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ABSTRACT Vehiclemerging is a complex and tactical decision process.Merging position selection behavior
has been largely ignored in microscopic traffic simulators. Driver heterogeneity has received substantial
attention in recent years; however, few studies have focused on the heterogeneity in merging behaviors.
To account for the heterogeneity among merging drivers during the merging process and to improve the
accuracy of the merging model, a finite mixture of linear regression models was developed for describing the
merging position selection model. BICwas used to determine the optimal number of classes, and Latent Gold
5.0 was used to estimate parameters. Based on the US101 data in the NGSIM project, which were provided
by FHWA, a 3-class linear regression model was developed. The results demonstrate that the variables differ
across the classes, and the sign of each variable may also differ among the classes; hence, the strategies that
are used by drivers for merging position selection differ across the classes. Cooperative lane changing of the
putative leading vehicle was found to have significant influence on the merging position selection behavior;
thus, merging behavior is a two-dimensional behavior that may be influenced by both lateral and longitudinal
factors. Compared with previous studies, the proposed model can naturally identify the heterogeneity among
drivers and is much more accurate; therefore, the proposed model is a promising tool for microscopic traffic
simulation and automatic driving systems or driver assistance systems.

INDEX TERMS Microscopic traffic simulation, merging position selection behavior, finite mixture of linear
regression model, heterogeneity, cooperative lane change.

I. INTRODUCTION
Merging is a type of typical mandatory lane change in which
a vehicle must move from an on-ramp to the main road to
continue following its route [1], [2]. Drivers must complete
their merging manoeuvres in the merging area, which may
result in traffic congestion and even breakdowns [3]–[8].
Traffic management strategies can be used to mitigate traffic
congestion at merging areas. However, their performances
should be evaluated via microscopic traffic simulation prior
to implementation because transportation system field exper-
iments are too expensive and complex in practice. Thus, it is
important to build an accurate merging behavior model for
improving the accuracy of the microscopic traffic simulation
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model and for more accurately simulating the real traffic
conditions.

In previous studies, drivers are always assumed to be
homogeneous and consistent during the driving process,
which raises questions regarding the performance of micro-
scopic traffic simulation models in representing reality
[9]–[14]. Studies have demonstrated wide heterogeneity
among drivers in terms of driving behavior [5], [6], [15], [16].
Different drivers may behave differently under the same traf-
fic conditions and the same driver may even behave differ-
ently under varying traffic conditions. Heterogeneity among
drivers has been studied in macroscopic traffic models in
several studies [17]. Driver heterogeneity has attracted atten-
tion in studies of car-following models [12], [16], [18]–[20].
However, few studies have focused on heterogeneity in lane-
changing models [5], [6], [21].
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The merging process is a sequential decision process that
reflects the dynamic optimization of drivers’ merging strate-
gies by considering changes in surrounding traffic condi-
tions. Previous studies use a sequential two-step model to
describe merging behaviors, which consists of the following
steps: (i) acceptable gap searching and (ii) merging execu-
tion [22]–[24]. The adjacent gaps are continuously compared
with the critical gap, which is defined as the minimum length
of the acceptable gap, to determine whether the merging
drivers would accept the current adjacent gap. The simplified
continuous-comparison process was criticized for disrupting
the continuity of merging tactics and for ignoring the real
merging behavior that is observed in practice [22], [25], [26].
Thus, to better describe the merging behavior, the merging
process can be modelled via three steps, as illustrated in
Figure 1: (i) gap selection, (ii) merging position selection,
and (iii) merging execution or lane changing. During the gap
selection period, a merging driver assesses the available gaps
and chooses to accept or reject these gaps. After accepting a
gap, the merging driver chooses a suitable merging position
and adjusts the speed and relative position according to the
putative leading (PL) and putative following (PF) vehicles
to realize to the chosen merging position. Then, the merging
driver initiates the merging execution and begins moving lat-
erally until the merging vehicle has fully entered the adjacent

FIGURE 1. Merging process.

main lane, after which the driver terminates lateralmovement.
Vehicle merging is a tactical optimization process and the
tactics that are used by merging vehicles will differ in terms
of the steps that are executed according to the scenario [22].

Too much emphasis was placed on the first step of merging
process, i.e., the merging decision, which was the combi-
nation of the gap selection process and merging position
selection process. However, as a tactical process with sev-
eral transitions, among which, the merging position selection
process is one of the most important transition processes. The
ignorance ofmerging position selection process would lead to
a considerable amount of errors in traffic simulation outputs.

The limited existed analysis of merging tactics and merg-
ing driver heterogeneity motivated us to investigate the het-
erogeneity among merging drivers during the process of
selecting the desired merging position. This paper targets on
the second step of the merging process: merging position
selection. The objective of this paper was to use a systematic
method to build a merging decision model which not only can
naturally incorporate and investigate the driver heterogeneity,
but also can produce accurate prediction results that could
contribute significantly to the microscopic traffic simulation.
The main contribution can be summarized as below:

(1) Prove the existence of heterogeneity during among
merging position selection behaviors.

(2) Identify different driving styles and attitudes during
merging process.

(3) Build an accurate merging position selection model.
The remainder of this paper is organized as follows: The

next section presents a literature review. Section 3 describes
the data that are used in this paper. Section 4 describes the
methodology that is used to build a finite mixture of linear
regression models. The results are presented and discussed in
Section 5. Finally, the conclusions are presented in Section 6.

II. LITERATURE REVIEW
A. FRAMEWORKS OF MERGING BEHAVIOR
Gap acceptance is one of the most important theories that are
used in lane changing models. The most important assump-
tion in gap acceptance theory is that a driver changes lanes
when both the lead and the lag gaps in the target lane are
larger than the critical gap. Gap acceptance theory was ini-
tially developed for estimating the capacity of signalized
intersections [27], [28]. Gipps [29] was the first to use gap
acceptance theory to develop a comprehensive framework for
a lane-changing model. Gipps’ framework has been widely
used in freeway merging models [25], [30] and microscopic
traffic simulation software [31]–[33]. Various definitions of
the critical gap were used in these models and software.

Themost prevalent commercial microscopic traffic simula-
tion tools have been criticized for not accurately reproducing
traffic behaviors near merge areas under congestion [34].
Thus, ‘‘forced’’ and ‘‘cooperative’’ lane change models were
proposed for describing distinctive behaviors of vehicles
under congestion [30], [35]. Choudhury et al. [36] proposed
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a framework for merging behavior with latent plans, in which
normal merging, merging with courtesy, and forced merg-
ing were considered. According to Marczak et al. [37], in
this framework only accepted gaps were considered while
rejected gaps were ignored and some of the estimated coeffi-
cients in the model were not significant.

Gap acceptance theory with critical gaps is most widely
used in lane changing models, in which it is assumed that a
driver will accept the adjacent gap only if both the lead and
the lag gaps are larger than the critical gap [26], [36], [38].
However, this is often inconsistent with observations in
practice that vehicles still take lane changing actions when
only the lead or the lag gap, or neither, is larger than the
critical gap [1], [37], [39]. To overcome this shortcoming,
a binary logit model was built by Kita [40] for describing
the probability of merging behavior. Weng and Meng [41]
and Marczak, et al. [37] used the same model to predict
merging decisions in short-term work zone merging areas
and to compare the gap acceptance for merging decision
between two sites, respectively. A mixed probit model was
developed by Weng et al. [42] for describing merging behav-
ior. To account for the effects of time, a time-varying mixed
logit model was built for describing the vehicle merging
behavior in work zone merging areas by Weng et al. [43].
Sun et al. [44] criticized gap acceptance theory for not fully
describing merging behavior due to failure to consider the
rejected gaps. Thus, multi-rejected gaps were considered in
this study. Gu et al. [45] analysed the crash risk at merging
areas based on a multilevel random-parameter logistic regres-
sion model. To facilitate understanding of human driving
behavior, game theory was also applied in the development
of merging models [46], [47]. Recently, data-driven methods,
such as CART, Bayesian network and fuzzy logic models,
were used to build merging models or lane changing models
and satisfactory results were obtained [48]–[52].

However, these works are all based on the two-step sequen-
tial decision framework and regard the gap selection process
and the merging position selection process as a single unified
decision step, which is unrealistic, as discussed in Section 1.
Failure to consider themerging position selection process will
reduce the accuracy of microscopic traffic simulationmodels.

B. MERGING POSITION MODELS
To investigate the merging position selection behaviors, stud-
ies used field data or driving simulators to analyse merging
positions. Polus et al. [53] compared the merging positions
of four acceleration lanes in Israel, which included both
tapered and parallel acceleration lanes. Ahammed et al. [54]
collected field data in Ottawa City, Canada and modelled
the merging position. However, the data were collected only
during off-peak hours. Recently, Weng and Meng [41] built
a merging position model by treating the merging position as
a random variable that followed a lognormal distribution and
considering the traffic density and speed. However, the gap
selection process andmerging position selection processwere
not distinguished in these studies.

Researchers tried to build the merge position selection
models for describing the relative positions between the
merging vehicle and its PL and PF vehicles. Hidas [35] built a
merge position model that considers (1) the location with the
minimum gap distance to the PL vehicle; (2) the location with
the minimum gap distance to the PF vehicle; and (3) the other
locations in between the PL and PF vehicles. In this study, the
merge position was determined by the approaching direction
of the merging vehicle to its target gap. Choudhury et al. [24]
proposed that the desired merge position (in terms of the
distance between the merging vehicle and its PF vehicle)
was linearly related to the gap distance between the merging
vehicle’s PL and PF vehicles. A similar linear model was
presented by Wan et al. [22], in which the routing plans of
surrounding vehicles were considered. In Wan et al. [22],
the merging drivers were arbitrarily classified into original-
gap-targeting vehicles and forward-gap-targeting vehicles
based on whether the merging vehicles selected the original
gap as their target gap. Speed synchronization, acceleration,
and the finalmerging execution behaviors were also analysed.
However, the arbitrary classification might be oversimplified
because the choice between the original gap and forward
gap depended on the surrounding traffic conditions instead of
the drivers’ characteristics and forward-gap-targeting drivers
that had rejected several gaps might behave differently from
those who had rejected fewer gaps. The routing plans of
surrounding vehicles were found to affect the merging posi-
tion selection behavior. However, they were observed by
the researchers instead of the merging drivers. In addition,
the traffic conditions, such as the traffic density, were not
considered in this study. Lane changing vehicles interact
with their surrounding vehicles in both the longitudinal and
lateral directions. However, most previous studies focused on
longitudinal factors, such as gaps and relative speeds, and
none of these studies considered the effects of lateral factors,
such as the lane changing behaviors of surrounding vehicles.
In practice, two successive merging vehicles might select the
same gap and initiate lane changing simultaneously. Vehicles
in the adjacent main lane might change to the inner lane to
make space for merging vehicles, which is called cooperative
lane changing in previous studies [1], [25]. How these lateral
behaviors of surrounding vehicles influence merging behav-
iors was not investigated in the literature. Thus, in this study,
the lateral behaviors of surrounding vehicles were included
in the merging position model.

In recent years, driver heterogeneity has been regarded as
a key element in driver behavior. Heterogeneity has been
considered in macroscopic traffic flow studies [55]–[57], car
following studies [9]–[12], [58] and studies on bicyclists’
running behavior [59]. However, driver heterogeneity has
not been considered in lane changing models. Aggressive-
ness parameters were used in traffic simulation software
packages [32], [33]. The main series of studies that incor-
porate driver heterogeneity was conducted by Ben-Akiva’s
group [23], [36], [60]–[62]. In these studies, a lane change
decision framework that consists of latent (unobservable)
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levels of decision hierarchy was proposed. Driver hetero-
geneity was considered by using an individual-specific latent
variable. However, the driver heterogeneity in searching for a
merging position has never been investigated.

Arbitrary classification and failure to consider driver het-
erogeneity will reduce the accuracy of microscopic traffic
simulation models, which might cause decision-making mis-
takes in traffic management departments when using these
traffic simulation models. Thus, a finite mixture of linear
regression models was introduced in this paper for modelling
the merging position selection behaviors during the merg-
ing process. The finite mixture of linear regression models
utilizes two techniques: clustering and regression analysis.
The unobserved heterogeneity is naturally incorporated into
the merging position selection model and the drivers are
automatically segmented into homogeneous populations. The
proposed finite mixture of linear regression models can
explain the strategies that are utilized in merging position
selection behaviors. The main contributions of this study are
threefold: First, this study develops amerge position selection
model. Second, the heterogeneity in drivers’ characteristics
and merging tactics was considered in this study. Third,
lateral factors, such as cooperative lane changes, are regarded
as influencing factors, which have never been considered in
previous studies.

III. DATA PREPARATION
A. DATA DESCRIPTION
In this study, traffic data that were provided by the Fed-
eral Highway Administration’s Next Generation SIMulation
(NGSIM) project were used to model the merging position
selection behavior. As an open-source dataset, the NGSIM
dataset has been used inmany previous studies and has proved
to be reliable. In the NGSIM project, vehicle trajectory data
were collected from both freeways and urban roads. In this
paper, data that were collected on a segment of southbound
U.S. Highway 101 (Hollywood Freeway) in Los Angeles, CA
are selected [21]. The US-101 section was located between
an on-ramp and an off-ramp, was 640 metres long, and had
five main lanes and one auxiliary lane, as shown in Figure 2.
The vehicle trajectories were collected from 7:50 A.M. to
8:35 A.M. on June 15, 2005. The road section was covered
by eight cameras and the dataset was updated at a resolution
of 10 frames per second (fps) [63]. The dataset has three
data subsets, all of which were collected over 15 minutes.
The collected videos were processed using an object track-
ing algorithm and the coordinates of every vehicle in the
video were recorded. Thus, the NGSIM dataset provides the
coordinates, speed and acceleration of any vehicle at any
instant. To promote the development of traffic engineering,
FHWA decided to make the NGSIM dataset available to the
public, which has contributed substantially to the research of
transportation science.

FIGURE 2. U.S. Highway 101 study corridor from NGSIM [63].

B. DATA PROCESSING
Although the NGSIM data has been proven highly accurate,
it still contains random noise [64], [65]. Thus, the authors
applied the data smoothing technique that was provided by
Thiemann et al. [65] prior to further data analysis. First,
the velocities and accelerations of the vehicles were directly
estimated from the longitudinal positions. Then, the symmet-
ric exponential moving average filter (sEMA), which was
proposed by Thiemann et al. [65], was used to smooth the
locations (both local lateral and longitudinal coordinates),
velocities and accelerations.

In previous studies, the authors found that the local coordi-
nates of three subsets of the US-101 datasets are inconsistent
with one another. Linear regression was performed between
local coordinates and global coordinates for each subset.
Three linear relationships were obtained for each subset:

Localy1 = 0.3209globalx1 − 1.1326globaly1 (1)

Localy2 = 0.3291globalx2 − 1.1334globaly2 (2)

Localy3 = 0.3209globalx3 − 1.1333globaly3 (3)

The R2 values of the three linear relationships are 0.9996,
0.9997 and 0.9997, respectively; hence for the points with
same global coordinates, the three subsets have same local
x-coordinates but different local y-coordinates. In the local
longitudinal coordinate, the upstream edge in dataset 1 is
at 12.275 m in dataset 2 and 10.598 m in dataset 3. Thus,
the three subsets were also unified by using the local coordi-
nates of one of the subsets. For details on the data processing,
one can refer to Ref. [5], [6], [66]

After smoothing, filtering and consistency checking, tra-
jectories of 388 merging vehicles were extracted from the
dataset.
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FIGURE 3. Definition of the merging position.

FIGURE 4. Space segmentation for the analysis of the traffic density.

C. DATA EXTRACTION
In previous studies, the merging position was typically
defined as the location where the subject merging vehicle
initiates lateral movements without oscillation [24], [67].
To identify themerging position, the lateral position should be
used. Most studies determined the merging position based on
the curvature of the lateral position [24], [67]. However, it is
too difficult and arbitrary to identify the correct point of the
curvature. Fortunately, the NGSIM dataset provides not only
the vehicle position information but also the length and width
of the vehicle. Thus, the merging position is defined as the
position where the left front bumper of the merging vehicle
invades the adjacent main lane (as illustrated in Figure 3).
After choosing an acceptable gap, a merging vehicle driver
will select a merging position. The dependent variable d is
defined as the distance from the merging vehicle’s desired
merging position to its PF vehicle (as illustrated in Figure 3),
which is consistent with previous studies [24], [67].

It has been proved that the traffic density has a substantial
influence on the merging behavior [66]. To investigate the
influence of the traffic density on the selection of the merging
position, a cell-based traffic density was introduced in refer-
ence [68]. The weaving section is segmented into N sections
(cells) with equal length (see Figure 4). As described in
Park et al. [69], the cell length should be set as the free-flow
moving distance of vehicles over 1.5 sec, which is the driver’s
perception-reaction time [70]. The free-flow speed is set at
96 km/h, which is the speed limit of US-101. Thus, the cell
length should be set at 40.0 m. For simplicity, the auxiliary
lane and the adjacent lane are segmented into 5 cells with

the same length of 42.4 m (as illustrated in Figure 4). The
traffic density within each cell is aggregated according to
Equation (4):

k = 1000
N
L

(4)

In Equation (4), k (veh/lane/km) is the density of the
influencing cell, N is the number of mainline vehicles on
the adjacent lane within the influencing cell and L (m) is the
length of each cell.

During the merging process, merging vehicles and their
PL and PF vehicles are travelling separately in two lanes.
A merging behavior is a two-dimensional behavior of vehi-
cles, which differs from car following. However, most previ-
ous studies focused on the influence of longitudinal factors,
such as gaps and relative speeds, on merging behaviors and
none of them considered the influence of lateral factors,
such as the lateral movements of surrounding vehicles. It has
been observed in studies that adjacent main lane vehicles
might change to the inside lane to make space for merging
vehicles, which is called cooperative lane changing [1], [25].
However, the lateral interactions in the weaving sections are
highly complicated. In addition to cooperative lane changing,
other surrounding lane changes may influence the merging
vehicle drivers’ decisions. Figure 5 illustrates the 8 possible
lane changing behaviors that may influence the decisions
of merging vehicles, which are also described in Table 1.
Eight dummy variables, namely, LC j

i (i = PL,PF, j =
cooperative, inside, offramp,merge), are introduced to repre-
sent the possible surrounding lane changes in this paper.
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FIGURE 5. Surrounding lane changes during the merging process.

As a consecutive decision process, the gap selection pro-
cess may influence the merging position selection behav-
ior. According to previous studies, the merging decisions
during the merging position selection period differ between
original-gap-target vehicles and forward-gap-target vehicles.
However, this classification is oversimplified, as the number
of rejected gaps of forward-gap-target vehicles ranged from
1 to 16 in the US-101 dataset. Thus, a variable that represents
the number of rejected gaps (NORG) is also introduced in this
paper.

Other factors that have been considered in previous studies
[24], [67] are also considered in this study. The explana-
tory variables that may affect the merging position selection
behaviors are listed in Table 1. In this paper, it is assumed that
merging drivers would choose the desire merging position
after they chose the accepted gap. Thus, the input explanatory
variables were collected at the time that the merging drivers
involved with final accepted gaps.

IV. METHODOLOGY
A. FINITE MIXTURE OF LINEAR REGRESSION MODELS
Finite mixture regression is based on the assumption that
the observed data come from a population with several sub-
populations or groups [71], [72]. The overall population is
modelled as a mixture of the groups using finite mixture
models.

Let Y denote the response vector, which has values in Rd ,
and X denote the explanatory vector, which has values in
Rp. Given data with N observations (xi, yi)(i = 1, . . .N ),
a finite mixture of regression models with K classes has the
form:

h(y|x, ψ) =
K∑
k=1

πk f (y|x, θk ) (5)

πk > 0,
K∑
k=1

πk = 1 (6)

where h(y|x, ψ) is the conditional density of y given X
and θk , πk is the prior probability, θk is the parameter
vector for the density function f given class k , and f is

TABLE 1. Descriptions of explanatory variables.

a univariate normal density with class-specific mean β
′

kx
and variance σ 2

k . The vector of all parameters is defined as
ψ = (π1, . . . , πK , θ1, . . . θK ), where θk = (β

′

k , σ
2
k ).

It is assumed in a finite mixture of linear regression models
that individual drivers are distributed heterogeneously with a
discrete distribution within the population. To satisfy the con-
straints in Equation (6), the probabilities are parameterized
with a multinomial logit form [73]:

πk =
exp(αk )∑K
k=1 exp(αk )

, αK = 0 (7)
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Based on specified individual characteristics, the prior
probabilities can be extended as follows [73]:

πik =
exp(θkzi)∑K
k=1 exp(θkzi)

, θK = 0 (8)

where θK is the vector of class-specific parameters and zi is
the optional set of individual characteristics for observation i.

Data can be segmented according the posterior probability
by assigning each observation to the class with the maximum
posterior probability [74]. The posterior probability can be
calculated as

P(j|xi, yi, ψ) =
πjf (yi|xi, θj)∑K
k=1 πk f (yi|xi, θk )

(9)

The aim of this study is to build a model to predict the
desired merging position. Hence, data collected at the time
that the merging drivers involved with final accepted gaps
were used as the input explanatory variables X and the final
merging position d defined in Figure 3 was used as the
response variable Y.

B. MODEL PARAMETER ESTIMATION
Parameters of the finite mixture of linear regression models
can be efficiently estimated via the expectation-maximization
(EM) algorithm, which is an iterative method that alternates
between the expectation and the maximization steps until
the likelihood of improvement falls under a pre-specified
threshold or a maximum number of iterations have been
conducted [75]. However, the EM algorithm suffers from
slow convergence and a long processing time. Thus, in this
paper, Latent GOLD 5.0 is used to estimate the parameters.
Latent GOLD 5.0 has the advantages of both the EM and
Newton-Raphson algorithms. It uses EM iterations to get
close to the final solution and subsequently switches to the
Newton-Raphson method to complete the estimation [76].

It is not easy to determine the number of classes K , as
K is not a parameter in a convex space and cannot be tested
directly through hypotheses. Entropy-based criteria such as
Akaike’s information criterion (AIC) and the Bayesian infor-
mation criterion (BIC), which are often used to estimate
the relative quality of statistical models for a set of data,
can be used to determine K [73], [77]–[79]. According to
Allenby [80], the AIC tends to unduly favour a model with
more classes for large data samples and the BIC corrects this
bias because it considers the sample size. Thus, in this study,
K is determined by using the BIC:

BICmodel = −2LL + log (N ) γ (10)

where LL is the log-likelihood value, γ is the number of
free parameters to be estimated, and N is the number of
observations in the data. A lower BIC value corresponds to
a more accurate model.

V. RESULTS AND DISCUSSION
A. RESULTS
The finite mixture of linear regression models is fitted with
an increasing number of classes K = 1, . . . , 8. The BIC
values of the resulting model for various numbers of classes
are plotted in Figure 6. The finite mixture of linear regression
models calculates the lowest BIC value at K = 3. Hence,
the optimal number of classes for the model is 3 according to
the BIC.

FIGURE 6. Determination of the number of classes.

The estimation results of the 3-class linear regression
model are presented in Table 2. In this table and in the
following tables, the symbol ∗ denotes that the parameters
are significant at the 95% level. Not all the parameters are
significant at the 95% level in Table 2. To select the model
variables, the backward elimination method is adopted in this
paper. It starts with all candidate variables and evaluates the
model after the deletion of each variable using the overall
Wald statistic, which reflects whether the variable contributes
significantly to the model. This method deletes the vari-
able with least significant Wald statistic and this process is
repeated until all variables’ Wald statistics are significant at
the 95% level. The estimated explanatory variable parame-
ters and the related statistical analysis results are presented
in Table 3. According to Table 3, D, V , 1VPL , 1VPF , Dlead ,
kmain, TypePL , TypePF , LC

cooperative
PL and RRD are retained in

the model.
The probabilities of a merging vehicle driver being

assigned to the three classes, as indicated by the π values
in Table 3, are 36.83%, 32.70% and 30.47%, respectively.
Via Equation (9), each merging vehicle can be classified into
a class and the posterior numbers of drivers in each class
are 199, 89 and 100. According to Table 3, the parameters
of NORG are not significant; hence, the number of rejected
gaps does not significantly influence the choice of merging
position. Therefore, the heterogeneity among the merging
drivers is endogenous rather than due to the gap rejection
behaviors.

The results on variable significance can be easily obtained
from Table 3. The parameters of D are significant in all
three classes; hence, a merging vehicle driver will increase
the distance between the desired merging position and its
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TABLE 2. Model estimation results of the 3-class linear regression model.

TABLE 3. Model estimation results after variable selection.

PF vehicle with the increase of the gap size. This is easy to
understand and is consistent with previous studies [24], [67].
V , 1VPL , and 1VPF are significant in the calibrated model.

However, only 1VPF is significant in all three classes. The
negative sign of the parameters of 1VPL in all three classes
indicates that when a merging vehicle moves faster than its
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PL vehicle, the merging vehicle driver will select a merging
position near its PF vehicle. In contrast to previous studies
[22], [67], [81], 1VPF is significant in Class 2 and V is
significant in Class 1 and Class 2; neither was considered
in the final calibrated model in previous studies [22], [81].
Therefore, the proposed finite mixture of linear regression
models can mine hidden information that may be ignored
in the linear regression models. The negative sign of the
parameter of 1VPF in Class 2 indicates that drivers in Class
2 tend to merge near the PF vehicles when they are moving
faster than their PF vehicles. The signs of the parameters of V
differ between Class 1 and Class 2; hence, there is substantial
heterogeneity among the merging drivers, which has never
been demonstrated in previous studies. The negative sign in
Class 1 and the positive sign in Class 2 indicate that with the
increase of the speed, drivers in Class 1 tend to select merging
positions that are near their PF vehicles, while drivers in
Class 2 tend to choose merging positions that are near their
PL vehicles. RRD is only significant in Class 1. The negative
sign of the parameter indicates that drivers in Class 1 tend to
select merging position that are further from their PF vehicles
when they get closer to the end of the auxiliary lane. Merging
vehicles that choose to merge late in the auxiliary lane are
likely under congested traffic conditions and might accept
smaller gaps. Compared to PF vehicles, PL vehicles are easier
to be observe by merging vehicles. Thus, merging vehicle
drivers must leave sufficient space for PF vehicles so that
they can control the space and relative speed between the
PL vehicles and themselves. The reason why RRD is only
significant in Class 1 is likely that merging vehicles in Class 1
are under more congested traffic conditions and, thus, the
accepted gaps are smaller.
TypePL is only significant in Class 1 and the negative sign

of the parameter indicates that the merging position is closer
to the PF vehicle if the PL vehicle is a heavy vehicle. The
parameters of TypePF are significant in Class 2 and Class 3
and have positive signs, which implies that the merging
vehicle drivers will maintain larger distances from the PF
vehicles to the desired merging positions. It has been proved
that heavy vehicles impose heavier physical and psycholog-
ical effects on the surrounding traffic due to their physical
characteristics (e.g., length and size) and their operational
characteristics (e.g., acceleration/deceleration and manoeu-
vrability) [82]–[84]. Thus, merging drivers tend to maintain
larger distances from heavy vehicles for safety reasons.

The parameters of LCcooperative
PL are significant in Class 2

and Class 3. However, LCcooperative
PL has a negative sign in

Class 2 but a positive sign in Class 3. Hence, when PL
vehicles perform cooperative lane changes to make room
for merging vehicles, drivers in Class 2 will select merging
positions that are closer to their PF vehicles, while drivers in
Class 3 will increase the distances between the desired merg-
ing positions and their PF vehicles. This finding again empha-
sizes the inner-heterogeneity among drivers. The effects of
other surrounding lane changes are not significant in this
model.

The traffic density of the adjacent main lane kmain is found
to be significant in Class 2 and Class 3, with a positive
sign in both classes. Hence, drivers in Class 2 and Class
3 tend to maintain larger distances from their desired merging
positions to PF vehicles. Merging drivers must accept smaller
gaps under congestion and the PL vehicles are easier for them
to observe; thus, they tend to select merging positions that are
further from PF vehicles for safety reasons.

The correlation coefficients R2 for the three classes and
the overall model are 0.9813, 0.5346, 0.9543 and 0.9663,
respectively, which are much higher than those in previous
studies (0.664 for OGT vehicles and 0.584 for FGT vehicles
in Wan et al. [22]). Therefore, the proposed finite mixture of
linear regression models can explain most variances of the
merging positions. The value of R2 for Class 2 is the lowest
value among the three classes; hence, the scenario that is
faced by drivers in Class 2 might be more complicated and
varied than in the other two classes.

The mean values and standard errors of the attribute vari-
ables for each class are calculated and listed in Table 4 to
further demonstrate the overall classification characteristics.

TABLE 4. Mean values and standard errors of related exploratory
variables.

According to Table 4, the related variables in the merging
position selection model differ substantially among the three
classes. The average distance from themerging position to the
PF vehicle in Class 1 is the largest among the three classes,
while the average accepted gap in Class 1 is the smallest
among the three classes. However, the average accepted gap
in Class 2 is the largest among the three classes, while the
average distance from the merging position to the PF vehicle
is the smallest among the three classes. This finding differs
from the finding of previous studies [24], [35] that the merg-
ing position is linearly related to the accepted gap. It also
implies that the proposed finite mixture of linear regression
models can extract the hidden heterogeneity among the merg-
ing drivers in merging position selection behaviors.

The average speed and the average speed difference have
the largest values in Class 2 and the smallest values in Class 1.
In addition, Class 1 has the highest average traffic density
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FIGURE 7. Relations between the merging position and related variables.

and Class 2 has the lowest average traffic density. Thus,
the heterogeneity in the merging position selection behaviors
is likely due to the varied traffic conditions instead of the gap
choice behavior. This finding also supports the conjecture that
RRD is only significant in Class 1 and it is of negative sign
because the merging vehicles in Class 1 were under more
congested traffic conditions and accepted the smallest gaps.

When selecting the merging position, they tend to leave more
space for PF vehicles as PL vehicles are easier to observe.
To better illustrate the differences among the three classes,
Figure 7 plots the relations between the merging position and
related variables in each class. The d values increase with the
increase of the accepted gap in all three classes. However,
the slopes differ substantially among the classes. Similar
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heterogeneities can also be observed in the relations between
the merging position and other related variables in each class.
These figures clearly demonstrate the heterogeneity among
merging vehicle drivers in terms ofmerging position selection
behaviors and strategies.

B. DISCUSSION
The finite mixture of linear regression models automatically
classified the merging drivers into three classes. The identi-
fied three classes differ in terms of characteristics and merg-
ing conditions. The results that are presented above support
the existence of heterogeneity among the merging drivers.
It is demonstrated that the classes of models may differ in
terms of their significant variables, and a variable may differ
in sign among classes; thus, the strategies that drivers use in
merging position selection may differ across classes.

Drivers in Class 1 were under the most congested traffic
conditions and had the smallest accepted gaps and the lowest
speeds. To safely and successfully merge into the main lane,
drivers required more time to adjust their speeds according to
the speeds of the PL and PF vehicles. Thus, drivers in Class 1
try to choose the merging position at the midpoint between
the PL and PF vehicles and the merging speeds are similar to
the speeds of the PL and PF vehicles. In contrast to Class 1,
drivers in Class 2 were under the lowest traffic density and
had the largest accepted gaps and the highest speeds. These
largest accepted gaps gave the merging drivers more space
for adjusting their positions and speeds after entering the
adjacent main lane. Thus, drivers in Class 2 tend to merge
close to the PF vehicle and to maintain the largest relative
speeds among the three classes. It can be seen in Table 4 that
the standard error of d in class 2 is only 6.36, which is much
smaller than those in the other two classes (17.25 and 13.42).
However the standard error ofD in Class 2 is just the opposite.
It means that drivers in Class 2 have a merging strategy that
they are driving much faster than the main lane vehicles and
keep close to the PF vehicle because they choose the largest
accepted gaps. The high discreteness of the accepted gaps of
Class 2 resulted in the the lowest R2 values among the three
classes. The drivers in Class 3 fall in between. The accepted
gaps of Class 3 are slightly larger than those of Class 1 and
are much smaller than those of Class 2. However, the relative
speeds of Class 3 are much larger than those of Class 1.
Hence, drivers in Class 3 are much more aggressive than
drivers in Class 1.

Three vehicles (ID 22386, ID 30676, and ID 11428) were
randomly selected from the three classes, respectively. The
basic variables are listed in Table 5. Figure 8 plots1VPL and
1VPF during the merging process. According to Figure 8,
the vehicle with ID 22386 had a reduced speed difference
at the start of merging process because it is difficult to find
acceptable gaps under congestion. The speed differences of
the other two vehicles at the start of the merging process
were both larger. However, the vehicle with ID 11428 reduced
its speed substantially during the merging process, while the
vehicle with ID 30676 maintained a large speed difference

FIGURE 8. (a) 1VPL and (b) 1VPF during the merging processes of three
selected vehicles.

TABLE 5. Variables of three randomly selected vehicles.

throughout the merging process. According to Table 5 and
Figure 8, the three vehicles exhibit distinct behaviors during
the merging position selection process.

The underlying causes for the heterogeneous merging
behaviors could be both external and internal. For external
causes, the traffic condition is one of the most important ones,
which has been proved in several studies [1], [37], [66], [85].
The significant difference of kmain among the three classes
also provide certain degree of evidence. Driver characteristics
such as aggressiveness, age, driving skill level, are all impor-
tant internal causes. However, limited to the dataset, human
factors cannot be collected in this study.
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The results demonstrate that incorporating heterogene-
ity can dramatically improve the accuracy of the merging
position selection model; hence, the proposed model is a
promising microscopic traffic simulation tool. By collecting
more data, the proposed model can also be used to recognize
various driving styles, which can facilitate the development
of a personalized autonomous driving system or driving assis-
tance system.

VI. CONCLUSION
To investigate the heterogeneity among the drivers in terms of
merging position selection behaviors, the authors presented a
model that is composed of a finite mixture of linear regression
models. The proposed model can naturally incorporate the
unobserved heterogeneity into the merging position selection
model. BIC values are used to determine the optimal num-
ber of classes and the parameters were estimated by Latent
GOLD 5.0. The US-101 dataset in the NGSIM dataset was
used to calibrate the model.

Ultimately, a 3-class linear regression model was built
and significant heterogeneity among merging vehicle drivers
was identified. The results demonstrate that the variables
differ among the classes and the sign of each variable may
also differ among the classes; hence, the strategies that are
used by drivers for merging position selection differ among
the classes. Cooperative lane changing behavior by the PL
vehicle as found to significantly influence the merging posi-
tion selection behavior; thus, merging behavior is a two-
dimension behavior and may be influenced by both lateral
and longitudinal factors. The three classes can be regarded
as conservative, normal and aggressive drivers, which can be
helpful for the further study of driving behavior, microscopic
traffic simulation and car insurance. This study presented a
comprehensive analysis method that has the extensive appli-
cability and practical significance. If we collect more data
from more places, using this method could thoroughly dig
up the driver heterogeneity.

In conclusion, the proposed model can naturally identify
the heterogeneity among merging drivers and produce accu-
rate predicted results of the desired merging position. Thus,
the proposedmodel is a promising tool for microscopic traffic
simulation and automatic driving systems or driver assistance
systems. It can also be used to classify driving styles, which
may attract attention from the insurance industries.

Nonetheless, this study only used the NGSIM data and did
not consider the characteristics of drivers due to the lack of
driver information. In the future, we will attempt to collect
more experimental data and to build a more comprehensive
model that connects the personal characteristics with the het-
erogeneity.Wewill also conduct a focus group study to inves-
tigate the influence of human factors on merging behaviors.
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