−1 %i

)
− n[2]

=
2n[2]

π
[α1 sin−1 ρij + 2α2 sin−1 %2 + α4 sin−1 ρ′ij]

(48)

which yields

E(ωK)=
2
m∑ m∑
i6=j=1

[α1 sin−1 %1 + 2α2 sin−1 %2 + α4 sin−1 %4]

m(m− 1)π
(49)

and hence the statement of (14) holds true. �

APPENDIX B
PROOF OF THEOREM 2

Proof: Write

Hij ,
n∑ n∑
a6=b=1

H (X ia − X
i
b)H (X ja − X

j
b) (50)

Then, according to the definition in (6) and statement (39),
we have

ωK =
4

m(m− 1)n(n− 1)

m∑ m∑
i6=j=1

Hij − 1 (51)

which yields

V(ωK) =
16

m2(m− 1)2n2(n− 1)2
V[

m∑ m∑
i6=j=1

Hij] (52)

By the relationship of variance and expectation, we have

V[
m∑ m∑
i6=j=1

Hij]=E[(
m∑ m∑
i6=j=1

Hij)2]−E2[
m∑ m∑
i6=j=1

Hij] (53)

The second term on the right in the above equation can be
determined by Theorem 1, which can be written as

E[
m∑ m∑
i6=j=1

Hij] =
m(m− 1)n(n− 1)

4
[E(ωK)+ 1] (54)

we only need to calculate the first term. Due to the symmetry
in all the summation, it follows that

E[(
m∑ m∑
i6=j=1

Hij)2]=
m∑ m∑
i6=j=1

m∑ m∑
k 6=l=1

E[HijHkl]

=

m∑ m∑ m∑ m∑
i6=j6=k 6=l=1

E[HijHkl]

+ 4
m∑ m∑ m∑
i6=j6=k=1

E[HijHik ]

+ 2
m∑ m∑
i6=j=1

E[H2
ij ] (55)

where

HijHkl =
n∑

a=1

n∑
b=1

n∑
c=1

n∑
d=1

[
H (X ia − X

i
b)H (X ja − X

j
b)

×H (X kc − X
k
d )H (X lc − X

l
d )
]

(56)
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HijHik =
n∑

a=1

n∑
b=1

n∑
c=1

n∑
d=1

[
H (X ia − X

i
b)H (X ja − X

j
b)

×H (X ic − X
i
d )H (X kd − X

k
d )
]

(57)

H2
ij =

n∑
a=1

n∑
b=1

n∑
c=1

n∑
d=1

[
H (X ia − X

i
b)H (X ja − X

j
b)

×H (X ic − X
i
d )H (X jc − X

j
d )
]
. (58)

The quadruple summation in (56) can be decomposed into
n∑

a=1

n∑
b=1

n∑
c=1

n∑
d=1

=

[
ε

n∑
a=1

+(1− ε)
n∑

a′=1

]
×

[
ε

n∑
b=1

+(1− ε)
n∑

b′=1

]

×

[
ε

n∑
c=1

+(1− ε)
n∑

c′=1

]
×

[
ε

n∑
d=1

+(1− ε)
n∑

d ′=1

]
(59)

with the suffixes (a b c d) being generated from the bivariate
normal distribution φ, and suffixes (a′ b′ c′ d ′) from another
bivariate normal distribution ψ .

By expanding (59) according to different suffixes of
(a b c d) and (a′ b′ c′ d ′), we obtain 16 sub-
quadruple summations, which can be further decomposed
into 32 disjoint and exhaustive subsets. In other words,
the statement (56) is a summation of 32 integrals of the form
E(H (Z1)H (Z2)H (Z3)H (Z4)), weighted by the corresponding
constant factor β ′′` and subset cardinality α′′` . Substituting
the corresponding terms tabulated in TABLE 3 into (12),
the expression of (56) can be easily obtained. In a similarly
way, the expressions of (57) and (58) can also be obtained
according to the results presented in TABLE 2 and TABLE 1,
respectively. Combining the results (52)−(58) finally gives
the statement (17). �
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