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ABSTRACT Robust chaos in the discrete system is suggested to have practical as well as theoretical
importance since it can obtain reliable operation in the chaotic mode. However, it receives only moderate
attention and only focuses on a finite chaotic parameter space and small Lyapunov exponents. This paper
introduces a two-dimensional smooth map and studies its robustness of chaos in the infinite parameter
space. Then, a compound operation-based optimization control method is introduced to increase the map
complexity in the measure of Lyapunov exponent. The introduced method is simple and provides a new
pathway for exploring the robustness and complexity of discrete chaotic system. Finally, we design a chaos-
based pseudo-random number generator (CPNG) based on the optimized robust chaotic map, and the careful
analysis shows that the proposed CPNG has high quality of randomness and has passed the rigorous National
Institute of Standards and Technology (NIST) test.

INDEX TERMS Discrete map, dynamics, parameter space, Lyapunov exponent.

I. INTRODUCTION
With the rapid development of network communication,
the data security and encryption have been paid more and
more attention by engineers and scientists [1], [2]. Com-
pared with traditional schemes, chaotic information encryp-
tion technology is suggested to have higher security and
rapidity [3], [4]. The complex dynamic behavior of chaotic
systems is of great importance to the security in chaotic
encryption communication system [5]–[8]. It is generally
known that the running time will increase significantly when
discretizing a continuous chaotic system. In contrast, discrete
chaotic maps are more attractive in digital applications for
less computing time [9]. However, most discrete chaotic sys-
tems, such as Sine map, Logistic map, Cubic map and Tent
map, have relatively small key space in parameter and rela-
tively small Lyapunov exponents, which make the generated
chaotic sequences weak in security [10]–[13]. To enlarge the
key space in parameter, Zhou et al. [14] obtained a discrete
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system by combining different one-dimensional chaotic maps
in a non-linear way, but the Lyapunov exponent of the system
is small and the sequence complexity is not high. Then to
avoid this deficiency, Wang and Yuan [15], Zhou et al. [16]
and Yuan et al. [17] introduced the cascading method for
constructing discrete chaotic system, which can enlarge
both the maximum Lyapunov exponent and the system
parameter range of chaos. In addition, some other methods,
such as dimension expansion [18]–[20], closed-loop modula-
tion [21]–[23], cascade modulation [24], modeling [25] and
mixed operation [26]–[28], are proposed to improve the per-
formance of chaotic maps. However, these methods lack the
theoretical consideration of pure chaos and larger Lyapunov
exponent in the parameter space.

A chaotic system is called robust if there is no periodic
window or any coexisting attractor within some parameter
space. In other words, chaos is the unique dynamical behavior
within this parameter range. Therefore, small disturbance of
parameter cannot destroy the chaotic feature of robust chaotic
system. In 1998, Banerjee et al. [29] originally discovered the
existence of robust chaos when studying the current mode
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controlled boost converter, and gave a sufficient condition
for generating robust chaos. Banerjee and Grebogi [30] also
found the existence of robust chaos in buck converter and pro-
posed the conditions of robust chaos in this two-dimensional
(2D) piecewise smooth map. Han [31] proposed a chaos
robustness criterion for a kind of two-dimensional piece-
wise smooth maps, theoretically based on Banerjee’s method.
Andrecut and Ali [32] found robust chaos in a family of one-
dimensional continuous piecewise smooth maps and demon-
strated it by the theory of bifurcation structure. Patraa and
Banerjee [33] confirmed the robust chaos in 3D piecewise
linear maps and derived the occurrence conditions by ana-
lyzing the interplay between the stable and unstable mani-
folds. However, these works only concern the robust chaos
phenomenon of discretemap systemwithin limited parameter
range, which has limited the practical application.

In recent years, we have found that robust chaos exists
in continuous chaotic systems with infinite parameter space.
These parameters can regularly control the amplitude of
system signal, and the Lyapunov exponent remains invari-
able [34]–[36]. Therefore, this type of system provides a
significant candidate for the practical application of chaotic
encryption and chaotic communication. However, to the best
of our knowledge, there is no research on robust chaos of
discrete map with infinite parameter space reported in the
literature so far, which is still open and challenging.

So, aiming at the dilemma of existing discrete maps,
we attempt to find some solution by introducing a
two-dimensional smooth map and an optimization scheme.
First, by exploring the relationship of system parameters
and scale transformation of state variables, we find that the
Lyapunov exponents of this discrete map remains invari-
able and the signal amplitudes change regularly following
some functional relationship when some parameters vary in
infinite real space. Then, a compound operation-based opti-
mization control method of complexity is introduced using
the matching condition of iteration range and the definition
of Lyapunov exponent. Theoretical analysis shows that the
values of Lyapunov exponent will increase in logarithmic
form when the control parameters vary in real space. Thus
the complexity of the chaotic sequence increases. Finally,
we introduce a CPNG based on the optimized chaotic map,
careful analysis shows that the proposed CPNG has high
randomness and has passed the rigorous NIST test. The main
contribution of this work includes the following parts: The
introduced method can theoretically guarantee an infinite
parameter range of robust chaos and large Lyapunov expo-
nents. What’s more, the introduced method is simple and can
be extended to one-dimensional or high-dimensional discrete
chaotic systems. Therefore, this work provides a kind of
effective way for exploring the robustness and complexity of
discrete systems.

The rest of this paper is organized as follows. In Section II,
we introduce two-dimensional chaotic map and analyze the
basic dynamic characteristics. In Section III, we introduce a
control scheme of complexity optimization for the 2D chaotic

FIGURE 1. (a) Phase portrait and (b) time sequences of map (1) with
a = 1, b = 1.98, c = 1.0, x0 = 0.1, y0 = 0.1.

map. In Section IV, we introduce a CPNG based on the opti-
mized robust chaotic map. Finally, the conclusion is provided
in Section V.

II. THE TWO-DIMENSIONAL ROBUST CHAOTIC MAP
A. MODEL DESCRIPTION
The two-dimensional chaotic map is evolved from the
parabolic discrete map, described by{

xn+1 = ay2n
yn+1 = byn − cxnyn

(1)

where x, y are state variables; a, b, c are positive parameters.
When the parameters are set as a = 1, b = 1.98, c = 1.0 and
the initial condition is designated to be x0 = 0.1, y0 = 0.1,
map (1) is chaotic, as is diagrammed in Fig.1 by the phase
portrait and time trajectories.

The fixed points of map (1) can be calculated by the
transformed equations xn = ay2n and yn = byn − cxnyn.
It is well known that map (1) has one fixed point P0 =
(0, 0) when b ≤ 1; and map (1) has three fixed point when
b >1, depicted as P0 = (0, 0), P1 =

(
−1+b
c ,−

√
−1+b
√
ac

)
and

P2 =
(
−1+b
c ,

√
−1+b
√
ac

)
. The characteristic equation evaluated

at fixed point (x, y) is

λ2 − (b− cx)λ− 2acy2 = 0 (2)

Considering fixed point P0, we obtain λ1 = 0, λ2 = b.
Thus, we have that fixed point P0 is stable when b <1 since
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FIGURE 2. (a), (b) Bifurcation diagram and (c) Lyapunov exponent
spectrum versus parameter a.

the characteristic values satisfy
∣∣λ1,2∣∣ < 1. When b >1,

we have |λ1| < 1 and |λ2| > 1, thus, fixed point P0 is an
unstable saddle point.

When considering the fixed points P1 and P2, we obtain
the corresponding characteristic values as λ1 = 1

2 −
√
9−8b
2 ,

λ2 =
1
2 +

√
9−8b
2 . Accordingly, we have

(I) when 1 < b ≤ 1.125, it yields 0 ≤ 9 − 8b < 1 and∣∣λ1,2∣∣ < 1. Therefore, P1 and P2 are stable nodes.
(II) when 1.125 < b <1.5, it yields −3 < 9 − 8b < 0,

λ1 and λ2 are a pair of conjugate complex roots satisfying∣∣λ1,2∣∣ < 1. Therefore, P1 and P2 are stable foci.
(III) when b > 1.5, it yields 9 − 8b < −3, λ1 and λ2

are a pair of conjugate complex roots satisfying
∣∣λ1,2∣∣ > 1.

Therefore, P1 and P2 are unstable foci.

B. ROBUST CHAOS
We set b = 1.98, c = 1.0, while take a as the bifurcation
parameter varying in the interval [0, 10]. Fig.2 (a) and (b)
depict the bifurcation of map (1) by adopting continuation
diagram of the state variable x and y respectively. Fig.2 (c)
displays the corresponding spectrums of Lyapunov exponent
with QR decomposition method. It’s known that with the
increasing of a, the signal amplitude adjusts in certain pattern,
and the spectrums of Lyapunov exponent keep constant.

The significance of fixed point of discrete nonlinear map
can be interpreted as a point with zero velocity in phase space.

When the trajectory in phase space is rescaled, the nonzero
fixed point will correspondingly deviate from the original
position. Conversely, when the nonzero fixed point deviates
from the original position, the signal amplitude of trajectory
in phase space may be rescaled. It can be found from the
expression of nonzero fixed points that parameters a and c
of map (1) can control the location of fixed points P1 and P2.
According, parameters a and c may rescale the amplitude of
signal x and y. In fact, when taking the scale transformations
x = x̂ and y = a−0.5ŷ, we get the resulting system of map (1),
as below {

x̂n+1 = ŷ2n
ŷn+1 = bŷn − cx̂nŷn

(3)

Thus, the coefficient of y2 is normalized with the scale trans-
formations [35]. Therefore, when parameter a increases suc-
cessively, the amplitude of y changes by the power function
with an index of −1/2, but the amplitude of x keeps in the
same range, as depicted in Fig.2 (a) and (b) respectively.

When we replace the fixed point (x, y) in the characteristic
equation (2) with P0, it yields λ2 − bλ = 0; and when we
put the fixed point P1 or P2 in the characteristic equation (2),
it yields λ2 − λ + b − 1 = 0. Thus, we have eliminated the
influence of a on the characteristic equation, and the char-
acteristic roots are indifferent with a. Consequently, the Lya-
punov exponent spectrum remains invariable when parameter
a varies in real space, as depicted in Fig.2 (c). And we find
from Fig.2 (c) that there exist one positive and one negative
Lyapunov exponents, in which the positive Lyapunov expo-
nent means the divergence degree of the system trajectory in
the long time motion, and the negative Lyapunov exponent
means the convergence degree of the system trajectory in the
long time motion. Therefore, the map system (1) is chaotic.

Then, we set a = 1, b = 1.98, while take c as the
bifurcation parameter varying in the region [0, 10]. The
corresponding bifurcation diagram and Lyapunov exponent
spectrum are depicted in Fig.3, by adopting continuation dia-
gram and QR decomposition method respectively. It’s known
that with the increasing of c, the signal amplitude adjusts
in certain pattern, and the spectrums of Lyapunov exponent
keep constant. It follows analogously that when taking the
scale transformations x = c−1x̂ and y = c−0.5ŷ, we get the
resulting system of map (1), as depicted by{

x̂n+1 = aŷ2n
ŷn+1 = bŷn − x̂nŷn

(4)

Thus, the coefficient of xy is normalized with the scale
transformations [35].Therefore, when parameter c increases
successively, the amplitude of x changes by the power func-
tion with an index of −1, the amplitude of y changes by
the power function with an index of −1/2, as depicted in
Fig.3 (a) and (b) respectively. It’s also found that we can
eliminate the influence of c on the characteristic equation by
considering P0, P1 or P2, denoting the Lyapunov exponent
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FIGURE 3. (a), (b) Bifurcation diagram and (c) Lyapunov exponent
spectrum versus parameter c .

spectrum remains invariable when parameter c varies in real
space, as depicted in Fig.3 (c).

III. OPTIMIZATION CONTROL OF THE
ROBUST CHAOTIC MAP
A. THE OPTIMIZATION CONTROL SCHEME
As a numerical characteristic of nonlinear system, the Lya-
punov exponent indicates the average exponential divergence
rate of adjacent trajectories in phase space. The Lyapunov
exponent of the discrete chaotic map xn+1 = f (xn) is defined
by

LEf = lim
n→∞

{
1
n

∑n−1

i=0
ln
∣∣f ′(xi)∣∣} (5)

In general, negative Lyapunov exponent represents the
state of fixed point, nonpositive Lyapunov exponent repre-
sents the state of period or limit cycle, and positive Lya-
punov exponent means the chaotic behavior. What’s more,
larger Lyapunov exponent corresponds to higher sensitivity
to the initial condition. Therefore, the Lyapunov exponent
provides a useful measure to quantitatively determine the
randomness performance of a chaotic system. Accordingly,
an effective and direct method for improving the randomness
of a chaotic system is to increase the Lyapunov exponent
value. In this section, to increase the complexity of the
chaotic sequence, an optimization scheme will be designed

FIGURE 4. (a) Phase portrait and (b) time sequences of map (10) with
parameter set p and x0 = 0.1, y0 = 0.1.

for the robust chaotic map based on the measure of Lyapunov
exponent.

The Sine map is a commonly used chaotic map depicted
by xn+1 = S(x) = a sin(πxn), which is chaotic when
a ∈ [0.867, 1]. And the robust chaotic maps are expressed
by f1(x), f2(x), . . . , fk (x) respectively. Then the compound
operation-based optimization scheme for the robust chaotic
map is represented as

xn+1 = P(x) = a sin (π (f1(x)+ f2(x)+ · · · fk (x))) (6)

The advantage of choosing Sine map for compound opera-
tion is that it is not necessary to consider the iterative match-
ing problem between the range and the definition domain of
the subsystem.

Thus, the Lyapunov exponent of the compound map is

LEP = lim
n→∞

{
1
n

∑n−1

i=0
ln
∣∣P′(xi)∣∣}

= LES+ lim
n→∞

{
1
n

∑n−1

i=0
ln
∣∣f ′1(xi)+f ′2(xi)+· · · f ′k (xi)∣∣}

≥ LES + LEfi > 0 (7)

In (7), LES > 0 is the Lyapunov exponent of Sine map,
LEfi > 0 is the Lyapunov exponent of some robust chaotic
map fi(x). We can find that the Lyapunov exponent of the
compound map is larger than that of any robust chaotic maps.
As a consequence, the dynamic performance of robust chaotic
map is improved.
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FIGURE 5. (a), (b) Bifurcation diagram and (c) Lyapunov exponent spectrum versus parameter k1.

FIGURE 6. (a), (b) Bifurcation diagram and (c) Lyapunov exponent spectrum versus parameter k2.

FIGURE 7. (a), (b) Bifurcation diagram and (c) Lyapunov exponent spectrum versus parameter g1.

If all the robust chaotic maps have the same expression, i.e.
f1(x) = f2(x) = . . . = fk (x) = f0(x), the compound map can
be depicted as

xn+1 = P(x) = a sin (kπ f0(x)) (8)

More generally, the parameter k can be treated as a positive
or negative real number. In this way, the Lyapunov exponent
of the compound map is described by

LEP = LES + lim
n→∞

{
1
n
ln
∣∣kf ′0(xi)∣∣} (9)

Thus, the Lyapunov exponent of the compound map varies
logarithmically with k , or the parameter k can control the
Lyapunov exponent of the compound map by the logarithm
function. When |k| ≥ 1, one further obtains LEP > 0 for
LEs > 0 and LEfi > 0.

B. APPLICATION TO THE ROBUST MAP
Based on the introduced optimization scheme, the compound
map of 2D chaotic map (1) is constructed as{

xn+1 = g1 sin
(
k1πay2n

)
yn+1 = g2 sin (k2π (byn − cxnyn))

(10)

When selecting the parameter set p = {a = 1, b = 1.98,
c = 1.0, g1 = 2, g2 = 2, k1 = 6, k2 = 6} and initial
condition x0 = 0.1, y0 = 0.1, the chaotic phase portrait and
time sequences of map (10) are plotted in Fig.4. Obviously,
map (10) has better ergodicity and larger key space since the
phase portrait distributes in much larger regions than that of
map (1) and the existed maps. It’s also found in Fig.4 that the
sequences of map (10) are uniformly distributed. Therefore,
the time sequences of map (10) have better pseudo-random
performance.

From the analysis in section 3.1, we know that the param-
eters k1 and k2 can control the Lyapunov exponent of the
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FIGURE 8. (a), (b) Bifurcation diagram and (c) Lyapunov exponent spectrum versus parameter g2.

TABLE 1. Correlation coefficients of different chaotic maps.

compound map by the logarithm function, which can be
demonstrated by Fig.5 (c) and Fig.6 (c). And it’s found
from (10) that the signal amplitudes of x and y are equal
to g1 and g2 respectively, as demonstrated in Fig.5 (a-b),
Fig.6 (a-b), Fig.7 (a-b) and Fig.8 (a-b).What’s more, it’s easy
to derive from (9) and (10) that parameter g1 and g2 can
control the Lyapunov exponent of the compound map by the
logarithm function, as depicted in Fig.7 (c) and Fig.8 (c).

The effect of parameter a on the Lyapunov exponent of
map (10) is similar to that of k1. Further, it’s found by numer-
ical calculation that parameter c can control the Lyapunov
exponent of map (10) approximately in accordance with
the logarithm function. The distribution of largest Lyapunov
exponent spectrum in two-parameter phase space a vs c is
depicted in Fig.9.

The mapping diagram of discrete dynamical system
xn+1 = f (xn) describes the discrete sets generated by suc-
cessive iterations of xn and xn+1. In Fig.10, we plot the
mapping diagrams of Sine map, Hénon map, map (1) and
map (10) respectively. As we know that map (1) and map (10)
have more complex patterns than Sine map and Hénon map.
In particular, map (10) presents a strong chaotic state with full

FIGURE 9. Distribution of largest Lyapunov exponent with respect to a
and c .

mapping. From the bifurcation diagrams in Fig.5 and Fig.6,
we further find that the full mapping ranges for parameter
k1 and k2 are infinite. Comparing with injective mapping,
full mapping corresponds to stronger chaotic intensity and
larger iteration interval. When processed by digital system,
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FIGURE 10. Mapping diagram of (a) Sine map; (b) Hénon map; (c) map (1) and (d) map (10).

FIGURE 11. (a) Autocorrelation of x ; (b) autocorrelation of y ; (c) cross correlation between x and y .

the full mapping system takes up a larger digital space, and
the iteration value is not easy to approximate the previous
one. Therefore, the period of chaotic digital sequence can be
extended and the dynamic degradation of chaotic sequence
can be improved.

From Fig.11, we know that the autocorrelations of x and
y in map (10) trend closer to the delta function and the
cross correlation between x and y is approximated to zero.
The quantitative comparisons of correlation coefficients for
different maps in Table 1 show that the output sequences of
map (10) have smaller absolute correlation values. Therefore,
it’s further indicated that the time sequences of map (10) have
better pseudo-random performance.

IV. PSEUDO-RANDOM NUMBER GENERATOR
A. DESIGN OF THE CPNG
The pseudo-random number generator (PRNG) is widely
applied in the fields of cryptographic system and information
technology. Chaotic map is fit for the design of PRNG for

TABLE 2. Design scheme of CPNG.

the properties of sensitivity, ergodicity and unpredictability.
Recently, many design methods of CPNG were proposed.
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TABLE 3. Cycle length of pseudo-random sequence.

TABLE 4. NIST test result of pseudo-random sequences.

The optimized robust chaotic map is suitable for the design
of CPNG for presenting better dynamic performance.

The design scheme of CPNGbased on the optimized robust
chaotic map is described as below

B. PERFORMANCE ANALYSIS
As an important candidate of PRNG, chaotic map can pro-
vide complex pseudo-random sequences. However, for the
sake of finite computing precision and digital processing of
chaotic sequence, the generated numbers of CPNG may suf-
fer from dynamical degradation, which refers to short cycle
length, strong correlation, non-ergodicity and low linear-
complexity [37]. This degradation often results in the per-
formance attenuation of digital chaos applications [38]–[40].
The two pseudo-random byte sequences adopted to perform
XOR operation in the proposed CPNG method are gener-
ated by the optimized chaotic maps with different initial
conditions. This will extend the cycle length of the output
sequence and increase the randomness of CPNG. For exam-
ple, the period of sequence T1 is 4, the period of sequence T2
is 3. However, the cycle length of T = T1 ⊕ T2 is 12, which
is significantly larger than those of T1 and T2, as is shown
in Table 3.

The randomness of the generated binary sequences by
CPNG can be comprehensively evaluated by the PRNG statis-
tical test suite NIST SP800-22. The PRNG statistical test suite
consists of 15 different sub-tests for finding the nonrandom
region in all sides within a test sequence. The results of the
NIST-800-22 test should be greater than 0.01 for success.

We set the parameters of compound map (10) as a = 1,
b = 1.98, c = 1.0, g1 = 2, g2 = 2, k1 = 6, k2 = 6, and
the initial conditions are x0 = 0.1, y0 = 0.1, 1x = 0.00001.
The process of random number generation is based on the
designed scheme in section 4.1. The bit length of the binary
sequence is set to be 106, and 100 segments of sequences are
used. The experimental result is shown in Table 4. It’s con-
cluded from Table 4 that the binary sequences generated by
the introduced CPNG scheme have good statistical properties
and have passed all tests of the suite.

V. CONCLUSION
Aiming at the properties of limited chaotic parameter space
and small Lyapunov exponent for the existing discrete maps,
this paper introduced a two-dimensional smooth map and
studied its dynamical behavior. It is found that the Lya-
punov exponents of the 2D map remain invariable when
some parameters vary in infinite real space, and the sig-
nal amplitudes change regularly following some functional
relationship in the same time. The introduced compound
operation-based method can effectively increase the Lya-
punov exponent of the 2D map. Thus, it theoretically guar-
antees that the compound map holds infinite parameter range
of robust chaos and high complexity. Therefore, this work
provides a new pathway for exploring the robustness and
complexity of discrete chaotic system. Finally, we introduce
a CPNG based on the compound map, the careful analysis
shows that the proposed CPNG has high quality of random-
ness and can passed the rigorous NIST test. The suggested
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future work directions are the construction of high dimension
robust chaotic map and its application.
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