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ABSTRACT Air pollution is the entry or inclusion of living things, energy substances, and other components
into the air. Moreover, Air pollution is the presence of one or several contaminants in the outside atmospheric
air such as dust, foam, gas, fog, smoke or steam in large quantities with various properties and time intervals
of the contaminants in the air resulting in disturbances to the lives of humans, plants or animals. One of the
parameters measured in determining air quality is PM2.5. However, PM2.5 has a higher probability of being
able to enter the lower respiratory tract because small particle diameters can potentially pass through the
lower respiratory tract. In this paper, we will get two different insight. First, the probability of status change
using Markov chain and second, forecasting by using VAR-NN-PSO. More details we classify by three
classifications no risk (1-30), medium risk (30-48), and moderate (>49) in Pingtung and Chaozhou. This
data is starting from January 2014 to May 2019 and it can be modeled with the Markov chain. At the same
time, we perform Hybrid VAR-NN-PSO to forecast PM2.5 in Pingtung and Chaozhou. In this optimization,
the search for best solutions is carried out by a population consisting of several particles. Based on the
results of the discussion, opportunities for the transition frommonthly status change are obtained continuous
stochastic time with a stationary probability distribution. Regarding the VAR-NN-PSO, we obtained the
mean absolute percentage error (MAPE) 3.57% for PM2.5 data in Pingtung and 4.87% for PM2.5 data in
Chaozhou, respectively. This model can be predicted to forecasting 180 days ahead. Besides, the population
in PSO has generated randomly with the smallest value and the high value the accuracy.

INDEX TERMS PM2.5, Markov chain, stochastic, VAR, PSO, neural network.

I. INTRODUCTION
Air pollution is a change in the composition of air sub-
stances so that the air quality of these substances becomes
reduced. Polluted air quality generally contains pollutant air
with compositions such as COx, NOx, SOx, SPM (suspended
particular matter), Ox, and various heavy metals. The level
of excessive concentration of pollutants that exceed the toler-
ance threshold that is permitted. It will have a negative impact
that is harmful to the environment, humans, plants, animals,
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and damage to materials and affect the quality of rainwater
(acid rain). Poor air quality or continuous high air pollution
can adversely affect the earth and health. The long-term
negative impact of poor air quality is ozone depletion, which
triggers global warming, while the short-term impact directly
on humans is respiratory health problems [1]. Therefore, air
quality is an important thing always to monitor [2]. Moreover,
it increased exhaust emissions from motorized vehicles, and
industrial activities are growing. In urban areas, the level of
air pollution results in environmental problems is threatening
living creatures because it almost exceeds ambient air quality
standards [3].
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Particle pollution or Particulate matter is a mixture of solid
particles and water droplets that can be found in the air.
Some types of particles such as dust, dirt, soot or smoke are
large enough or dark enough to be seen by the eye, while
most others are so tiny that only an electron microscope can
detect them [4]. These particles can have various shapes and
sizes and can be formed from hundreds of different types of
chemicals [5]. The size of particulates in the atmosphere is
usually divided into two types — fine particles which have
a size smaller than 2.5 micrometers [6] which commonly
called PM2.5. The coarse particles are more extensive than
2.5micrometers and smaller than 10micrometers which often
called PM10 [7]. Particulates can be divided into primary
particles and secondary particles [8]. Primary particles of
main particles are pollutant particles emitted directly from
sources of emissions, such as development sites, repairs of
roads, fields, and forest fires. Secondary particles are particles
formed by complicated chemical reactions that transform
gases into atmospheric particles such as sulfur dioxide and
nitrogen oxides emitted by energy, industrial and motor-
ized vehicles. Particulates emitted into the atmosphere will
undergo a process of changing their shape, size, and chemical
composition by several mechanisms that will continue to
occur until the particles undergo a deposition process. The
existence of a transformation mechanism causes the average
residence time of particulates in the lower atmosphere to
last up to one week. The height influences the particulate
deposition process, at low altitudes it usually occurs deposi-
tion or dry deposition directly, whereas at the height of more
than 100 meters usually occurs wet deposition.

PM2.5 types that contain microscopic solid concentrates
or tiny liquid droplets can enter the respiratory system to
the lungs and can cause serious health problems that can
even lead to lung and coronary heart cancer. PM2.5 also
causes environmental issues such as reduced visibility. One
of the factors causing acid rain disturbs the balance of the
ecosystem because it can damage the nutrient balance of soil
and plants. Moreover, PM10 is a solid or liquid particulate
that floats in the air with an aerodynamic diameter size of
fewer than 10 microns. PM10 is more specific is respirable
particulate matter and a good predictor of health. PM10 has a
higher probability of being able to enter the lower respiratory
tract because the small particle diameter can potentially pass
through the lower respiratory tract. However, particulate mat-
ter (PM) is a heterogeneous mixture that varies in physical
and chemical properties which depend on meteorological
conditions and sources of emissions. Current air quality stan-
dards use PMmass concentrations. PMswith an aerodynamic
diameter of≤10m (PM10) or≤2.5m (PM2.5) as a metric, sup-
ported by health studies show a strong association between
ambient PM mass concentration and a variety of adverse
health effects. Time-series techniques are needed to predict
PM concentrations at 2.5.

Due to various factors, PM2.5 status will change frequently.
These changes are often unexpected. Stochastic analysis is
used because of uncertainty factors that exist in hydrological

characteristics. For this reason, the researchers propose a vari-
ety of stochastic approach methods to determine the pattern
of the spread of PM2.5. One of them is using the stochastic
Markov chain model [9] in which the following state is only
affected by the current state and is free of the former state. The
transition opportunity matrix is determined by the method of
estimating maximum likelihood.

The idea of using mathematical models to explain the
behavior of physical phenomena has been done well, as in
deterministic models [10]. Nevertheless, not all phenom-
ena are entirely deterministic because unknown factors can
occur and affect these physical phenomena [11]. In this case,
the time-dependent phenomenon is needed in stochastic mod-
els [12]. Neural Network [13] is a nonparametric model that
can be used for modelling time series data that does not
require various residual assumptions. Several studies have
found that this model produces better predictive accuracy
than parametric models [14]. Beside of time dimension,
data can also have a space dimension known as space-time
data [15]. Space-time model is a model that combines depen-
dency between time and location in a multivariate time series
data [16]. In the real world, we need methods to solve high
dimensional data [17] and non-linear.

The application of Neural Network in time series pre-
diction models [18] is expected to provide more accurate
and robust results against data fluctuations [19]. One of the
flexibility, of the Neural Network model as a nonparametric
model is that there is no need to test model assumptions [20],
so the main thing to consider is the formation of a model
to get the smallest possible error [21]. Previous authors
perform NN with optimization like genetic algorithm [22],
gradient descent [23], PSO [24], [25]. Also, [26] uses an
artificial neural network (ANN) forecasting the accuracy of
daily average concentrations of PM2.5 two days in advance
is presented. The model was developed from 13 different
air pollution monitoring stations in Beijing, Tianjin, and
Hebei province (Jing-Jin-Ji area) and obtained high accu-
racy. Moreover, Chang and Tseng perform NN [27] and
the experimental results show that the factory data and
stock farming data may be one of the factors influencing
PM2.5 concentration.

The application of NN in time series forecasting can be
the right solution, but the problem is network architecture
and the selection of appropriate training methods. Over time
the time series method is not only used for univariate cases
but also used for multivariate cases [28] one of which is the
Vector Autoregressive (VAR)model [29]. Previous studies on
VAR modelling have been carried out [30] obtained results
that VARIMA modelling can be used on stationary and non-
stationary data.

In analyzing, the relationship is between climatological
variables in VAR [31]. It is not necessary to distinguish
between endogenous and exogenous variables, which means
that all variables used in VAR are used as endogenous vari-
ables. The problem that appears in neural network modelling
for multivariate time series data is how to determine the lag
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for the input model and to determine the optimal weight for
each input model.

Therefore, we need a standard procedure for the optimal
input process to obtain an optimal model architecture. The
next problem is processing at the neural network layer.
Besides many optimal hidden units that must be determined,
one crucial thing is the selection of optimisation methods
used to estimate the parameters/weight of the model [32].
Some conventional gradient-based methods that are com-
monly used are often problematic in terms of yield con-
sistency and are trapped in earlier convergence to a local
optimum. Therefore a breakthrough is needed to find alter-
native methods that can overcome this problem.

II. MARKOV CHAIN
Suppose that S ⊂ R is a set of values from a random array of
variables, then S is called state space. The stochastic process
X = {Xt , t = 1, 2, . . .} is a collection of the random variables
that map a sample space � to state space. So, for every
t ∈ {1, 2, . . .}, Xt is a random variable [33]. In this case,
assume t as the time and value of the randomvariableXt as the
state of the process at a time. The Discrete Marko Chain [34]
can be explained as a stochastic process {Xt , t = 1, 2, . . .}
with state space {1, 2, . . . ,N } called a Markov chain with
discrete time if for every t ∈ {1, 2, . . .}, applies:

P (Xt+1 = j |Xt = i,Xt−1 = it−1, . . . ,X1 = i1)

= P (Xt+1 = j |Xt = i) (1)

For all possible values of i1, i2, . . . , it−1, i, j ∈ {1, 2, . . . ,N}.
So, for a Markov chain [35], the conditional distribution
of any future state Xt+1 is free of all previous states
X1,X2, . . . ,Xt−1, and only depends on the current state Xt .
This is called Markov properties. Besides the homogeneous
Markov chain can be explained suppose {X t , t = 1, 2, . . .} is
a Markov chain with state space said to be homogeneous if:

P (Xt+1 = j |Xt = i) = P (X2 = j |X1 = i) = pij
For i, j ∈ {1, . . . ,N } (2)

The above process can be described as a state Markov chain
with probability transition (pij) with i, j = 1, . . . , N [36]. The
value of the probability transition (pij) states the probability
that if the process is in state i then the next one will switch
to state j. However, the probability value is not negative, and
because the process must undergo a transition from one state
to another, then:

a. pij ≥ 0, for all i, j ∈ {1, . . . ,N }
b.
∑
Nj=1pij, for all i ∈ {1, . . . ,N }

Probability transition can be written in the form of P matrix,
which measures (N × N ):

p =

 p11 · · · p1N
...

. . .
...

pN1 · · · pNN



III. VECTOR AUTOREGRESSIVE
Vector autoregressive (VAR) has several endogenous vari-
ables simultaneously [37], but each endogenous variable
is explained by the lag of its value and other endogenous
variables in the model. The VAR model is built to over-
come the relationship between variables so that they can
still be estimated without the need to emphasize exogenous
issues [38]. In this approach, all variables are considered
endogenous, and estimates can be carried out simultaneously
or sequentially [39].

VAR only needs to pay attention to two things. First,
no need to distinguish between endogenous and exogenous
variables. All endogenous and exogenous variables that are
believed to be interconnected should be included in the
model [40]. Second, to see the relationship between vari-
ables in the VAR, several variable lags are needed [41]. The
assumption in the VAR model assumes that all variables are
interdependent. In general, the VAR model with T variables
can be written as follows:

Yjt = βj +
∑p

i=1
γjiY1,t−i +

∑p

i=1
θjiY2,t−i + . . .

+

∑p

i=1
λTiYT ,t−p + ejt (3)

With:

Yjt = forecasting number j at time− t

t = forecasting time

T = number of variables, with : 1, 2, . . . ,T

βj = constants for variables j

p = number of lags, with i : 1, 2, 3, 4, . . . , p

γji = parameter in variable 1 lag− i

θji = parameter in variable 2 lag− i

λTi = parameter in variable T lag− i

ejt = residual j at time− t

Based on the VAR model in equation (3), we can write the
model with 2 variables (T = 2) testing and the number of lag
2 (p = 2):

Y1t = β1+γ11Y1,t−1+γ12Y1,t−2+θ11Y2,t−1+θ12Y2,t−2+e1t
(4)

Y2t = β2+γ21Y1,t−1+γ22Y1,t−2+θ21Y2,t−1+θ22Y2,t−2+e2t
(5)

To define this model, it is assumed that the two variables Y1
and Y2 are stationary and residual in themodel is a white noise
process. Equation (4) is a model for the first variable, while
Equation (5) is a model for the second variable. In general,
the VAR model for T variables will consist of T equations
where each one equation is an equation with one variable as
the dependent variable, and the independent variable is the lag
of all other variables. VARmodelling consists of endogenous
variables with indices on the left side of the model and a
constant component and lagged term component on the right
side of the model. Assuming that there is no cross-correlation
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between the residuals (error term), the VAR model can be
estimated using Ordinary Least Square (OLS) sequentially by
estimating all equations in turn. The parameters estimated for
the VAR model in this research using OLS.

γ11, γ12, . . . , γTi, θ11, θ12, . . . , θTi, λ11, λ12, . . . , λTi.

Suppose OLS estimation with 2 test variables and the number
of lags 1 as follows:

Y1t = β1 + γ11Y1,t−1 + θ11Y2,t−1 + e1t
Y2t = β2 + γ21Y1,t−1 + θ21Y2,t−1 + e1t (6)

The principle of ordinary least square (OLS) parameter esti-
mation [42] is to minimize the residual sum of square (RSS)
written in Equation (6). In this test, parameter estimation will
be performed on the Y1t model with the parameters β1, γ11,
and θ11.

RSS=
∑n

t=1
(ejt )2=

∑n

c=1

(
Y1c−β1−γ11Y1c,t−1−θ11Y2c,t−1

)2
The RSS equation is derived from all parameters that will
be estimated in the model then equated with zero. The RSS
equation, after being derived is as follows:

nβ1 + γ11
∑n

c=1
Y1c,t−1+θ11

∑n

c=1
Y2c,t−1

=

∑n

c=1
Y1cβ1

∑n

c=1
Y1c,t−1 + γ11

∑n

c=1
Y 2
c1,t−1

+ θ11
∑n

c=1
Y2c,t−1Y1c,t−1 =

∑n

c=1
Y1cY1c,t−1

β1
∑n

c=1
Y2c,t−1 + γ11

∑n

c=1
Y1c,t−1Y2c,t−1

+ θ11
∑n

c=1
Y 2
2c,t−1 =

∑n

c=1
Y1cY2c,t−1 (7)

The form of the matrix equation for Equation (7) is:(
X ′X

)
β̂ = X ′y

With,

X =


1 Y11,t−1 Y21,t−1
1 Y12,t−1 Y22,t−1
1 Y13,t−1 Y23,t−1
...

1

...

Y1n,t−1

...

Y2n,t−1

 , B̂ =

 β1
γ11
θ11

 and

y =


Y11
Y12
Y13
...

Y1n


So that the parameter estimation β̂ is obtained as follows:

β̂ =
(
X ′X

)−1 X ′y

IV. ANALYSIS
A. PROBABILITY TRANSACTION MARKOV CHAIN
The first step is to calculate the probability transition PM2.5
data, which is classified by No Risk (1-30), Medium Risk
(30-48), and Moderate (> 49). In this paper, we are using
monthly data from January 2014 to May 2019 in 2 Taiwanese
locations, Pingtung and Chaozhou. Substitution of PM2.5
status with migration has one free random variable, which is
a random variable of the actual value PM2.5 {(t)}. Probability
for status change at time t can be stated as follows:

(t) = Prob{I (t) = i}. (8)

In this model, Markov properties apply for the order of real
numbers 0 ≤ t0 < t1 < . . . < tn < tn+1.

Prob{I (tn+1)|I (t0), I (t1), . . . , I (tn)} = Prob{I (tn+1)|I (tn)}.

(9)

The probability chance of transition at tn+1 depends only on
time tn at intervals, t + 1t the number of status changes for
the month j. The probability of transition from the number of
months that change from state i to state j at intervals 1t can
be written as follows:

(1t) = Prob{I (t +1t) = j|I (t) = i}. (10)

(1t) contains the lim
t→∞

=
o(1t)
1t = 0, where o(1t) shows

a small probability value and cannot be stated exactly. It is
assumed that the selected value of1t is minimal in the event
of a transition so that the probability of changing PM2.5 status
is a maximum of one month during the time interval 1t .
There are three possible transitions namely, the monthly that
will be different will transition from state i to state j = i+ 1
meaning that the month that will change the status of PM2.5
will increase by one. This is due to the influence of lag time
at a rate of β and the occurrence of incoming migration that
occurs in the month of change at a rate of ν. So, the chance
of transition in the time interval can be written:

Prob{1l (t) = j|l (t) = i}

=



(vN +
β

N
i (N − i)1t + o (1t) , j = i+ 1

(γ + µ) i1t + o (1t) , j = i− 1

1−
(
vN +

β

N
i (N − i)1t + (γ + µ) i1t

)
+ o (1t) ,

j = i
o (1t) , j 6= i− 1, i+ 1, i.

(11)

Next, calculate of probability changes will be made between
No Risk (1-30), Medium Risk (30-48), and Moderate (> 49).
Suppose that π = [πi] is a probability vector that each
component states that the process will be in state i. For time
n→∞ it is called a stationary probability vector or steady-
state chance, that is, after the process has been running for
several periods, the probability transition value will remain.
In this case, πi can be interpreted as the proportion of long-
term time in which theMarkov chain is in state i. The vectorπ
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can then be calculated as= πp , where [π1, π2, π3] is a non-
negative solution from equation (12):

π1 = π1P11 + π2P21 + π3P31
⇔ π1(P11 − 1)+ π2P21 + π3P31 = 0

π2 = π1P12 + π2P22 + π3P32
⇔ π1P12 + π2(P22 − 1)+ π3P32 = 0

π3 = π1P13 + π2P23 + π3P33⇔π1P13 + π2P23
+π2(P33 − 1) = 0 (12)

Based on equation (7) above, it can be formed into the follow-
ing matrix equation so that it can be formed into the matrix
equation as follows:P11 − 1 P21 P31

P12 P22 − 1 P32
P13 P23 P33 − 1


And can be written (

PT − 1
)
π = 0 (13)

The probability vector of steady-state π is an Eigenvector
determined by Eigenvalue λ so that π must fulfil in
equation (14). (

PT − λI
)
π = 0 (14)

With Eigen values λ = 1 and I are identity matrices with
dimensions of 3×3. Because π is a probability vector, π must
also fulfill:

π1 + π2 + π3 = 1

π1 =

(
(1− r)−

(1− s) p
q

)−1
π2 =

(
−r −

ps
q

)
π1,

π3 =
(p
1

)
π1, (15)

With:

p =
(

P13
P33 − 1

−
P23 (P11 − 1)
P23(P33 − 1)

)
(16)

q = 1−
P23P31

P21(P33 − 1)′
(17)

r = 1−
P23P33

P23P33 − 1′
(18)

s =
P32

P22 − 1
(19)

Suppose that Ti is the unit of time spent by the process in
state i before switching to another state. Ti the time is consid-
ered as the number of repeating random trials independently
whose results fail or succeed until the first success with the
probability of success (1−Pii). If the next time remains in
state i, then the chance for the process to remain in state i
is Pii (Probability of failure). Ti Time also has memoryless
properties of the Markov chain. The geometric distribution is

the distribution of discrete opportunities that have a memory-
less. Thus, Ti is a random variable that spreads geometrically
with a chance period function. However, PM2.5 distribution
in Pingtung can be seen in Figure 1 (left) and Chaozhou di
(right) Figure 1 and Figure 2 shows the PM2.5 frequency and
in general, at the beginning of 2014 was the worst PM2.5
status in these two locations. However, the 44th month is the
lowest PM2.5 status for the last five years. Many factors might
influence the increase and decrease of air pollution in cities
and Taiwan, such as meteorological conditions, including
rainfall, wind, and high pressure, which would require further
analysis.

FIGURE 1. Monthly PM 2.5 in Pingtung January 2014 to May 2019.

FIGURE 2. Monthly PM 2.5 in Chaozhou January 2014 to May 2019.

In what follows, our Markov models are assumed to be
homogeneous which stationary distributed and shall denoted
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FIGURE 3. Modeling PM2.5 with the Markov chain model.

by the vector (δ = δ1, δ2, .., δm). Suppose {St } is stationary,
so δ is for all t distribution of St .

Moreover, we can define v = (1, 2, . . . ,m) ,V = diag(v)
which is a diagonal matrix with v on the diagonal principle,
also γij (k) = (0k )ij will have the results for mean of St and
the covariance of St and St+k for all non-negative integers k
can be written as E (St) ,E(S t , S t+k ), and cov E(S t , St+k ).

E(S t ) =
∑m

i=1
iδi = δv

′

(20)

E(S t , S t+k ) =
∑m

i=1

∑m

j=1
ijδiP(St+k = j|St = i) (21)

E(S t , S t+k ) =
∑

i,j
(iδi) γij (k) j = δV0kv

′

(22)

Cov(S t , S t+k ) = δV0
kv
′

−

(
δV
′
)2

(23)

The probability status change in PM2.5 is a function of
recency that is the number of periods since the last day of
status change. Based on Figure 3 if PM2.5 status changes at
the end of the previous period, it will be at recency 1 for
the current period. We assumed that if the status change has
reached recency 7, or 7 consecutive periods. So, it would be
there is no status change, and then it can be categorised in
that week, which tends to be constant. At the same time, the
PM2.5 status that has been in recency 1, 2, 3, 4, 5, and 6 if
there is a change in a period, it will return to recency 1 in the
next period. When PM2.5 status is at recency r , with r= 1, 2,
3, 4, 5, 6, 7. Whereas 1-pr is a probability that PM2.5 status
will not change at the end of the period when it is in the r
recency.

Figure 5 and Figure 6 show the condition in Chaozhou.
Besides, it can be seen in Figure 4, Figure 5 and Table 1 that
the probability of changing the status of PM2.5 to no risk in
May 2019 to June 2019 is equal to 0.808; the probability
medium risk is 0.182, and probability moderate is 0. So that
can be said it is estimated that PM2.5 status in the Pingtung
area is no risk in the future.

Based on the analysis, it can be seen in Figure 4 and
Table 2 that the probability to change the status of PM2.5 to
no risk inMay 2019 to June 2019 is 0.828, and the probability
of medium risk is 0.231, the probability of moderate at 0.
So that can be said at one month in the future it is estimated
that PM2.5 status in the Pingtung area is also no risk.

Overall, the probability transition from state 1 has the
highest value in the no risk, and the probability for the
transition from state 2 has the highest value in the no risk.

FIGURE 4. Line probability transition PM2.5 in Pingtung.

FIGURE 5. Probability transition PM2.5 in Pingtung.

TABLE 1. Probability transition in Pingtung.

The transition opportunity for the moderate any state to state
3 in the case has a higher chance of transition compared
to case 2 (Chaozhou). When compared to the two regions,
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FIGURE 6. Line probability transition PM2.5 in Chaozhou.

TABLE 2. Probability transition in Chaozhou.

the most significant change was status in Chaozhou. There
are more significant than Pingtung in PM2.5 in Chaozhou.
Based on Cramér’s V [43] the p-value = 0.70 is obtained.
In both regions, weather anomalies often occur at certain
times, especially during the summer season. These conditions
can cause an increase in extreme weather in the form of rain
in the category of light rain to heavy rain so that the average
length of the rainy period is still quite high in the dry season
which causes an increase in PM2.5.

B. STEP CONSTRUCTION VAR-NN-PSO
This model is based on the FFNN model, which differs when
determining input variables. Because the VARmodel is used,
the input is the lag variable of each predicted variable, in this
case, the PM2.5 data in Pingtung as Y1 and Chaozhou as Y2.
Each of these data was taken from January 2019 toMay 2019.
The lag selection is based on the value and plot of the partial
autocorrelation function (PACF) of each variable. Moreover,
we perform VAR-NN with training algorithms using Hybrid
Particle Swarm Optimization (PSO) and Backpropagation.

Based on the partial autocorrelation function in
Figure 7 and Figure 8, it was found that significant lag
variables were lags at t−1 and lag t−2. Then, after the lag
of the input variable is obtained an FFNN model is formed
for these two variables. In FFNN, neurons are arranged in
layers and signals from the input to the first layer, then to the

FIGURE 7. Probability transition PM2.5 in Chaozhou.

FIGURE 8. Partial autocorrelation function in Pingtung.

second layer, and so on [22]. The assumption in the VAR that
all variables depend on each other.

VAR (p) model or Vector Autoregressive model with
sequence p, which means the independent variable of the
model is p-value of the independent lag variable:

Yt = ϕ0 +
∑p

i=1
ϕiYt−i+εt (24)

In this paper, multilayer networks are used with the Feed
Forward Neural Networks (FFNN) model. In FFNN, neurons
are arranged in layers (layers) and signals flow from the input
to the first layer, then to the second layer.

Yt = ψ0

{
vb0 +

∑H

n=1
voutψk

(
wbi +

∑p

j=1
winYt−j

)}
(25)

In Table 3 and Table 4, the (wbn,win, vout , vbo) is the weight
parameter in the FFNN model and (ψo, ψk ) is an activation
function. Before training artificial neural networks, input, and
target scales are often needed so that data enters a certain
range. Where is the weight parameter in the FFNNmodel and
is an activation function which in this case uses tansig and
purelin functions which can be seen in Figure 9. To choose
the best model is to see the smallest MAPE value. Based on
the results of data processing, VAR models for Y1 and Y2 are
obtained as follows:

161660 VOLUME 7, 2019



R. E. Caraka et al.: Prediction of Status Particulate Matter 2.5 Using State Markov Chain Stochastic Process and HYBRID VAR-NN-PSO

FIGURE 9. Partial autocorrelation function in Chaozhou.

TABLE 3. Weight or parameters of the FFNN model in Pingtung
(MAPE =3.15%).

TABLE 4. Weight or parameters of the FFNN model in Chaozhou
(MAPE =4.87%).

The steps for estimating the VAR-NN model using the
Backpropagation algorithm in this study are as follows:
1. Identify the lags of independent variables using values

and Partial Autocorrelation Function (PACF).
2. Determine the number of neurons in the hidden layer.
3. Initialize all weights in the hidden layer and output layer.
4. Calculate the output obtained from the neurons in the

hidden layer with the sigmoid logistic activation function.
5. Calculate the output obtained from neurons in the output

layer.
6. Calculate the error gradient for neurons in the output

layer.
7. Calculate the weight correction for the output layer.
8. Update all weights in the output layer.
9. Calculate the error gradient for neurons in the hidden

layer.
10. Calculate the weight correction for hidden layers
11. Fix all weights in the hidden layer
12. Calculate the predictions of VAR-NN using mean abso-

lute percentage error (MAPE), to get the best model.
13. Forecasts with the best models.
We perform an FFNN network with neurons in the hid-
den layer of 5 neurons, the VAR-NN model (2, 2, 5).

First perform by Particle SwarmOptimization and Backprop-
agation (PSO-BP) Hybrid algorithm. PSO starts with a set of
particles solutions randomly generated. The following is the
PSO calculation formula:

vt+1j = w.vtj + c1.r1
(
pBest tj − x

t
j

)
+ c2.r2

(
gBest tj − x

t
j

)
x t+1j = x tj + v

t+1
j (26)

where:

vtj : Velocity

x tj : Particle Position

w : Inertia Weight

c1&c2 : learning rates

r1&r2 : Random value from 0 to 1

pBest tj : Best position of the particle

gBest tj : Global optimum

Learning rates (c1 and c2) or often called velocity parameters
that show the weight of the memory of a particle on the
memory of a swarm. However, the values of c1 and c2 are
usually 2 so that the multiplication of c1r1 and c2r2 Ensures
that the particles will approach the target by about half the
difference. Inertia weight (w) is a weight used to reduce the
speed of the speed update formula. An enormous w value is
useful for exploration of search space while a small value
of w is good for intensification. To further improve PSO
performance, this w value is made varied during the solution
search process, and more detail can be seen in Table 5.

TABLE 5. Parameter estimation VAR-NN.
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FIGURE 10. Illustration VAR-NN predict PM2.5 in Pingtung (Y1,t−1) and
Chaozhou (Y1,t−2).

FIGURE 11. Predicted VS target in Pingtung.

Based on the simulation, each particle in VAR-PSO-NN
presents the position and location of the problem at hand.
Each particle searches for the optimal solution with the intel-
ligence of the individual experience by crossing the dimen-
sions of the D search space. This is done by way of each
particle adjusting to the best position and the best adjust-
ment of the particle position of the best value of the whole
flock (global best) while crossing the search space. At each
iteration, each solution represented by the position of the

FIGURE 12. Predicted VS Target in Chaozhou.

particle evaluates its performance by entering the solution
into the fitness function. Each particle is like a point in a
certain dimension of space. After the simulation obtained
with MAPE 3.57% for PM2.5 data in Pingtung and 4.87% for
PM2.5 data in Chaozhou, the prediction vs actual data plot can
be seen in Figure 11 and Figure 12, respectively.

After all the tests are carried out and meet the VAR mod-
elling, forecasting is done as the final result. Data to be
forecast is forecasting PM2.5 data in June 2019 can be seen
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FIGURE 13. Forecasting PM2.5 180 days in Pingtung and Chaozou.

in Figure 13. Based on the forecast it can be seen that PM2.5 it
tends to increase which can be caused by industrial activities.

V. CONCLUSION
The three-state Markov chain model can be used to determine
the change of PM2.5 status. The status change fulfils the
Markov nature and can determine the opportunity for status
change (No risk, risk, moderate) in the next month. We use
the most significant lag Y1,t-1, Y1,t-2. From these lags,
a combination will be made between lags to determine the
existence of nonlinear patterns in the PM2.5 data. Regarding
the chance of the status change the relationship between
PM2.5 in Pingtung and Chaozhou is high (0.7) and significant
at α = 5%. After performing the VAR-NN-PSO if, without a
selection operation, individuals will be trapped in individuals
who have low fitness values. Also, the novelty of this research
is to examine the VAR-NN-PSO Model and the optimum
parameters that have been obtained, used to predict PM2.5
levels for the next 180 days with high accuracy. This research
can be a recommendation to the government to maintain
air pollution besides gets the probability of transition with
Markov chain or forecasting with short-term or long-term
using VAR-NN-PSO because this model performs high accu-
racy which justifies by MAPE.

APPENDIX
Proof of Estimating Value P i:
Define the likelihood function for first order markov

f (p) = P (Xt = 1)P (X2 = x2 |X1 = 1)

. . .P (Xn = xn |Xn−1 = xn−1)

f (p) = P (Xt = 1)
∏n

t=2
P (Xt = xt |Xt−1 = xt−1)

f (p) = 1
∏n

t=2
Pxt−1xt , we assumed that P (X1 = 1) = 1

f (p) = 1
∏N

i=1

∏N

j=1
p
fij
ij with i, jε {1, 2, . . . ,N }

where fij is the number of transitions from state i to state j.
pij is the transition from state i to state j, and N is the number

of states. We can define the likelihood function L(P).

L (P) = log f (p) = log 1+
N∑
i=1

N∑
j=1

fij log pij

With obstacles
N∑
j=1

Pij = 1, i = 1, 2, . . . ,N

Then, maximize the log likelihood function with the
Lagrange multiplier method. Suppose the Lagrange multi-
plier λ1, λ2, . . . , λN then the new objective function is

g (P,λ) = L (P)−
N∑
i=1

λi

 N∑
j=1

pij − 1


g (P,λ) = log 1+

∑N

i=1

∑N

j=1
fij logPij

−

∑N

i=1
λi

(∑N

j=1
Pij − 1

)
The function g is maximized by being derived from Pij, j =
1, 2, . . . ,N and equal to 0.

ϑg(P, λ)
ϑPij

= −
fij
pij
− λi, ∀i, jε1, 2, . . . ,N

fij
pij
− λi = 0

P̂ij
fij
pij

N∑
j=1

P̂ij =
N∑
j=1

fij
λi
= 1 −→λi =

N∑
j=1

fij ∀i, jε1, 2, . . . ,N

P̂ij =
fij∑N
j=1 fij

, ∀i, jε1, 2, . . . ,N

∴ Proof
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