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ABSTRACT Studies are proceeded to stabilize cardiac surgery using thin micro-guidewires and catheter
robots. To control the robot to a desired position and pose, it is necessary to accurately track the robot tip
in real time but tracking and accurately delineating the thin and small tip is challenging. To address this
problem, a novel image analysis-based tracking method using deep convolutional neural networks (CNN)
has been proposed in this paper. The proposed tracker consists of two parts; (1) a detection network for
rough detection of the tip position and (2) a segmentation network for accurate tip delineation near the tip
position. To learn a robust real-time tracker, we extract small image patches, including the tip in successive
frames and then learn the informative spatial and motion features for the segmentation network. During
inference, the tip bounding box is first estimated in the initial frame via the detection network, thereafter
tip delineation is consecutively performed through the segmentation network in the following frames. The
proposed method enables accurate delineation of the tip in real time and automatically restarts tracking via
the detection network when tracking fails in challenging frames. Experimental results show that the proposed
method achieves better tracking accuracy than existing methods, with a considerable real-time speed of 19ms.

INDEX TERMS Convolutional neural networks, micro-robot tracking, guidewire tracking, patch-wise

segmentation.

I. INTRODUCTION

Cardiac catheterization is a procedure used to diagnose and
treat cardiovascular conditions. During cardiac catheteriza-
tion, physicians insert a guidewire into an artery or vein
and then transport stent via the guidewire under fluoroscopic
guidance. However, placing the guidewire is complex and
requires high expertise to control and navigate as the blood
vessels to which the guidewire should be inserted are not
visible without a contrasting agent. Moreover, the narrowed
or blocked blood vessels are not visible even when the
contrast agent is used. Consequently, conventional cardiac
catheterization requires long treatment time, high concentra-
tion, and many contrast medications. Thus, there is a demand
to develop localization technology [1] for an autonomous
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guidewire that can alleviate the potential for injury and radi-
ation exposure or discomfort to physicians and patients.
Recently, small robotic guidewires and catheters have
been developed for precise localization of target areas dur-
ing interventions. Most methods [2]-[5] perform tracking
of the guidewire by employing sensing systems with man-
ual operation. For example, the catheter system [2], such
as Amigo, was designed and evaluated so that users could
place the robot on desired locations, but requires manual
operation of pacing thresholds and endocardial electrograms.
To address this, Borgstadt et al. [3] proposed closed-loop con-
trol for use with multiple sensors i.e., electromagnetic pose
sensors (EPS) and stereo imaging in place of fluoroscopy
for real-time catheter localization consisting two particle fil-
ters. The first filter (PF1) uses EPS for the measurement
update, while the second (PF2) uses an imaging system with
the outputs of the filters combined at each time step to
produce the overall state estimate. However, guidewire tip
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localization with sensors alone is difficult and highly depen-
dent on the sensing performance. Recently, Zhao et al. [6]
proposed a guidewire navigation prototype using CNNs
which estimate appropriate action under a closed-loop con-
trol. However, the system still requires accurate guidewire
extraction. Consequently, to address these challenges, image
analysis based methods using probabilistic frameworks [4],
marginal space learning [5] and spline models [7] have
been proposed for tracking the guidewire. However, these
methods still need manual or semi-automatic initialization
and the localization is often inaccurate even with multiple
Sensors.

In this paper, a novel method is proposed to reliably track
the robot tip through image analysis in video sequences cap-
tured by an optical zoom camera. Ultimately, the position
of the micro robot guidewire tip should be tracked in X-ray
images, but guidewire tip tracking in video is also impor-
tant especially in the system development stage to assess
whether the control system works properly [8], [9]. Moreover,
given the difficulty of X-ray data acquisition for developing
catheter tracking algorithms, we first perform tracking studies
in camera images that are easy to acquire with the intention
of extending the approach to X-ray images. Although robust
tracking in video sequences can be useful, tracking guidewire
robot tips in real time remains inherently challenging as the
tip is often very small, thin and appears with ambiguous
noise in the background. Also, non-rigid abrupt motion of
the guidewire makes tracking more difficult. To address these
challenges, a new tracker which consists of two deep learning
networks is proposed; a detection network for the localization
of the robot tip using a bounding box and a segmentation
network to segment the tip near the localized regions. The
segmentation network is trained with localized guidewire tip
patches extracted from consecutive frames, which makes the
tip segmentation robust by effectively learning spatial and
motion features near target object [10], [11].

The proposed method enables accurate delineation of the
small tip in real time due to the low computational cost
of patch-wise predictions, and addresses tracking failures
in frames with abrupt motion by restarting the localization
via the detection network, alleviating the need for manual
correction. The key contributions are as follows:

1) To the best of our knowledge, this work is the first
to apply a deep learning-based tracking method to
track the guidewire tip in real cardiac robotic systems.
Our proposed method does not require multiple
sensors, heuristic manual tuning or post-processing
steps [12].

2) To effectively track a very small object,
a patch-wise segmentation strategy is proposed to con-
sider both motion and spatial features across adjacent
previous frames. Unlike conventional bounding box-
based tracking methods [13]-[18], our method con-
ducts precise pixel-wise predictions in real time by
constraining the area in which the segmentation needs
to be performed.
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3) Our method effectively reduces tracking failures by
adaptively using the detection network with respect to

the output of segmentation network.
A preliminary version of this work has been presented

at a conference [19]. Herein, (i) the proposed method is
significantly improved by using patch-wise U-net which can
consider previous adjacent frame information for efficient
prediction, (ii) extensive quantitative and qualitative results
are reported to confirm the effectiveness of the proposed
method over the preliminary version, (iii) ablation studies are
carried out to assess the effect of tracking performance as the
number of previous frames is varied, (iv) the tracking time
and the amount of tracking failures are significantly reduced
by utilizing previous frame information.

The remainder of the paper is organized as follows. First,
we revisit previous works in the field of intervention tool
tracking in Sec. II. We then present our method in Sec. III and
provide a thorough evaluation in Sec. IV. Finally, we present
conclusions in Sec. VI.

Il. RELATED WORK

We address recent advances related to catheter tracking in
two facets, namely hand engineered feature-based methods
and deep learning-based approaches that make use of deep
convolutional neural networks (CNN).

A. CONVENTIONAL FEATURE-BASED METHODS

Several catheter or guidewire tracking methods have been
proposed for image-guided navigation, although there are
not robotic systems. For example, Franken er al. [20]
extracted local image features using the Hessian matrix
and enhanced elongated structures to localize the catheter.
However, the implementation was too slow for clinical
use, as computational cost was relatively high, implemen-
tation on a graphical processing unit (GPU) was suggested.
Ma et al. [21] used a blob extraction method to detect all
possible catheter electrode candidates, later choosing the best
with a certain criteria. Ma et al. [22] enhanced the visibility of
wire-like structures using multiscale vesselness enhancement
filters, and then used the k-nearest neighbor algorithm to dis-
tinguish the target wires from other wire-like artifacts. Palti-
Wasserman ef al. [23] used a modified Laplacian filter to
enhance the guidewire and tracked the guidewire via Hough
transform. De Buck et al. [24] proposed a method for catheter
tip detection using a fixed template-based registration in
conjunction with a Kalman filter. Fallavollita et al. [25]
proposed a method to measure the location of catheter tip
electrodes. A convex hull algorithm was employed to recon-
struct a 3D model of the left ventricle using aligned reference
mappings between catheters and estimated tip centroids of
electrodes. However, since the guidewire has unique char-
acteristics such as non-rigidity, thinness and complicated
motion, conventional tracking methods based on filtering
or thresholding were inefficient to achieve robust guidewire
tracking

results.
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Generally, active contour-based methods achieved superior
performance by utilizing internal curve models compared
to the filter based methods [20], [21], [23]. For example,
Slabaugh et al. [26] modeled the geometry of the guidewire
as a spline with a length constraint term in the B-spline energy
equation to retain a prior length. Later, Hoffmann et al. [12]
improved catheter extraction by utilizing enhancement fil-
ters, followed by a spline fitting methodology, starting from
the guidewire shape in the previous frame. However, these
methods require manual annotation of the first frame in the
image sequence and often incur a drift problem when the
result in the previous frame is bad. To address the drifting
problem, Chang et al. [7] proposed to optimize spline fitting
with respect to control points with an equidistance prior to
better fit complex curves. However, the method is sensitive to
control point detection, requiring re-initialization for incor-
rect detection. In contrast, Mountney et al. [27] proposed
a learning based method which identifies the needle in an
X-ray image for tracking. Nevertheless, this approach might
not cope with small and flexible objects, such as tracking the
guidewire in interventional procedures. Also, these methods
may heavily rely on intensity gradients, and thus are easily
attracted to image noise as well as other wire-like structures
in fluoroscopy.

B. DEEP LEARNING-BASED METHODS

CNNs have been validated to be very effective in object
detection and tracking [28], [29]. Wang et al. [30] proposed
a guidewire tracking method using region proposal networks
(RPN). Compared to feature-based methods, RPN has several
advantages; improved feature representation with proposals
that adapt well to object variability such as diverse scales and
aspect ratios. However, the method evaluates many regions of
interest (ROIs), which is time consuming and does not con-
sider the information of the previous frames. Baur et al. [31]
proposed a method for catheter detection and depth estima-
tion based on CNN. Notably, this method is also computation-
ally expensive and the net response for an image at full scale
(512 x 512) took approximately 1000 ms. More importantly,
the majority of recent methods usually address the guidewire
detection problem only without precise segmentation of the
guidewire tip which is necessary for robot control. Recently,
Chen and Wang [32] and Ambrosini et al. [33] introduced
segmentation approaches using a U-net architecture [34] for
tracking the guidewire in ultrasound images and X-ray fluo-
roscopic images, respectively. These methods achieved sig-
nificant improvements compared to the feature-based meth-
ods in terms of guidewire extraction. However, localization
of the small guidewire tip has often been unstable without
temporal features of adjacent frames. To accurately track the
guidewire tip, a two-step unified framework is proposed to
incorporate both detection and segmentation for tracking. The
proposed framework effectively segments the guidewire tip
in real time by constraining the search space and considering
temporal features between adjacent frames useful for precise
tracking.
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Algorithm 1 Tracking Procedure of the Proposed Method

1: Start from an initial frame.

2: Predict bounding box using Faster RCNN (Sec. I1I-A)
3: Extract center of mass of the bounding box

4. Iterate 5 ~ 12 steps until the last frame,

5: Extract patch and perform segmentation
using the patch-wise U-net (Sec. III-B)
6: Separate connected components using a
contouring algorithm [35]
7:  If no segmentation component is generated, go to 2
8: Else choose the closest component from the center

of tip predicted in the previous frame.
If there are more than two connected
components, delete other components except
the closest one.
9: Reconstruct the segmentation result to the frame
10:  If it is the last frame, go to 13.
11:  Otherwise the next frame is input.
12:  Extract center of mass of the segmentation
in the previous frame and go to 5
13:Done

Ill. TRACKING BY PATCH-WISE U-NET SEGMENTATION
The proposed tracker consists of a detection network and
a segmentation network. Given the initial frame as input,
the detection network predicts the bounding box locations
containing the guidewire robot tip. A patch is extracted from
the center of the bounding box, thereafter tip segmentation is
performed via the segmentation network. Finally, the output
patch is reconstructed to the original image size. Given the
next frame as input, we perform segmentation on a patch
centered on the segmented tip extracted in the previous frame.
In the segmentation network, the label of the current patch is
estimated by using both the image patch and its segmentation
label predicted in the previous frames, as well as the image
patch in the current frame. This process is repeated until the
last frame.

Given the segmentation prediction, morphological pro-
cessing [35] based on a contouring algorithm is employed,
where each connected component is a closed loop of 2D
points. However, if the number of components are more than
two, we only select the component closest to the center of
mass of the segmented tip in the previous frame and delete the
rest. If no component is generated, we predict the bounding
box using the detection network in a similar fashion with
the initial frame. Algorithm 1 presents the overall steps of
the proposed method. Also, the flowchart of our proposed
method is shown in Fig. 1.

For the detection network, Faster RCNN [36] is employed
to learn the relationship between the images and their corre-
sponding bounding boxes that include the robot tip. At the
same time, a modified U-net architecture serves as the seg-
mentation network to model the relationship between image
patches, tip segmentation of the previous frames along with
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FIGURE 1. Overview of our proposed tracking method.

the current image patch and its corresponding tip segmen-
tation. Moreover, the detection network can be replaced
with other networks such as Yolo [37], RCNN [38], Fast
RCNN [39] instead of Faster RCNN [36]. Similarly, the seg-
mentation network can equally be replaced by FCN [40],
DilatedNet [41], DeepLab-v3 [42] instead of U-Net [34]. The
details of proposed networks are described in the subsections.

A. DETECTION NETWORK

Segmentation of a small tip from the whole image is often
unstable. Thus, we localize the desired area by using a bound-
ing box-based detection method that can reflect the overall
characteristics around the tip. We adopt Faster RCNN [36]
for this task given its shown good performance in various
applications. In particular, the detection framework consists
of a region proposal network (RPN), region of interest (ROI)
pooling, region proposal layer, and bounding box regression
modules. The RPN module is a fully convolutional network
which can predict object bounds and scores at each position
simultaneously. This module acts nearly in a cost-free way
by sharing full-image convolutional features with a detection
network based on a deep residual network with 50 layers
(ResNet-50) [43]. Rectangular object proposals generated
by RPN are fed to the fully connected layers for bounding
box classification and regression. Regression towards the
bounding boxes is achieved by comparing proposals relative
to reference boxes.

B. SEGMENTATION NETWORK

We propose a segmentation network to achieve guidewire tip
segmentation given a patch size of 160 x 160. The patch size
was set so that the change of the tip across adjacent frame
appears within the patch in all training samples. To utilize
the spatial and temporal features between previous adjacent
frames, we train the network with multiple patches along with
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segmentation masks extracted from previous frames. Specif-
ically, if the adjacent frames are not considered, we extract
an image patch and its corresponding segmentation at each
frame in the training data and train the segmentation network.
In the testing stage, the segmentation of a patch at ¢ frame,
centered on the center of mass of the tip segmentation in
t — 1 frame is estimated. On the other hand, if we consider the
problem of estimating the segmentation at frame ¢ with a pre-
vious frame, we train the segmentation network using three
concatenated images (i.e., image patches at ¢, t — 1 frames and
a label patch at r — 1 frame) as input and the corresponding
label at r frame as output. In testing, the segmentation at ¢
frame is estimated using the image patches at 7,  — 1 frames
and the predicted label patch at ¢+ — 1 frame. If n previous
frames are considered, (2 * n + 1) images are concatenated
and then used as the input of the segmentation network
(see Fig. 2).

The proposed segmentation network consists of a contract-
ing path and expanding path similar to U-net [34]. In the
contracting path, 3 x 3 convolution layers (unpadded), each
followed by rectified linear units (ReLU) and down-sampling
2 x 2 max pooling operations with stride 2 are repeated.
In the expansive path, up-sampling of features is followed by
2 x 2 convolutions (upconvolution) that expand the fea-
ture maps. Further, we concatenate these features with the
corresponding feature maps of the contracting path fol-
lowed by two repeated 3 x 3 convolutions each with ReL.U.
At the final layer, a 1 x 1 convolution is used to map
each component feature to the desired number of classes,
i.e., two classes: one for the robotic tip and another for
background.

For training, the mini-batch size was set as 16 with Adam
optimizer [44] used to minimize the Dice error between
the prediction and the ground truth. The learning rate was
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FIGURE 3. Dataset samples containing multiple type of guidewire robots.

set as 0.00001 with 200 epochs in total. The method was
implemented using Keras with a Tensorflow backend and all
training and testing performed on a workstation with NVIDIA
Titan XP GPU.

IV. EXPERIMENTS AND RESULTS

A. DATA SET

For evaluation of the proposed method, we acquired 11 videos
consisting a total of 11,884 frames collected from the
DGIST-ETH Microrobot Research Center (DEMRC) using
a VZM 600i Zoom Imaging Lens (Edmund Optics Inc.,
USA) linked to a camera (Grasshopper; Point Gray Research,
Inc., Canada). The video sequences contain the guidewire
moving in different directions with respect to the changes
of magnetic fields in eight coils of the robotic system [9].
Moreover, the dataset has multiple types of guidewire robots
with cluttered backgrounds and fast motion captured from top
views (see Fig. 3).

To train the proposed tracker, ground truth annotations are
created in a semi-automatic manner. A Particle Filter (PF)
based tracking algorithm [45] is employed with the allo-
cation of the tip location in the initial frames. Whenever
tracking fails, we manually allocated the tip location, and
then performed tracking. In order to generate a binary mask,
we extracted the tip by conducting otsu thresholding [46] near
the particle positions obtained by the PF algorithm. If the
segmentation result is not accurate, manual correction is per-
formed. Moreover, bounding boxes centered on the center of
mass of the binary masks are generated to train the detection
network.
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B. EVALUATION SETTINGS

We divided 11 videos into two groups (5 and 6 videos, respec-
tively), then performed 2-fold cross-validation. We first
trained a model with 4 training videos and a single video for
validation in the first fold, then applied the trained model to
the remaining 6 videos in the second fold. Next, we trained
a model with 5 videos and a single video for validation in
the second fold, thereafter applied the model to 5 videos in
the first fold. Evaluation was performed with the average
accuracy scores on all 11 videos.

The proposed method was compared to the conventional
feature based detection methods such as Boosting [13],
MIL [14], KCF [15], TLD [16], MEDIANFLOW [47], and
CSRT [17], as well as deep learning-based detection methods;
Faster RCNN [36] and GOTURN [18], including the segmen-
tation method U-Net [34]. Since most detection methods such
as Boosting [13], MIL [14], KCF [15], TLD [16], MEDI-
ANFLOW [47], CSRT [17] and GOTURN [18] predict a
bounding box instead of the tip binary mask, we extracted the
binary mask using otsu thresholding in the bounding box and
compared against the ground truth masks. Moreover, for the
methods which required the initial target object location such
as the feature based detection methods and GOTURN [18],
we allocated the tip position manually in the initial frame.
In the case of feature based-methods, evaluation was per-
formed on the entire set (11 videos) without cross validation
given offline training is not required.

Further, additional experiments with data augmentation are
included to confirm the robustness of the model to appear-
ance and pose variations. The augmented data samples are
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TABLE 1. Tracking performances of comparison methods.

Methods Dice ToU CLE | Failures | Length | Time(ms)
Boosting [13] 8.91 6.84 | 330.88 | 811.45 102.82 13.8
KCF [15] 3.27 3.19 | 312.68 | 747.82 22.18 31
MIL [14] 31.71 | 15.50 | 141.04 | 683.64 85.55 56.3
CSRT [17] 29.71 | 21.78 | 173.05 | 636.45 279.27 21.7
TLD [16] 46.69 | 15.68 | 29.83 326.45 191.55 316.2
MEDIANFLOW [47] 74.87 | 58.20 | 317.45 | 545.82 184.55 7.2
GOTURN [18] 68.11 | 27.47 | 56.47 317.45 126.36 38.3
Faster RCNN [36] 72.0 | 64.0 7.54 705.64 6.09 371.8
U-Net [34] 88.07 | 85.07 | 26.8 119.45 612.64 71.0
Proposed (Single) 96.04 | 85.13 0.37 0.027 914.64 19
Proposed (Double) 97.12 | 84.40 | 0.38 0.09 1014.91 19
Proposed (Triple) 98.51 | 86.99 | 0.36 0 1080.36 19
Proposed (Augmented) | 98.58 | 87.02 | 0.36 0 1080.36 19

created using transformations [48] such as scaling (from
0.5 to 1.5 ratio), horizontal and vertical flips, blurring with
gaussian filters, elastic deformations with different scaling
factors and elasticity coefficients [49] as well as rotations
(90, 180, 270 degrees) on each input image.

Tracking accuracy was measured by Dice score, Intersec-
tion over Union (IoU), and central location error (CLE). The
Dice score is a widely used overlap measure for pairwise
comparison of binary segmentations of the foreground with
the ground truth. Formally, it is represented as:

2 x (AN B)
A+B

where A is the ground truth and B is the predicated mask.
Dice coefficient ranges from 0 to 1, where 1 means complete
overlap. Further, the IoU metric, also referred to as the Jac-
card index, is another metric to quantify the percent overlap
between the target mask and our predicted output. It measures
the number of similar pixels between the target and prediction
masks divided by the total number of pixels present across
both masks as:

Dice = x 100 (1)

ANB

IoU = ——
|A| U |B|

x 100 2)

CLE is an evaluation metric to measure the Euclidean dis-
tance between the predicated center position and the ground
truth center position of the guidewire tip. The center position
was extracted from the binary mask. Formally, CLE is defined
as:

CLE = \J(xp — x¢? + Oy — 3 3)

where x,, y, are the predicted coordinates and x,,y, are the
ground truth coordinates. To demonstrate the effectiveness of
the proposed method, we also evaluated the tracking robust-
ness by measuring the tracking length and failure rates. For
the tracking length, we counted how long the tracker consis-
tently tracks the objects across the sequences. As for failure
rate, we report the total number of failures for each algorithm
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averaged over the total number of frames in the sequences.
If the center of mass distance of a tracked object from ground-
truth is larger a pre-defined threshold, we considered this as
a tracking failure and resumed tracking with re-initialization
of the center location until the last frame. The threshold was
heuristically set as 10 in our experiments.

Finally, we also measured tracking time per image.

C. QUANTITATIVE RESULTS

1) TRACKING ACCURACY

Table 1 shows the accuracy scores of several bench-
marked methods, including the proposed methods on the test
sequences according to three key metrics i.e. Average Dice,
IoU and CLE, respectively. The distributions of tracking
accuracy scores are also shown with box plots in Fig. 4.
In the majority of the test sequences, our method achieved
the highest scores in terms of Dice and IoU, as well as the
lowest scores for CLE (lower is better) among the compara-
tive methods.

KCF [15] reports the lowest performance at 3.27% and
3.19% for Dice and IoU, respectively. Although this method
requires the lowest computation, it fails to successfully track
the guidewire with reference to the central location as is
evident from the large CLE score of 312.68. KCF [15] tracker
was proposed to augment the principle ideas of Boosting [13]
and MIL [14] based trackers by exploiting mathematical
properties that make tracking faster and report tracking fail-
ures better than the previous. However, it fails in tracking
small object tips such as the guidewire, given its performance
is not reliable. More especially, these methods fail to recover
from occlusion.

On the contrary, MEDIANFLOW [47] reports the best
performance relative to all the feature-based methods includ-
ing one of the learning-based methods (GOTURN [18]),
i.e. 74.87%, 58.20% and 37.31% for Dice, IoU and CLE,
respectively. This tracker tracks a given object by considering
both the forward and backward directions in time as well

VOLUME 7, 2019
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as measures the differences between these trajectories for
accurate tracking across initial and current frames. Accurate
tracking is achieved via the selection of reliable trajecto-
ries and detection of failures by minimizing the forward-
backward error. However, this tracker fails under large motion
and scale variations. In several sequences, the guidewire
exhibits abrupt motion in-turn leading to failure. Moreover,
MEDIANFLOW [47] implicitly assumes a point-based rep-
resentation (a set of points initialized on a rectangular grid
within an initial bounding box) where the target object is
composed of small rigid patches; thus, when the object does
not satisfy this assumption, point voting fails and rejects
several points in the target frame, consequently increasing the
error rate.

As for the learning-based methods, U-Net [34] reports
the lowest CLE score and largely outperforms the coun-
terpart learning-based methods i.e. Faster RCNN [36]
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and GOTURN [18]. Our initial assumption was that
U-Net [34] may be effective at segmenting small objects
across frames compared to previous methods. Despite the rea-
sonable performance, owing to the nature of the architecture,
it is not built to recover from failures. Thus, by combining
both detection and segmentation in a single framework to
better address failures, our method reports 96.04% (+7.97)
when only a single patch/frame is considered during infer-
ence, marking a huge improvement over the approaches that
use either detection or segmentation models only. Moreover,
to better handle the challenge of abrupt motion we encode
robustness to large displacements by using multiple frames
i.e. double or triple. Notably, optimal performance is achieved
with 3 frames as using more than 3 frames results in subopti-
mal performance due to the catheter tip moving out scope of
the patch region and as a result some patches among succes-
sive frames may not contain any catheter tip. The accuracy
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Frame 135

Frame 254 Frame 325

FIGURE 6. From top to bottom: inputs, TLD [16], MEDIANFLOW [47], GOTURN [18], FRCNN [36], and U-Net [34] and the
proposed method. Intermediate results highlighting failure cases across different methods.

of the model trained with the augmented data was slightly
better.

2) TRACKING ROBUSTNESS

Fig. 5 (a) and (b) present the tracking failure rate and length,
respectively. Indeed, most conventional methods failed in
many frames, and thus required re-initialization that resets
the position with respect to the ground-truth. Notably, only
TLD [16] and MEDIANFLOW [47] were able to consider
the deformation of the guidewire tip exhibiting fewer failures
compared to Faster-RCNN [36] and GOTURN [18]. Due to
the small size of the guidewire tip and non-rigid shape, most
trackers failed to successfully recover from failure, especially
in sequences with an abrupt motion (see Section 4.4 for
sequences with such motion). On the other hand, U-Net [34]
was consistent across all sequences with little to no fail-
ure reported. We hypothesize the segmentation stage of the
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proposed method was significant in avoiding failure by con-
sidering the small size of the tip. Moreover, we complement
this setup with auto re-initialization and ensure the central
location of the target in all time-steps.

3) PROCESSING TIME

We report the processing time per image of each tracker on
the right side of Table 1. Conventional trackers KCF [15]
and MEDIANFLOW [47] are fast, but the accuracy scores
were limited. GOTURN [18] was the fastest among the pre-
vious deep learning-based methods, but the accuracy was
low. On the other hand, our patch-wise segmentation method
shows considerable speed up (less than 20ms) by reducing the
input feature size. Moreover, no significant change was noted
among the proposed methods (i.e., single, double, and triple)
since the size of input features was considerably small even
with multiple adjacent frames.
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D. QUALITATIVE RESULTS

Fig. 6 illustrates the performance of several methods on a
test video where many failures were incurred. Most meth-
ods did track the object correctly across several frames, but
tracking accuracy and robustness scores were lower espe-
cially in the case of MEDIANFLOW [47] which fails to
correctly estimate the bounding box after an initial failure.
In some cases, the predicted bounding box showed incorrect
scaling, further highlighting the challenge of scaling also
observed by GOTURN [18] which falsely detected the wire
as a tip (Fig. 6, row 3). Moreover, GOTURN [18] and Faster-
RCNN [36] often exhibited drifting, resulting in failure to
recover from false detections. Notably, U-Net [34] showed
consistent tracking in the first few sequences, however, sev-
eral predicted false positives later affect tracking in the next
frames. Moreover, when failure occurs there is a large error
in terms of central location. Despite the failures incurred
by prior methods, our proposed approach shows consistent
performance under the challenging scenarios. Based on the
results, we can confirm the effectiveness of our proposed
patch-wise tip segmentation strategy. Further, our meth-
ods show more consistent tracking compared to bounding-
box regression methods in small search windows without
sacrificing efficiency.

V. DISCUSSION
The proposed methods considering single and double pre-
vious frames failed once in some test sequences with an
average tracking failure rate of 0.027 and 0.09 points in both
cases. Interestingly, the proposed method with triple frames
successfully tracked the guidewire tip with 100% accuracy
in all the test sequences, because multiple patches better
encode large motion displacements whereas augmentation
facilitates more scale and pose invariance. The proposed
method also emphasizes efficient feature learning by reduc-
ing the search window centered on the target object. Consid-
ering the tracking length; methods with low failures report
relatively prolonged tracking times. Overall, the proposed
method consistently outperforms all methods with consider-
able time, asserting our initial hypothesis that using features
in successive localized frames plays a crucial role in improv-
ing performance emphasizing less errors across time-steps.

We also confirm the performance of the proposed method
when trained with extensive data augmentation. The proposed
network was trained with 11,884 frames, which is consider-
ably sufficient and included several rotational and translation
variations. Thus, it was robust to variations during inference.
Further, additional experiments with data augmentation show
that the proposed method was robust to both scaled and low-
quality images as well as robust towards pose variance. The
proposed model trained with augmented data achieved the
best accuracy in terms of dice score and IoU.

Despite the considerable performance of the proposed
method across different settings; we highlight a few draw-
backs and limitations that require careful attention; First of
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all, robot control experiments were not considered in this
study; thus, it would be beneficial to assess the impact of
varied control settings as a function of model performance
for both training and inference. In addition, this work largely
focuses on experimental settings based on camera (natural)
images and does not consider X-Ray fluoroscopic images as
well as how the proposed method can be applied in the later
setting given the domain shift between fluoroscopy and cam-
era images. In future, we plan to address these drawbacks and
conduct robot control experiments that move the guidewire
tip to a desired location without sensors. Furthermore, we will
extend our method to automatically track robot guidewire tips
in X-ray images by adopting the domain transfer learning.

VI. CONCLUSION

In this paper, a deep learning-based tracking method is pro-
posed for localizing small guidewire robot tips in video
sequences. The proposed tracker consisting of a detection
and segmentation network accurately delineates small tips
by utilizing both spatial and temporal features. Compared to
previous guidewire tracking methods, the proposed method
does not require multiple sensors, heuristic manual tuning,
and post-processing steps. Further, we show that pixel-wise
predictions enable accurate guidewire tip localization.
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