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ABSTRACT The present work introduced an adaptive beamformer based on a Fibonacci branch
search (FBS) based heuristic algorithm is proposed for uniform linear arrays. The proposed optimization
technique inspired by the Fibonacci sequence principle, designated Fibonacci branch search (FBS), used the
new tree’s fundamental branch structure and interactive searching rules to obtain the global optimal solution
in the search space. The branch structure of FBS is selected by two types of multidimensional points on the
basis of the shortening fraction formed by the Fibonacci sequence; in this mode, interactive global and local
searching rules are implemented alternately to reach optimal solutions, avoiding stagnating in local optima.
The proposed FBS is also used to construct an adaptive beamforming technique as a real-time implementation
to achieve near-optimal performance due to its simplicity and high convergence; the performance of FBS
is compared with that of five typical heuristic optimization algorithms. Simulation results demonstrate the
superiority of the proposed FBS approach in locating the optimal solution with higher precision and further
improvement in the adaptive beamforming performance.

INDEX TERMS Adaptive beamformer, uniform linear arrays, shortening fraction, Fibonacci branch search,

interactive searching rule.

I. INTRODUCTION

As a versatile approach, adaptive beamforming (ABF) has
received considerable attention over the past several decades
and has become a fundamental technique for numerous
applications, including radio astronomy, applied acoustics,
cognitive communications, and medical imaging [1]-[4].
ABF possesses the potential to optimize the radiation
pattern in real time, therein obtaining a larger output
signal-to-interference-plus-noise ratio (SINR) by steering
the main lobe of the radiation towards a desired signal
while placing respective nulls towards several interference
signals [5].

Classic ABF techniques used to extract the respective
array excitation weights are based on two main criteria: the
minimum mean square error (MMSE) and the maximum
signal-to-noise ratio (MSINR) [6]. A typical ABF algorithm
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is the minimum variance distortionless response (MVDR)
based on the maximum signal-to-interference-plus-noise
ratio (MSINR) criterion. The design of this beamformer
involves minimizing the output power subject to the unit
gain constraint to the desired signal [7], [8]. Although the
MVDR beamformer is capable of suppressing the interfer-
ence and improving system reliability, the weights computed
by MVDR are unable to form the deep nulls toward the
interference source in various interference scenarios because
of the nature of this technique. Conventional methods used
to solve this problem are very time consuming and are
unmanageable in ABF applications. A variant of the MVDR
beamformer, also known as the linearly constrained mini-
mum variance (LCMV) beamformer, requires only knowl-
edge of the desired signal direction of arrival (DOA)
to maximize the SINR [9]. However, the low conver-
gence rate of this technique makes it also inappropriate
for real-time applications. Another criterion for comput-
ing the array weights is to minimize the MMSE. One of
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the most widely used MMSE-based adaptive algorithms
is the least mean square (LMS) approach. This method
requires a training sequence of the signal of interest (SOI)
to adjust the complex weights adaptively and minimize the
difference between the array output for forming the opti-
mum array pattern [10], [11]. However, the method exhibits
a high probability of tracking into a local optimal solu-
tion and thus may not be applicable for ABF in harsh
environments. Consequently, the inherent shortcomings of
derivative-based ABF methods have compelled and moti-
vated many researchers to explore meta-heuristics (MH)
and evolutionary methods for overcoming these types of
difficulties.

The main advantage of the evolutionary heuristic algo-
rithms over the classical derived approaches is the former’s
ability to search for the global optimum of the objective func-
tions without using the derivatives of the objective functions.
In addition, MH optimization algorithms do not require extra
iterative derivations or computationally extensive routines
for ABF with objective functions. According to the above,
an enormous number of evolutionary algorithms have been
dedicated to applying several optimization approaches for
ABF problems in recent decades. Approaches such as grav-
itational search algorithm (GSA), particle swarm optimiza-
tion (PSO) and other modified techniques represent a set of
optimization algorithms that have been suggested in recent
decades to solve a variety of ABF problems and address
various issues facing array systems [12], [13]. Many stud-
ies have shown that these algorithms are capable of find-
ing global or strong local optima of nonlinear multimodal
functions with multidimensional solutions [14]. Therefore,
the weights of the beamformer extracted by the optimization
techniques according to the fitness function defined by the
specific criterion can be used to place a maximum beam and
null in an array pattern in specified locations. Compared to
other evolutionary algorithms, PSO is much easier to imple-
ment and achieves better performance; thus, many examples
have been successfully demonstrated and validated due to
the design flexibility of PSO under the framework of ABF
arrays [15], [16].

Although the MH-based ABF algorithm has a lower mathe-
matical complexity than derivative-based and iterative-based
ABF methods, there still exist weaknesses and limitations
to ABF applications. Certain optimization algorithms are
highly dependent on the starting points in the case of a large
number of solution variables [17]. However, the weights of
the ABF are regularly associated with a large number of
array elements, and the excitations of the array elements
are complex, i.e., having both amplitude and phase; hence,
the ABF solution space cannot be very small. In such a case,
the conventional evolutionary algorithm would not really
be applicable to ABF. In addition, the classic optimization
methods are prone to becoming trapped in local minima
and not reaching the global optimum when solving complex
multimodal optimization problems of array weight extrac-
tion, resulting in a suboptimal beamforming performance.
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In addition, most MH algorithms are population-based
optimization techniques that require long execution times
to converge, especially when solving large-scale, complex
ABF engineering problems [18]. In addition, the complex-
ity of implementing the algorithms also results in huge
costs and hardware resource consumptions. Although certain
new optimization algorithms, such as the adaptive multiple-
elite-guided composite differential evolution algorithm
(AMECoDESs), the depth-first search artificial bee colony
(DFSABC), and the adaptive population artificial bee colony
(APABC), provide a relatively excellent performance, their
application to the ABF model has not yet been realized in the
research field [19]-[21].

In consideration of the above-mentioned studies, we pro-
pose a interactive-based random iterative search strategy
called FBS in this paper to address complicated optimization
problems for ABF. The concept of the proposed FBS is
defined from two aspects. The first aspect is the generation
principle of the Fibonacci branch architecture. The estab-
lishment of the branch structure in FBS is built upon the
optimization process of the search points, and the shortening
fraction is designed based on the Fibonacci sequence for the
generation of a set of optimization elements consisting of two
types of search points. The optimization endpoint searches for
the optimal solution according to the growth path mode of
the branch. The second aspect of the FBS concept is that the
construction of the interaction iteration applies rules for the
computation of the optimization elements. The iterative rules
are composed of global search and local optimization, which
are the two phases necessary to update the optimization ele-
ments. The global tentative points and local search points are
formulated during two interaction processes, and the points
with the best fitness converge toward the global optimum
in the search space. Simultaneously, computer memory can
be fully utilized to record the optimization process during
the interaction optimization. Global randomness is one of
the important characteristics of FBS, and this mechanism is
implemented for those points that do not readily fall into the
local optimum and that are not able to find a better solution.
The contribute of this paper lies in the fact that we design
the Fibonacci branch optimization structure and propose a
global search and iterative local optimization interaction tech-
nique. In addition, the FBS algorithm proposed here has
been applied to antenna array beamforming in several cases
and compared with other evolutionary optimization-based
techniques on several test functions and the robust ABF.
To the best of our knowledge, the proposed FBS optimization
algorithm is being applied for the first time to antenna array
beamforming problems.

The remainder of this paper is organized as follows:
the ABF system model of uniform linear array (ULA) is
described in section 2. Section 3 presents the proposed FBS
optimization algorithm. Then, Section 4 introduces the robust
ABF based on FBS. The validation of the proposed FBS via
benchmark functions and the simulation results are reported
in section 5. Section 6 gives the conclusions.
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FIGURE 1. Schematic of a linear antenna array processor.

Il. BEANMFORMING SYSTEM MODEL OF ULA AND
PROBLEM STATEMENT

Consider a uniform linear antenna array of M omni-
directional array elements employed in an ABF receiver, one
desired signal and Q uncorrelated interference sources that
impinge on the array at the kth snapshot. This be expressed
by [22]

0
x (k) =S(k)a(9d)+zii (k)a ;) +n (k) (1)
i=1
where s (k) and i; (k) are the desired global navigation satel-
lite system (GNSS) signal and the ith interference source,
respectively, and n (k) denotes the complex vector of the
sensor noise. a () and a (6;) represent M x 1 steering vectors
of s (k) and i; (k), as given by

. ] T
a(ly) = [], e*]ZNchcosed’ e e*ﬂﬂdf(/\’lfl)cosed:l

a(0) = [1,e—f2ﬂ%cos6f,... ,e—ﬂn%(M—ncose,»]T )

where 6; and 6; denote the direction of the desired signal
and the ith interference source, respectively;d, = % is the
inter-element spacing; X is the wavelength of the GNSS
carrier; and T is the transpose operation.

The array beamformer output can be written as

y (k) = wx (k) 3)

where w is the complex beamforming weight vector of the
antenna array and H denotes the Hermitian transpose.
The schematic structure of a linear adaptive antenna array
processor on the front end of the receiver is shown in Figure 1.
The extracted weight vector is chosen to maximize the
output SINR for improving the performance of the ABE,
as given by

052 |wHa (Od)|2

SINR =
wHR W

“
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where ag is the desired signal power, and R;;, is the

interference-plus-noise covariance (INC) matrix.

The adaptive beamformer studied here is an inherently
multi-objective problem since multiple sets of agents w with
amplitude and phase must produce deep nulls towards the
interference location and steer the radiation beam towards
the desired user to achieve the maximum SINR. On the other
hand, all the optimization methods to the designed for ABF
aim at finding the near-global minimum of a mathematical
fitting function called the fitness function; therefore, the best
weight vector is determined according to the fitness value
obtained from the objective function defined based on the
SINR. In the following sections, the proposed FBS optimiza-
tion is applied to adjust the weights such that the fitness
function requirements are achieved to obtain the optimum
SINR.

1il. FIBONACCI BRANCH SEARCH ALGORITHM

A. THE STANDARD PRINCIPLE OF THE FIBONACCI
SEQUENCE METHOD

The famous Fibonacci sequence was first proposed by Italian
mathematician Leonardoda in the 12—13th century, and the
recursion formula is given by [23], [24]

{F]:Fz:l )

Fj=F+F, j=z3
where F; represents the jth general term of the Fibonacci
sequence.

The Fibonacci sequence optimization method makes the
tentative optimization points in the defined interval converge
to the optimal solution by compressing the search interval
proportionally based on the Fibonacci sequence term. It has
been perceived as one of the most effective strategies to solve
one-dimensional unimodal problems [25]. Let us investigate
below how the optimization method using the Fibonacci
sequence works for a unimodal continuous function in an
interval for a minimization problem. Suppose a unimodal
f (x) function defined on the interval [A, B]. Initially, the
technique starts with a choice for two feasible points, x| and
X1, where x; < X in the given range for the first iteration.
Then, it is necessary to reduce the initial box of the range to a
sufficiently small box region including the minimum solution
of f (x) (through an iteration process) since the interval in
which the minimum lies can be narrowed down, provided
the function values are known at two different points in the
range [26].

Let x,, and X, denote the new points over the range [A,, B, |
to be chosen for shortening the length of the interval at the pth
iteration involving the optimal point. Hence,p = 1,2, ..., N,
where N represents the maximum number of iterations, and
the Fibonacci algorithm can be executed as follows.

Step 1 Initialization

Choose [A1, B1] = [A,B] and take p = 1. Whilep < N,
do
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FIGURE 2. Basic structure of the proposed FBS.

Step 2 Calculate the iterative points according to the short-
ening fraction 2 formed by the Fibonacci sequence

F17+l
F
xp =Ap+<1—F” )(B,,—A,,),
p+1
- F
Xp =Ap+ - (Bp - AP) (©6)
Fp+1

Step 3 Find the values f (x,) and f (X,) using the new
points

Step 4 If f (x,) < f (%), then Apy1 = Ap, Bpy1 = %p;
otherwise, Apy+1 = Xp, Bpy1 = Bp

Step 5 Set p = p + 1. Then, go to step 1 and determine
whether to stop the iteration

The minimum point of f (x) can be reached through the
above steps due to the convergence trend of the tentative
points and the linear convergence quality of the Fibonacci
optimization strategy.

B. THE BASIC STRUCTURE OF THE PROPOSED FIBONACCI
BRANCH
The standard Fibonacci strategy cannot efficiently solve
multi-variate problems and reliably perform the optimum
fitness evaluation of multimodal functions [27]. This is in
contradiction to classic heuristic optimization algorithms.
The FBS algorithm proposed in this paper is used to overcome
these defects while avoiding a loss of the optimal search
trajectories by using search elements with dendritic branch
structures and interactive searching optimization rules.

The basic structure of FBS expanded to a multi-
dimensional space D can be illustrated as follows:

where X4, Xp and X¢ are the vectors in D-dimensional
Euclidean space. X4 and Xp represent the endpoints of
the search element satisfying the optimization rule, and X¢
denotes the segmentation points that can be determined from
the search rule. A proportion of the vectors can be calculated
as follows:

IXc =Xall _ X =Xcll _ Fp
IXg —Xall  IXc —=Xall  Fppi

)

where F), is the pth Fibonacci number.

Considering that the multimodal function with multiple
variables f (X) is to be minimized in the search space, the fit-
ness function value calculated by the endpoints in the struc-
ture should be evaluated as

f(Xy) < f(Xp) (8)

Then, the coordinate computation formula for segmentation
point X¢ can be written as

Xc =Xa + Fp/Fpy1 (X — Xa) 9
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C. FIBONACCI BRANCH SEARCH OPTIMIZATION
ALGORITHM
The FBS optimization algorithm introduced in this section
is based on a framework that is built around the concept of
endpoints and segmentation points in a basic structure. Com-
bining with the basic structure, the process of searching for a
global optimum solution, which can also be regarded as estab-
lishing a search element in FBS, is divided into two stages:
the local optimization process and the global search process,
which are the two corresponding interactive rules. Let G
denote the point sets of the objective function to be searched
in the current processing phase, and set |Gl,,, = Fp,i =
1,2,---, N. ||, represents the total number of points in the
set, where N is the depth of the Fibonacci branch. The fitness
values of the endpoints X4 and Xp are initialized using the
interactive optimization rules; then, the segmentation points
X can be obtained from equation (9). By comparing the
fitness values of each point in the structure, we can obtain
the best fitness value corresponding to the closest optimal
solution. In the next optimization phase, the optimal point
with the best fitness value is provided in the first position of
the set, and the points corresponding to a suboptimal fitness
are arranged below the optimal point in order from best to
worst. Throughout the above operations, the point set G can
be updated in every optimization phase towards growing the
Fibonacci branch and global optimization in the search space
simultaneously.

The two interactive search rules of FBS in the optimization
stage are summarized as follows:

Rule One: Let us consider the endpoints X4 and Xp in the
structure, defined by

{Xa} =Gy = {Xylg = [1., Frl} (10)
D

Xp) = {XXe[] [X{;X{:b] (11)
f=1

where G, is the search point space set in the pth iteration, X,
are the points in set G, and q is the sequence number lying on
the interval between 1 and the pth Fibonacci number. X, take
all the points from G, of the pth iteration. The other endpoints
Xp take random points in the search space, where the number
of Xp is equal to Fp. D is the dimension of the points, and X],:b
are the upper and lower bounds of the search points. Given
that V X € {Xp}, the component x of the vector X is a random
variable that satisfies a uniform distribution over the interval
[Xi, Xup], and the probability distribution of the component
can be written as

1

P(x) =U X, Xup) X, —Xg (12)

Using the given endpoints X4 and Xp, we can determine the

segmentation points Xg in the first global search stage by
equation (11).
Rule Two:

Suppose that Xpeg is the optimal solution corresponding

to the best fitness value of the search space in the current
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(a) The first global searching stage (b) The second local optimization
stage

FIGURE 3. The process of building the Fibonacci branch for the global
optimization.

iteration containing the endpoints and the segmentation
points generated from rule one, as given by

Xbest = BEST (Gp) (13)

where BEST (-) represents the best solution of the set at the
pth iteration.

Then, we set the endpoints X4 = Xpes and obtain the
following:

f Xa) = min{f (Xg).q =11, Fpl} (14)
Xp = {X,1X, € Gp A Xy # Xu} (15)

Hence, the segmentation points Xg; in the second local
optimization stage can be determined based on the endpoints
defined by (14) and (15) using the computing formula of the
segmentation points.

From the two above-mentioned interactive search rules,
new points including the endpoints X4 and Xp and segmen-
tation points Xg; and Xg, are generated in the two opti-
mization stages, and the total number of the points is 3Fp.
Evaluating the cost functions at the new points determines
their fitness. These points are sorted from best to worst based
on their fitness value. The population size of the search
points is chosen as the Fibonacci series; thus, the top best
Fpy1 sets of these points are to be saved, and the remaining
3Fp — Fpy points need to be dropped. After this proce-
dure, the sets of the search space in the current pth iter-
ation are renewed from the saved points, e.g., the saved
points form a new set Gp in the search space for the next
iteration.

The two stages for building the Fibonacci branch for the
global optimization in space are shown in Figure 3.

As shown in Figure 3, the depth of the Fibonacci branch
layer illustrated in the figure is initialized as expected, and the
number of points in each branch layer remains in the sequence
of Fibonacci numbers. The white dashed circle in the fig-
ure represents the search point set of the previous iteration,
the black solid circle denotes the endpoints X4 in the current
iteration, and the global random endpoints Xp are represented
as grey solid circles. Figure 3(a) shows the first global search
stage of the global optimization process. The segmentation
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FIGURE 4. Flowchart of the Fibonacci branch search optimization method.

points Xg1, which are represented by solid-white-lined cir-
cles, are constructed based on the global random points and
X4. The second local optimization stage is illustrated in Fig-
ure 3 (b). Incorporating the best fitness points X4 in the search
space of the current iteration and the remaining endpoints of
X5, the new segmentation points Xg» can be obtained by fol-
lowing the iteration rules. The fitness values of X4, Xp, Xg|
and X are to be evaluated, and the best Fp 1 solutions found
with the optimum objective function evaluations need to be
saved.

D. FLOWCHART OF THE PROPOSED FBS AND
COMPLEXITY ANALYSIS

The basic flowchart of the general procedures for the spe-
cific implementation of the FBS algorithm is shown in Fig-
ure 4, and the corresponding pseudo-code is presented in
Algorithm1.

The proposed above-mentioned FBS algorithm utilizes
interactive global search and local optimization to obtain the
global optimal solution; it can thus take advantage of global
randomness and local convergence to eliminate local minima.
The generated points in each layer of the branch depend on
the optimum elements with the best fitness value in the previ-
ous branch layer, which can ensure that the global optimum
solution in the search space is obtained. The search space is
reduced as the iterative process proceeds, and the reducing
rate is not fixed, therein decreasing from a finite designated
random rate to zero due to the related search randomness
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Algorithm 1 Pseudo-Code of the Fibonacci Branch Search
Algorithm

Initialization
1. Determine the maximum iteration number (N) and
the depth of the Fibonacci branch (R)
Iteration
2. While predefined maximum number of iterations is
not reached
3. While the termination criterion |G| = Fg does
not satisfy the search and optimization phases
4. Choose the search point set G in the defined
space and set the initial number of branch layers F;
5. Calculate the shortening fraction % and gen-
erate Xp and Xy according to rule one
6. Measure the fitness of these points based on the
objective function model and perform the analysis to identify
the optimal points with the best fitness value
7. Take the best points and Xp in the current point
set to generate Xg» from equation (7) of rule two
8. Save the top Fj;1 points and update the set G to
the new saved points for the next branch layer iteration
9.Setj =j+ 1and go to line 3
10. End while
11. Save the optimum solution points of the current
iteration in the search set space and go to line 2
12. End iteration and output the optimal points

property of FBS in the optimization space. Once the optimal
solution is found, the space shortening process is stopped.
An effective way to analyse the proposed FBS algorithm is
demonstrated here in terms of the computational complexity.
The implementation of the FBS is accomplished by the gen-
eration of search elements and search branches, therein con-
sidering a total number of search elements in the optimization
space equal to Ny and the number of components needed for
comparison in the search elements set to N.. Then, the result-
ing computational complexity of the proposed FBS for the

N
optimization operation is O (CyNy (N)?), where Cr = Y F;
=1

is the ultimate total of the components of the search element
in the Fibonacci search branch at the maximum number of
iterations.

From the above complexity analysis of FBS, we find that
the computational complexity of the proposed optimization
algorithm is mainly dependent on the size of the search
element and the maximum number of iterations.

IV. FBS-BASED BEAMFORMER DESIGN AND
IMPLEMENTATION OF ABF WITH PROPOSED FBS

As explicitly described previously, ABF is an effective tech-
nique used to mitigate interference and improve the over-
all SINR performance by altering the radiation pattern of
an antenna array. However, typically, the low nulling levels
toward multiple interference sources and non-globally opti-
mal weight vector are two major drawbacks of the MVDR

VOLUME 7, 2019

beamforming technique [28]. Therefore, the proposed FBS
algorithm is applied to ABF with ULA in this section to
demonstrate the high performance of this technique.

A. ABF MODEL INTEGRATED WITH FBS
THE description of the beamforming model was given in
section 2. Each adaptive beamformer in the model aims
at calculating the complex weight vector that satisfies the
requirement of maximizing the output SINR. In this work,
the proposed FBS incorporated into the beamforming model
will extract the best array excitation weights by maximizing
the objective function based on the SINR.

Eqg. (16) indicates how the ABF design problem is set up
for the FBS-based optimization.

XmF,'ZWm5m=132"'7MaFiSFR (16)

where wy, is the mth excitation weight of the array element,
Xur; is the Fith search point in the mth dimension of the
ith branch layer, M is the total number of ULA, and R is
the depth of the branch. The weights are interpreted here as
the optimization points of the Fibonacci branch in the search
space. The initial population of the weights is determined by
the layer I with F search points, and the weight vectors of
the entire population generated as the search points in the first
layer can be written in the following format:

Wit Wiz - WIE
w21 w22 ce W2F,

Wyr, = . . ) (17)
WMl Wm2 WMF,

where Wy, is a weight vector containing F; agents with
M sensors representing the dimension of the search points,
e.g., every agent will have M weight elements. Fj is the
Ith Fibonacci series chosen as the total number of points
at the first layer of the Fibonacci branch. Each complex
weight of Wyr, in the array element has an amplitude and
a phase. The newly proposed FBS optimization algorithm is
deployed to adjust the current amplitude and phase coeftfi-
cients of the weight factor to provide the maximum beam
pattern towards the desired signals as well as generate deep
nulls toward the undesired signals to achieve the maximum
SINR. Thus, the optimization formulation process of the
ABF problem will attempt to maximize the fitness function
constructed from the perspective of the SINR accordingly for
the calculation of the complex excitation weight using FBS.
In addition, the fitness function designed in this text can be
written in the following form:

P
Fitness_Function (w) = Q—d (18)
> Pi+Pn
where

1 r 1?2
Py = 3E ‘w xd‘ (19)

1 |2
Pi=3E ‘w X; (20)
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Are the power of the desired signal and the power corre-
sponding to the ith interference source, respectively; Py is
the noise power; and x; and x; denote the desired signal and
interference component of the received signal, respectively,
in equation (1).

Then, the design objective function (18) can properly be
stated in the following form:

wlR w
T 0 . 2 T
why 2 Rw+o), wiw

noise

Fitness_Function (w) =

2D

where R; and R are the covariance matrix of the ith interfer-
ence and desired matrix, respectively. The noise variance is
calculated from the value of the signal-to-noise ratio (SNR)
in dB as follows:

0,2 — 107SNR/10 (22)

noise

By maximizing Eq. (21), the optimal excitation weight
corresponding to the minimum level of the interference
sources but with the desired user gain of the beamformer
can be achieved by the proposed FBS algorithm. In addi-
tion, the optimum performance of the weight correspond-
ing to the maximum SINR can be evaluated based on the
best fitness account. The next section of this paper pro-
vides a brief description of the implementation steps for
extracting the weight using the Fibonacci branch search
method.

B. IMPLEMENTATION FLOWCHART OF FIBONACCI
BRANCH SEARCH FOR ABF

In this subsection, in light of the results previously described
in detail, an optimization scheme for the ABF problem
combined with the FBS is presented to increase the maximum
power of the target signal and generate deep nulls for the
interference sources. The basic idea of the design of such an
adaptive beamformer is to utilize the global search and local
convergence capabilities of the efficient search algorithm to
reduce the local minimum problem of the solution to the
weight vector and satisfy the requirements on the created
multi-objective optimization problem from (21) to obtain the
maximum SINR. The general procedures for the implementa-
tion of the Fibonacci branch search method with application
to ABF are presented in Figure 5, where the key steps are
briefly described below.

(a) Choose the depth R of the Fibonacci branch to
determine the population Fg of the top branch layer and
set the maximum number of iterations of the optimization
process.

(b) Initialize the population of the first branch layer F;
and determine the dimension of the weight vectors acting as
search points in space according to the number of elements
of the ULA. Additionally, define the amplitude search space
of the weight within [0, 1] and limit the range of the weight
phase to [—m, 7].

(c) Assign the values to the amplitude and phase of the
weight elements inside the search space for constructing the
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number of ULA
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points for constructing the weight vector Ws |«
acting as the global search points j

Geﬁned the search space for the amplitude and phaseb

Turn the
weight
vectors into
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Set j=j+1 Consider
the fitness
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(16)

Calculate the first set of weight vectors
4 Wsl based on G and Ws using eq.(9)

Fitness

Function
value

gvaluatior

Compute
the fitness
of each
weight

Select the weight Whoest with
maximum fitness value from all the
vectors formed in search space

Whest and the other vector from the constructed weight set

The second set of weight vectors Wiz can be obtained by
according to iterative rule two

The top Fj+1 weight vectors with maximum fitness value for
SINR generated in the optimization stages are saved and the

onstructed set G, are updated to the new saved weight vector;

Termination
criterion |G ,|=Fr
satisfied?

Maximum iteration
number reached?

Output optimum weight
and best fitness value for
maximum SINR

FIGURE 5. Flowchart illustration of the optimization process for ABF
using the Fibonacci branch search method.

initial population of the weight vector set Gy. The weight
element in the vector set Gy constructed using the amplitude
and phase can be expressed as follows:

Wwjq = rand [0, 1] - o/rand[—m. 7] (23)

where the generated weight wj; represents the dth
dimension of the jth individual in the population,
d € [1, M (dim ension of the search space)], j €
[1, Fj (population of the vectors)], and rand [-] denotes ran-
dom value generation in the range.

(d) Take the random amplitude and phase values in the
search space for generating the F; population of the weight
vectors wp, which acts as the global search points.

(e) Set the vector elements of Gy and wg as the endpoints
in equation (9) and compute the first set of weights wg;
according to the iterative rule one.

(f) Calculate the fitness with the object function of (18)
using Gy, wp and wg1; then, give the evaluated results to the
values to find the best weight vector wp,s; with the maximum
fitness value among all the vectors in the space.

(g) Generate the second set of weight vectors based on
the best weight vector wp,;; and the other weights from
the weight space set using equation (9) in iterative rule
two.
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(h) Select the top Fj;; best weight vectors based on the
maximum fitness value in the optimization process, and these
best weights are selected to compose the new population of
the set Gy.

(i) Check the termination criterion Gy, = Fg. If the
termination criteria are not satisfied, then increment j and go
to Step (d); otherwise, stop.

() If the maximum number of iterations is not reached,
repeat the algorithm from step (d); else, report the output
results and terminate.

V. SIMULATION RESULTS

A. VERIFICATION OF THE PROPOSED FBS

To validate and analyse the efficiency and effectiveness of
the proposed FBS, the algorithm is verified in the following
regards in the simulation experiments:

(1) The accessibility to the global optimum of the proposed
search algorithm for multimodal functions with numerous
local optima is revealed by the location history of the search
points in the direction of the optimal point.

(2) The convergence of the FBS is proved and discussed
based on the presented gradient of the iteration curves, which
demonstrated the convergence rate and average fitness of the
chosen benchmark function.

(3) The optimization precision of the solution and other
relevant optimization assessment aspects of the proposed
algorithm are tested on eight representative standard bench-
mark functions, and the results are compared with typical
heuristic algorithms.

The effectiveness can be validated by comparing with clas-
sical optimization methods, including the recently published
GSA algorithm [13], APABC [20], the artificial flora (AF)
algorithm [29], and the bat algorithm (BAT) [30]. The details
of the parameter settings for each heuristic algorithm used in
the experiments are given in Table 1.

All the experimental tests have been implemented in Mat-
lab R2015a and run on the same PC with Intel(R) Core(TM)
CPU 2.8 GHz.

B. VERIFICATION OF THE PROPOSED FBS

1) THE LOCATION HISTORY OF THE SEARCH POINTS IN FBS
FOR LANGERMANN FUNCTION

In this section, the global optimization ability of the proposed
FBS is demonstrated by employing the location history of the
search points during the optimization process for locating the
global optimum solution rather than trapping into local opti-
mization of the benchmark example, with results compared
against the metaheuristic PSO algorithm. The benchmark
function chosen in this section is the Langermann function
with several known local optimal points and one global opti-
mum solution point; this function is taken from [31], [32]
and is summarized in Table 2. As shown in Table 2, two
typical extreme points exist in the function. Extreme point
1 shown in the table is the global optimum solution, and
the extreme point 2 is the local suboptimal solution. The
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TABLE 1. Reference parameters of the algorithms briefly used in this

study.

Particle Swarm

Gravitational Search

Optimization (PSO) Algorithm (GSA) BAT Algorithm (BAT)
Popl}latlon Np=2 Agent number Ng=50 Loudn_ess a=0.8
size 0 reduction
Cogn_mve cl=2 Descen(_:lmg a=20 PopL_llatlon Np=20
ratio coefficient size
Social Initial Pulse
. C2=2 gravitational Go=0.5 reduction y=0.8
coefficient
constant rate
Inertia 0.4~0. Initial _
weight 9 constant Ko=50
Final constant Kf=1

Artificial Flora (AF)

Adaptive population
artificial bee colony

Fibonacci Branch

(APABC) search (FBS)
Original Nested
plants Mp=1 Colony size Cs=20 branch 2
number depth
. _ Total
Lomne 0 Ollrs L
p 8 depth
Learning c2=1. _ Search [Min,Ma
coefficient 2 Scout bees Sb=1 Space x]
. SNmax=2
Maximum Population 5
branching M=50 _op .
size parameter ~ SNmin=1
number

5

TABLE 2. Langermann benchmark function.

Extreme point Extreme point 1 Extreme point 1
local

suboptimal solution

Evaluation in [31] global optimum solution

Langermann /., 2.003,1.006 =-5.1612

. 7,9 =-3
function S

(a) Three dimensional of
Langermann function

(b) Contour plots of Langermann
function

FIGURE 6. Three dimensional and contour plots for the Langermann
function.

three-dimensional Langermann function and contour plots
are illustrated in Figure 6.

The performance of the proposed FBS in terms of the
movement trajectory of the search points scattering around
the best solutions and converging to the optimal point in
the search space for the Langermann function is illustrated
in Figure 7 (b). This figure shows that the FBS model is
able to simulate the position history of the search points
in the three-dimensional and trajectory contour plots over
different iterations. To verify the results, we compare our
algorithm to PSO in the same manner and provide the results
in Figure 7(a). The initial position of the search points in both
FBS and PSO is set at extreme point 2.
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(a).1. Visualization results in three dimensions for the tested Langermann function
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(a).2. Visualization results in contour plots for the tested Langermann function
(a) Behaviour results of the point location history in PSO
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(b).1. Visualization results in three dimensions for the tested Langermann function

50 iterations 200 iterations

1000 iterations

500 iterations
(b).2. Visualization results in contour plots for the tested Langermann function
(b) Behaviour results of the point location history in FBS

FIGURE 7. Location history of the search points in the three-dimensional and contour plots of the Langermann function over for different iteration

numbers.

As shown in Figure 7, the search points tend to explore the
promising regions of the search space and cluster around the
global optima, eventually producing a multimodal Langer-
mann pattern. From the results depicted in Figure 7(a), we see
that, as the number of iterations increases, the points of the
PSO algorithm gradually cluster around extreme point 2 and
proceed towards the local optima; in addition, very few parti-
cles enter the region near the global optimum extreme point 1,
providing further evidence that PSO inherently suffers from
local optima entrapment and stagnation in the search space.
Under the same conditions, it can be seen from the trajectories

160808

and 3D version of the search point, as shown in Figure 7(b),
that although the Langermann function is non-symmetric and
multimodal with different levels of peaks, finding its global
optimum is challenging due to the many local minima in the
search space. Remarkably, FBS is able to remove itself from
the initial local optimum at extreme point 2 and jump out
of the trapped solution in a local optimum point assisted by
the global random searching. It is evident from the location
history of the search points during the process of converg-
ing towards the global optima that the points grow toward
the optimal point from the area of initialization, tending to
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TABLE 3. The details of multimodal benchmark functions (D: dimensions).

No. Function Formulation D  Search Range Global Optima
2 x & X,
i — — s| — [+1 -600,600
F1 Griewank ;4000 ll:[cm(\ﬁ} 10 [ ] 0
D
F2 Rastrigin Y (x? —10cos (27x,) +10) 10 [-5.12,5.12] 0
i=1
D .2 20
F3  Michalewicz2 -Zsin(xl)sin[%] 10 [0,7] -1.8013
i=1
D 2
F4  Rosenbrock 3100(x,, —x2) +(x —1)° 10 [-2.048,2.048] 0
i=1
1 D N 1 D
F5 Ackley -20exp| -0.2 72x,' —exp[fzcos(Zﬂx,)]+20+e 10 [-32,32] 0
nio n'o
D 1
F6  Schwefel 4189829% D~ 3 sin(‘x‘ \z) 10 [-500.500] 0
i=1
D ( kmax kmax
Z( [ak cos(Ziz’bk (x, + 05))])— Dz [ak cos(Zﬂbk (x, x 045))]
F7 Weierstrass AN =0 10 [-0.5,05] 0
a=0.5, b=3, kmax=20
D D
F8 Salomon ~cos| 27 /fo +0.1,[Y X +1 10 [-100,100] 0

gradually scatter around extreme points and moving toward
the best solutions in the search space in both 2D and 3D
spaces over the course of the iteration process. More than
half of the agents had already approached the global optimum
valley after the first 50 iterations and began converging to
the optimum. As the iteration process continued, there were
more agents aggregating at the extreme points and scattering
around the extreme point, strongly attracting towards the
global optimum target region. Eventually, the search points
found the global optimum and converged towards the global
optima. This can be discussed and reasoned considering the
global randomness concepts introduced by the endpoints Xp,
which are generated in rule one of FBS. Furthermore, the
convergence of FBS is guaranteed by the local exploitation
optimization ability emphasized in the other endpoints Xy
of the proposed algorithm. Since the global random points
tend to move from a less fit universe to a more fit universe
through the global search in space, the best universe is saved
and transferred to the next iteration. Consequently, these
behaviours and abilities help the FBS to not become trapped
in local optima and quickly converge to the target point in the
optimizationP process.

The above simulations and discussions demonstrate the
effectiveness of the FBS algorithm in finding the global
optimum in the search space. The convergence performance
and speed of obtaining the global optima of the proposed
algorithm when employing a set of mathematical functions
are to be investigated in the next sections.

2) CONVERGENCE PERFORMANCE OF THE MULTIMODAL
FUNCTION

To confirm the convergence behaviour of the proposed algo-
rithm, in this subsection, we provide the convergence curves
of the objective fitness value of the typical benchmark
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functions obtained for the best solutions so far in each iter-
ation. A large set of complex mathematical benchmark func-
tions to be tested is listed in Table 3. These functions have
many local optima, which make them highly suitable for
benchmarking the performance of the metaheuristic algo-
rithms in terms of optimization and convergence perfor-
mance. The illustrated results are compared against those
of the PSO, GSA, AF, BAT, and APABC metaheuristic
algorithms on the same set of multi-dimensional numerical
benchmark functions. The properties and formulas for these
functions are presented below.

Figure 8 presents the convergence characteristics in terms
of the best fitness value of the median run of each algorithm
for the test functions. Comparing the results and the conver-
gence graphs, among these six algorithms, we observe that
the proposed algorithm has a good global search ability. FBS
achieved better and more accurate fitness results on most of
the multimodal groups than the comparison algorithms; FBS
surpassed all other algorithms on functions 1, 2, 4, 5 and
7 and achieved significantly improved results on functions
5 and 7. The convergence maps also show that FBS always
converges faster than PSO, GSA and BAT but was slightly
slower than APABC and AF; however, the improved perfor-
mance is a good trade-off with the slight sacrifice of converge
speed.

The PSO and GSA algorithms showed poor performance
on complex problems since they miss the global opti-
mum basin when approaching the optimal fitness. Schwe-
fel’s function is a good example since it traps the two
algorithms in local optima, whereas the FBS success-
fully avoids falling into the deep local optimum, which
is far from the global optimum. The APABC and AF
algorithms perform much better than the other compari-
son algorithms, with success rates exceeding 60% on most
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FIGURE 8. Convergence behaviour of the FBS and other optimization algorithms on the 10-D benchmarking functions F1- F8. (a) F1: Griewank; (b) F2:
Rastrigin; (c) F3: Michalewicz2; (d) F4: Rosenbrock; (e) F5: Ackley; (f) F6: Schwefel; (g) F7: Weierstrass; (h) F8: Salomon.

problems. Note that the FBS algorithm in the graphs con-
verges to a global optimum solution with fewer fitness eval-
uations and terminates after no more than 5000 iterations on
functions 1, 3 and 4.

These figures also prove that FBS not only improves the
accuracy of the initially approximated optimum but also
achieves increased convergence speed over the course of the
iteration process, making it converge faster than most of
the other algorithms. The global random property and space
region shortening fraction guarantees a satisfactory conver-
gence speed. The proposed FBS combines a global search
method and local optimization strategy to yield a balanced
performance that achieves better fitness and faster conver-
gence. The global optimization ability and convergence speed
are two crucial parameters of real-time applications, such as
ABF systems; thus, the FBS is highly suitable and efficient
for ABF.

3) MINIMIZATION RESULT OF THE TESTED BENCHMARK
FUNCTIONS

In this subsection, experiments are conducted on the suite
of multimodal functions illustrated in Table 3 to evaluate
six optimization algorithms, including the proposed FBS.
All the test functions are to be minimized, and the relevant
information can be found in [33] and [34] for the standard
benchmark functions. The dimensions of the selected bench-
marking problems F1-F8 are set to 10. Every algorithm runs
1000 times independently to reduce the statistical variance
and achieve reliable results.

The statistical results considering the average value and
the standard deviation function fitness value as well as the
success rate needed to obtain an acceptable solution are sum-
marized in Table 4. In the results shown in Table 4, the mean
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value is smaller, and the performance of the algorithm is
better. The standard deviation is lower, and the stability of the
algorithm is stronger. As seen, for most benchmark data sets,
both the average value and the standard deviation calculated
by the FBS are smaller than those of the other algorithms.
In addition, the proposed algorithm outperforms all other
algorithms on functions 1, 2, 3, 5, 6, and 7 and especially
significantly improves the results on functions 2 and 3. When
the other algorithms find their own best fitness for these
functions, the proposed FBS could still search for the bet-
ter fitness closest to the optimal value. The relatively well-
performing algorithm AF achieved similarly optimal results
to the FBS on functions 1, 5 and 7, and both algorithms
significantly outperform the other variants on this problem.
The APABC also performs well on multimodal problems.
This algorithm performed similarly to the FBS on functions
1 and 5. However, the FBS performs better on substantially
more complex problems when the other algorithms miss the
global optimum basin.

As a result, in terms of global search ability and opti-
mization stability for the benchmarking function, the pro-
posed FBS outperformed all other heuristics algorithms on
the tested functions. Additionally, this table illustrates that
FBS, in comparison to the other algorithms, obtains the
highest percentage and accuracy in reaching the acceptable
solutions on test functions F1, F2, F3, and F5. For the
mean reliability of test functions F1, F3, F5, and F6, FBS
shows the highest reliability, with a 100% success rate and
smallest average errors. This superior performance is due to
the FBS’s interactive updating rule. With the new updating
rule and global randomness, different dimensions may learn
from different exemplars based on the historically optimal
search experience, and the FBS explores a larger search space
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TABLE 4. The comparative and statistical results for benchmarking function problems F1-F8.

Method F1.Griewank F2 Rastrigin F3.Michalewicz2 F4. Rosenbrock
Mean Stev SR Mean Stev SR Mean Stev SR Mean Stev SR
AF 1.73E-08  5.38E-08 100% 2.43E-04 6.93E-05 70% -1.7725E+00 9.16E-06  89% 1.03E-2 4.75E-3 21%
APABC 4.87E-08 4.63E-07 100% 8.18E-04 3.23E-04 59% -1.7232E+00 8.93E-06 72%  1.39E-02 9.47E-03 16%
BAT 9.99E-08 2.51E-07 96%  4.55E-03 2.64E-03 42% -1.6828E+00 3.46E-05 53% 8.37E-2 8.88E-03  12%
PSO 527E-05 3.75E-05  55%  5.19E-02 1.29E-02 14% -1.5202E+00 6.36E-04 27%  8.23E+00 1.90E+00 2%
FBS 2.54E-09 1.47E-08 100% 9.53E-05 2.17E-06 86% -1.8013E+00 7.48E-06 100%  9.98E-03  3.27E-03 29%
GSA 8.43E-07 7.64E-06 87%  1.29E-02 4.37E-03 29% -1.5738E+00 2.38E-04 45%  243E-01 9.34E-02 12%
Method F5.Ackley F6.Schwefel F7.Weierstrass F8.Salomon
Mean Stev SR Mean Stev SR Mean Stev SR Mean Stev SR
AF 1.87E-05 3.84E-05 100% 3.84E-04 1.56E-04 63% 4.73E-07 8.87E-07 100%  1.92E-04  3.53E-04 72%
APABC 5.74E-05 1.57E-05 92%  6.15E-04 8.36E-05 59% 1.65E-07 9.27E-07 100%  3.28E-04  6.25E-04 64%
BAT 1.27E-04 7.34E-04  73%  4.53E-03 4.83E-04 46% 5.08E-06 1.46E-06 97%  6.43E-04 3.74E-04 51%
PSO 6.09E-03  7.28E-04  49%  5.87E-02 3.95E-03 23% 5.27E-06 6.09E-05  62%  5.74E-03  3.68E-03 29%
FBS 4.34E-06 5.74E-07 100% 2.53E-04 7.48E-04 74% 6.77E-09 4.34E-09 100%  7.74E-05  6.25E-06 85%
GSA 9.09E-04 4.37E-05 64% 1.85E-02 6.28E-03  35% 9.99E-05 5.74E-05  83%  2.67E-03  7.43E-03  42%
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FIGURE 9. Comparison of the beampattern performance synthesized by the heuristic algorithms with different SNRs: (a) SNR = —30 dB;

(b) SNR = —10 dB; () SNR = 10 dB.

than the other compared algorithms. Because of this, the FBS
performs comparably to or better than many meta-heuristic
algorithms on most of the multimodal problems studied in
this section.

C. THE PERFORMANCE OF THE FBS IN ABF MODEL
APPLICATION

To demonstrate the benefits of the FBS optimization with
application to ABF, in this sub-section, several groups of sim-
ulation experiments are conducted using Matlab R2015b. The
performance of the FBS-based ABF is evaluated from the fol-
lowing two simulation metric aspects: the beampattern per-
formance of the adaptive antenna array and the steady-state
output SINR of the beamformer system. A uniform linear
array with an inter-element spacing of a half wavelength is
considered in the simulation. The desired signal is in the
form of a QPSK modulation mode with 0° incident azimuth
angle, and three single-frequency interference sources with
an interference-to-noise ratio (INR) of 10 are assumed to
impinge on the antenna array from azimuth directions of
20°, 40°, and —20°. The incident angle of the signals corre-
sponding to the elevation and azimuth in three-dimensional
space and the array flow pattern used in this paper are a
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uniform linear array rather than a planar array; thus, the
elevation of the different incident signals is the same for
the receiving array. Therefore, the desired signal and jam-
mers are all arranged at an elevation of 45°. The simula-
tion environment includes an additive white Gaussian noise
channel (AWGN).

The proposed FBS-based beamforming method is com-
pared with the five previously mentioned conventional
heuristics-based beamforming algorithms: 1) the GSA-based
beamforming method [13], 2) the PSO-based beamforming
method [12], 3) the AF-based beamforming method [29],
4) the APABC-based beamforming method [20], and 5) the
BAT-based beamforming method [30]. The parameters of
all the algorithms are set as in the previous section and
as illustrated in Table 1. A total of 300 repetitions are
implemented and then averaged to obtain each figure of the
results.

1) BEAMPATTERN PERFORMANCE RESULTS

In this subsection, the effectiveness and applicability
of the proposed FBS-based beamformer is investigated
based on the power patterns formed by different types
of metaheuristic-based beamformers. Three groups of
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simulation cases conducted and analysed in terms of various
simulation metrics are considered in this study. The first
simulation example has a different number of interference
sources, and the second case considers a different number of
array elements. The performance with respect to the input
SNR is studied in the third case.

a: SIMULATION CASE ONE: INPUT SNR EVALUATION

We first examine the beampattern performance synthesized
by the FBS and compare it to the other algorithms in terms of
input SNR in this case. A uniform linear array with 6 omni-
directional antenna elements is considered in the simulation.
To investigate the effect of the input SNR at different levels,
we consider three sets of input SNR, i.e., SNR = —30dB,
SNR = —10 and SNR = 10, to demonstrate the valid-
ity of our approach. Figure 9 shows the behaviour of the
beampatterns synthesized by the weight vectors determined
by the optimization algorithms under different SNRs. It can
be seen from the figures that the weight vectors found by
FBS could synthesize the inerratic beampattern with deeper
nulling (with nulling level exceeding —70 dB) towards the
interference sources compared to the other algorithms. The
proposed FBS-based adaptive beamformer suppressed
the jammers in all cases while maintaining the beampattern
gain in the direction of the desired signal. The other algo-
rithms are able to achieve satisfactory interference nulling
performance for the higher SNR level, i.e., SNR = 10. As the
SNR decreases, the comparison beamformers, especially the
PSO-based beamformer, suffer from a performance degrada-
tion of the corresponding metaheuristic-based beampatterns,
and the nulls do not align precisely with the interference
sources. To more clearly illustrate the nulling degrees and
nulling level of each method, the nulling results correspond-
ing to Figure 9 are shown in Table 5. It can be seen from the
table that the improvement of the nulling level by FBS, com-
pared to PSO, which performs the worst among the compared
methods in each case, is 46.79, 52.96 and 71.95 dB. FBS
presents the best performance, and the proposed algorithm
obtains the best performance, with a 50.17% improvement
over AF, which demonstrates the worst performance of all
the algorithms. This indicates that the proposed algorithm is
more stable and finds better solutions with greater precision
in ABF applications.

b: SIMULATION CASE TWO: ARRAY ELEMENT NUMBER
INVESTIGATION

The beampattern performance with respect to the number of
array elements was evaluated in the second case study. Adap-
tive beamformer arrays consisting of 6, 10 and 14 elements
were considered in the simulation experiments. The input
SNR was fixed at —5 dB. The proposed FBS, in comparison
with the other metaheuristic algorithms, is applied to search
for the optimum element phases and amplitude of the uniform
linear array to achieve the target pattern by considering these
three cases with different element numbers. The optimization
results of the beampatterns are illustrated in Figure 10. The
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TABLE 5. Comparison of average nulling level toward interference
sources for different SNR scenarios.

SNR=- SNR=-  SNR=10d

Method 30dB 10dB B
FBS -81.07dB  -95.29dB 17%2 4B
PSO -3428dB  -42.33dB  -45.67dB
GSA -48.67dB  -52.67dB  -58.20dB
BAT -50.29dB  -57.98dB  -59.25dB
APABC -5487dB  -62.72dB  -70.82dB
AF -61.26dB  -67.66dB  -78.32dB

results depicted in Figure 10 show that the proposed FBS
outperforms the other algorithms with the same number of
array elements. This means that FBS provides a superior
performance, especially compared to PSO, since it creates
deeper nulls toward the interference direction while maintain-
ing high power in the desired direction. As the number of ele-
ments increases from 6 to 14, the beampattern formed by the
other methods, particularly for PSO and GSA, deteriorates
and almost fails in steady state. Specifically, the performance
disparity between the proposed algorithm and the compared
algorithms is expected to increase further with a higher num-
ber of array elements. This is due to the increase in the number
of elements, which results in an increase in the search dimen-
sion of the solution, which inherently increases the difficulty
of the optimization problem. In addition, the global search
optimization ability of the FBS algorithm is more suitable for
the multi-dimensional solution of the large array elements in
improving the beampattern performance. Table 6 confirms
the superiority of the proposed method based on specific
nulling levels and nulling degrees. FBS exhibits superior
nulling characteristics compared to PSO, and improvements
in the nulling levels of 57.73, 73.92 and 90.60 dB are achieved
by using FBS in different array element number scenarios.
APABC and AF show almost identical but marginally satis-
factory nulling performances, while FBS achieves a better
ratio, i.e., 46.43%, compared to AF in the best scenario.
The results establish FBS’s suitability as an interference mit-
igation algorithm.

c: SIMULATION CASE THREE: INTERFERENCE SOURCE
NUMBER ASSESSMENT

To fully verify the beampattern performance, different types
of scenarios with multiple interference sources were simu-
lated to validate the proposed approach for ABF applications
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in the last case. A uniform linear array of 12 omni-directional interference sources impinging at 6; = {20°, 40°, 20°, 30°}
antenna elements was adopted in this subsection. All scenar- are considered in the second scenario. Finally, the third sce-
ios have one desired signal at 6, = 0°, while the number nario concerns six interference sources with incident angles
of interference sources changes in each scenario. The first 0; = {20°, 40°, 20°, 30°, 65°, 70°}. In each scenario, the FBS
two target interference sources are assumed to be imping- and other optimization algorithms are applied to find the
ing on the array from 20° and 40°, and the four received optimal excitation vectors that produce a main lobe toward 6
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TABLE 6. Comparison of average nulling level toward interference
sources for different array elements scenarios.

Six Ten Fourteen

Method Elements Elements Elements
FBS -87.28dB  -110.59dB 131.;14dB
PSO -29.55dB -36.67dB -40.84dB
GSA -39.01dB -42.25dB -49.63dB
BAT -42.53dB -49.73dB -58.73dB
APABC -57.03dB -67.62dB -82.95dB
AF -61.09dB -78.83dB -89.76dB

and nulls toward 6;. The graphs shown in Figure 11 represent
the optimized beampattern for all the scenarios studied here.
All the radiation pattern results presented in Figure 11 show
that the FBS-based beamformer is a robust technique capable
of improving the radiation characteristics while outperform-
ing conventional optimized beamformers regardless of the
number of interference signals. The FBS-based beamformer
exhibits a more prominent behaviour regarding the steer-
ing ability and increasing nulling levels in Figure 11 (c),
i.e., the superiority of FBS in scenario 3 is more apparent
than in the other two cases. When the number of interference
sources increases, it is more difficult for the other optimiza-
tion algorithms to enhance the null level in the interference
direction. Therefore, these results demonstrate that the supe-
rior exploratory and exploitive properties of FBS applied to
ABF have resulted in better beamsteering and interference
mitigation performances in all three cases, especially under
multiple interference sources. Table 7 presents the results
of the average nulling levels determined by the different
heuristics-based beamforming algorithms. FBS shows the
best performance. The increase in the nulling level of FBS in
comparison with PSO is 132.57, 121.28, and 66.08 dB. Even
given the relatively high performance of the APABC and AF,
Table 7 further evidences the FBS superiority over APABC
and AF, i.e., the 10.48%, 83.72%, and 65.41% improvements
over AF, which presents a suboptimal performance in all these
cases. Thus, FBS demonstrates a better exploitative ability
than the other compared algorithms in the ABF model.

2) OUTPUT SINR RESULTS

This section will illustrate different scenarios for system out-
put SINR using FBS and other optimization algorithms for
searching for suitable weight vectors to achieve the required
SINR. Numerical simulations to investigate the SINR perfor-
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TABLE 7. Comparison of average nulling level toward interference
sources for different numbers of interference scenarios.

Two Four Six
Method interference interference interference
FBS -161.02dB -142.95B -89.37dB
PSO -28.45dB -21.67dB -23.29dB
GSA -53.73dB -49.65dB -36.04dB
BAT -79.91dB -62.73dB -39.93dB
APABC -92.46dB -69.40dB -47.37dB
AF -145.75dB -77.81dB -54.03dB

mance of the proposed algorithms in terms of useful metric
are carried out. The first two cases are studied with different
numbers of array elements and interference sources. The
remaining case concerns the different INRs of input interfer-
ence in front of a ULA system. The SINR performance of all
the tested algorithms in the results of the figures is measured
by the increasing input SNR value for various simulation
conditions, and the SNR is assumed to vary from —25 dB
to 5 dB (cantered at —10 dB) in 5 dB steps. All cases have
one user at 0°, while the numbers of interference sources and
elements as well as the input INR vary in each scenario.

a: SIMULATION CASE ONE: FOUR INTERFERENCE SOURCES
WITH 20 DB INR CONSIDERING VARYING ELEMENT
NUMBERS

The first case is two interference signals at 20° and 40° with
5 dB INR. The linear arrays are considered to be composed
of 6, 10 and 14 elements. The results of the output SINR
are illustrated in Figure 12. From the graphs, it can be noted
that the proposed algorithm outperforms the other algorithms
for all the array element scenarios and is able to achieve
near-optimal performance over the entire range of input SNR
values. The APABC and AF optimization algorithms yield
suboptimal but higher values of SINR; FBS yields optimal
SINR values consistently in all cases, and the improvements
in the SINR by FBS, compared to the second-best-performing
algorithm in these three scenarios, are 21.04%, 27.62%, and
31.73%. We can also observe that the performance difference
in reaching the optimum weight vectors between FBS and
the other algorithms increases with increasing array element
number in each algorithm, which is consistent with the results
in Section 5.2.1.2. This is due to the increasing search dimen-
sion of the weight vector solution in the array element. In light
of the above, the global search capability of the proposed
FBS algorithm improved the output SINR more so than the
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FIGURE 13. SINR versus SNR of the heuristic algorithms with different INRs: (a) INR = 5 dB; (b) INR = 20 dB; (c) INR = 35 dB.

10 T T ‘ 5

SINR(dB)

OPTIMUM

——PSO
—+—GSA
——BAT
—>—APABC
——AF
—+—FBS
OPTIMUM

OPTIMUM

-10 -5
SNR(dB)

(a)

-15 0

o 5 o s 25 20 -5 -0 5 0 5
(dB) SNR(dB)
(c)

FIGURE 14. SINR performance versus SNR of the heuristic algorithms with different numbers of interferences. (a) One interference; (b) three

interferences; (c) six interferences.

compared metaheuristic-based beamformer in an adaptive
beamformer system.

b: SIMULATION CASE TWO: FOUR INTERFERENCE SOURCES
WITH DIFFERENT INR IMPINGING ON A 6-ELEMENT ARRAY

A ULA consists of 6 monochromatic isotropic elements
receiving four interference signals with different INRs from
20°, 40°, 65 and —70. Three groups of interference signals
with INRs of 5, 20, and 35 dB are established in the different
simulation scenarios. Figure 13 displays the SINR perfor-
mance of these techniques versus the SNR under different
power levels of interference sources by using the proposed
and comparison optimization algorithms. From the results
depicted in Figure 13, we can know that, in general, the
optimization algorithms, including AF, APABC, and BAT,
are able to achieve similar near-satisfactory SINR perfor-
mance to FBS in the situation of INR 5 dB, i.e., the
interference signal with the lowest power. The proposed
FBS achieved improved performance in terms of SINR com-
pared with the other algorithms in all simulations even under
the most severe interference situations when the INR is
30 dB. With increasing interference INR, the SINR perfor-
mance of all algorithms is degraded, and the proposed algo-
rithm presents evident advantages over these algorithms. The
improvement in the SINR by FBS, compared to the subopti-
mal comparison algorithms, is 7.75%, 13.84% and 15.71%.
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TABLE 8. Different number of interfereces for three scenarios.

Scenario One Scenario Two Scenario Three

Interferenc  Inciden  Interferenc  Inciden  Interferenc  Inciden
e t Angle e t Angle e t Angle

1 40 ; i%

1 40 2 20 i :3(5)

3 -45 2 2(5)

Note that the proposed algorithm can achieve more robust
results and suitable precision in ABF for high interference
power levels.

¢: SIMULATION CASE THREE: DIFFERENT NUMBERS OF
INTERFERENCE SOURCES WITH FIXED INR RECEIVED BY
6-ELEMENT ARRAY

To prove the robustness of the proposed beamformer in this
project, the simulations in this case were conducted to val-
idate the effect of the interference source quantity on the
SINR performance. The beamformer is equipped with 6 array
elements, and the INR is fixed to 10 dB for the received
interference signals. Table 8 illustrates the different num-
bers of interference sources and the corresponding incident
angle values of the above-mentioned interference sources.
The SINR performance of the proposed FBS and other
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TABLE 9. Comparison results of the algorithms with 12 array elements.

Algorithm  Maximum iteration ~ CPU time(s) Percentage Improved
FBS 5628 17.26 30.72%
GSA 4271 13.22 10.41%
BAT 6252 19.40 19.53%
AF 4870 15.48 25.82%
PSO 8239 23.63 9.68%
APABC 6134 18.59 21.24%

optimization algorithms for different numbers of interference
signals is shown in Figure 14. As seen from Figure 14, when
there is one interference signal at the receiver, most of the
optimization algorithms can achieve a close-to-optimal SINR
performance by considering the requirement for maximizing
SINR. FBS demonstrates the best improvement, followed by
AF showing a lower SINR, with a 4.56%, 9.84%, and 13.07%
improvement in the diverse scenarios.

As the number of interference signals increases from one
to six, the superior performance advantage of FBS becomes
more evident. The increase in the number of interference
sources increases the difficulty of the optimization problem.
The failure of PSO and GSA to achieve sufficiently high
SINR clearly illustrates their limitations; therefore, the pro-
posed FBS is more versatile and robust than the other opti-
mization methods in ABF applications.

3) MAXIMUM ITERATION AND TIME COMPLEXITY OF THE
ABF SIGNIFICANT MODEL TO ACHIEVE OPTIMUM
PERFORMANCE

In this section, the comparison results of the performed
experiments between the FBS-based beamformer and the five
heuristics-based beamformers are presented in the form of the
maximum iteration number and time complexity in finding
the global optima in the ABF significant model. The percent-
age improvement of the proposed FBS in terms of nulling
level is also illustrated in this part. Each method was applied
to optimize a ULA consisting of isotropic elements. Different
cases with 14, 18, and 22 array elements were simulated to
further validate the proposed approach for real-world large-
array applications. The signal of interest is from 0°, and the
three target interference signals are assumed to be impinging
on the array from 20°, 40° and 70°. The input SNR was fixed
at —5 dB. Under the same computer hardware configuration
in Section 5.1, the average CPU time consumption (in sec-
onds) at key points were measured by the built-in ‘Matlab
Profiler’, which determines the computational complexity
proportions. Each beamforming algorithm runs 100 times
independently to reduce the statistical variance.

160816

TABLE 10. Comparison results of the algorithms with 16 array elements.

Algorithm  Maximum iteration ~ CPU time(s) Percentage Improved
FBS 6892 20.68 44.72%
GSA 5788 17.72 24.46%
BAT 7694 23.95 31.27%
AF 6217 19.24 35.93%
PSO 9823 27.26 21.20%
APABC 7435 21.01 34.72%

TABLE 11. Comparison results of the algorithms with 20 array elements.

Algorithm  Maximum iteration ~ CPU time(s) Percentage Improved
FBS 8920 32.74 60.72%
GSA 7602 28.73 39.46%
BAT 9620 34.89 45.07%
AF 8023 27.30 50.93%
PSO 11831 38.21 32.20%
APABC 9035 33.47 47.70%

The optimization results considering the maximum num-
ber of iterations as well as the time complexity for the signif-
icant ABF model of the proposed FBS and the comparison
algorithms under different numbers of array elements are
listed in Table 9, Table 10 and Table 11.

From the above tables, it can be observed that the pro-
posed FBS achieves the deepest nulling level and optimum
performance of the ABF model in all cases. In addition,
the percentage improvement of FBS for the nulling level is
90% in the first case study, compared to the conventional GA
algorithm, which has the worst nulling performance out of
all comparison algorithms. As the number of array elements
increases, the improvements in the nulling level by FBS,
compared to the conventional GA, increase to 38.89% and
65.04%, as demonstrated in Table 9 and Table 10. This is
due to the increased number of elements generating a greater
search dimension of the solution, which inherently leads to
the greater difficulty of the optimization problem. In addition,
the global search optimization ability of the FBS algorithm is
more suitable for obtaining the multi-dimensional solutions
of large array elements and improving the nulling levels.
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Concerning the convergence performance and the computa-
tional cost, FBS requires far fewer evaluations and lower CPU
time than PSO, BAT, and APABC in the three scenarios, and
FBS presents a more evident advantage over these algorithms
in the large array element cases. This indicates that FBS
requires much fewer function evaluations than the three other
algorithms, as shown in Table 9 and Table 10, since more
array elements results in a larger dimensionality of the weight
vector solution. This requires a greater search time and num-
ber of computations to optimize the beamformer. Although
FBS required slightly more evaluations and higher CPU time
compared to GSA and AF, the percentage improvement of the
nulling level can compensate and provide an acceptable per-
formance for the proposed FBS in the ABF model. Overall,
the FBS approach is quite competitive when compared with
other methods.

VI. CONCLUSION

In this paper, we presented a global optimization heuristic
algorithm called FBS, which is based on the use of the
Fibonacci series, for achieving improved ABF performance.
Interactive global and local search rules were proposed to
reduce the probability of falling into local optima, and the
global randomness characteristic and space region shortening
fraction of this technique guarantee the satisfactory conver-
gence speed of the global optimization process. Numerical
multimodal benchmarking functions were employed to vali-
date the effectiveness of these global optimization algorithms.
We found that the generally FBS achieves a better conver-
gence rate, precision and stability compared to the other
methods. In addition, we devised a specific implementation
architecture based on FBS for the adaptive beamformer. The
amplitudes and phases of the weight vector acting as the solu-
tion were acquired in the search space by FBS, and the beam-
forming results synthesized by the vectors were compared
with typical metaheuristic-based beamforming algorithms to
validate the improved output SINR.

The simulation experiments in Section 5 demonstrate that
the proposed FBS achieves 21.04%, 27.62%, and 31.73%
increased SINR over the suboptimally performing compari-
son algorithms for cases with 6-14 array elements. In addi-
tion, it also achieves significant improvements of 7.75%,
13.84% and 15.71% for three different INR cases. With
respect to different numbers of interference signals, the SINR
percentage improvement by FBS is 4.56%, 9.84%, and
13.07%. Consequently, the proposed FBS is seen as a valu-
able tool for multi-objective optimization and is well suited
for ABF design problems. FBS also seems to be a promising
smart antenna technology based on beamforming. In future
work, FBS will be explored to apply to a more complicated
time-varying situation to the ABF field.
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