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ABSTRACT This article investigates the non-integer order model and the controller for aerodynamic load
simulator system using fractional order adaptive fuzzy back stepping method. Extra torque disturbance is
analyzed using fractional mathematics and a non-integer state predictor is proposed for the estimation of
the state vector. For the lumped uncertainty, a fractional order compensation control is formulated using
Lyapunov method. Algebraic estimator is derived to estimate the unknown parameters of the system.
The proposed controller is simpler in structure and robust to noise, initial conditions. Simulation results
authenticate the performance of the proposed control method.
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I. INTRODUCTION
Ahigh performance servo actuation system is a crucial part
of the guided flight vehicles. Hardware in the loop simulators
play an important role in the laboratory based testing and
qualification of the aircraft,s actuation system, thus its utiliza-
tion saves the cost associated with field trials and also reduces
human labor. The primary function of the actuation system
is to drive the control surfaces of the aircraft. During real
flights, the aerodynamic forces and torques are introduced
on the control surfaces of the flight vehicle. The applied
aerodynamic forces and torques act as load disturbances for
the actuation system. To qualify the flight actuators, a load
simulator test bench is used in the laboratory environment.
Generally a load simulator system consists of a loading motor
and the actuator under test. The loading motor is directly
coupled to the loaded actuator, so the mathematical dynamics
of the hybrid system are very complex. There are three types
of load simulator systems that are categorized as hydraulic,
pneumatic and electrical types [1].

For the electrical load simulator system (ELS), the details
of the integer order modeling and control system are
presented in author’s previous work [1], [2]. The electro-
mechanical systems are associated with several nonlinear
factors that need to be addressed using feedback control
system. These factors include the nonlinear friction, external
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disturbances, mechanical vibrations and parametric uncer-
tainties. Beside these phenomenons, the most important fac-
tor which has to be considered in the formulation of the
control law for ELS is the extra torque disturbance. The
extra torque disturbance is induced in the loading motor due
the movement of the loaded actuator [3]–[5]. Extra torque
disturbance is a function of the velocity, acceleration and the
jerk’s difference between the loading and loaded motors thus
the overall inertia of the system should be exactly known [6].
Practically it is hard to calculate the total inertia of the system,
so the control methods presented by the authors of [3]–[7] are
not being very effective practically. Although the disturbance
due to the velocity component has been compensated but
the acceleration and jerk differences have not been consid-
ered. To effectively compensate the extra torque disturbance,
friction and uncertainties, a robust control law is presented
using back stepping method [8]. In [9], a robust compound
control method is formulated for the electro-hydraulic load
simulator, which is subject to the extra torque disturbance,
multi-channel cross coupling and uncertainties. The com-
pound control is robust assuming that the dynamics of the
system are exactly known. Since the dynamics of the system
are very complex, so practically the control performance may
deteriorate since there is no adaptive component formulated
for the control law preseted in [9].

Adaptive robust control methods have been proposed
in [8]–[13] for electro-hydraulic load simulator systems.
A nonlinear integer order mathematical model is developed
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in [1] and adaptive fuzzy back stepping torque control method
is proposed for the torque tracking loop of the electrical
load simulator system. Control performance of a feedback
loop also depends on the identification and compensation
of the nonlinear friction. Most of the previous work pre-
sented in the literature is focused on the friction compensation
using empirical model based approach. The nonlinear friction
phenomena associated with electro-hydraulic load simulator
system, is compensated using LuGre model [14], adaptive
function [15] and modified LuGre model [16]. Model based
friction compensationmay be ineffective because it indirectly
depends on the accuracy of identified parameters. If the
model parameters are not estimated accurately then themodel
based friction compensation may lead to poor control perfor-
mance. Friction compensation through adaptive algorithms
is effective but it is hard to tune the learning rates. Fuzzy
and neural networks have been proposed to compensate the
nonlinear friction for the robot manipulators [17], [18] but
the approximation error may lead to poor performance of the
closed loop control system [19]. The unknown or uncertain
system parameters have also an adverse effects on the sys-
tem control performance so it must be estimated online or
offline. Algebraic method is a well-known method for the
online parameters adaptation which is robust against noise
and nonzero initial conditions. Algebraic method is proposed
in [1], [20], [21] to estimate the unknown system parameters.

To formulate a model based adaptive robust direct torque
control, it is essential to estimate the state vector of the
system. In ELS system, an analog torque sensor is used for
the measurement of loading torque, but these sensors induce
a lot of noise in the feedback signal. Similarly mechanical
vibrations may override the electrical signal recorded from
the analog torque sensor. So practically it is almost impossible
to formulate a model based control law using the measured
feedback signal or its derivative. Various techniques have
been reported in [23]–[27] for the estimation of state vector
in the direct torque control applications. The above cited
literature deals with the integer order modeling and control of
the load simulator systems. Nowadays fractional calculus is
the focus of research community which is widely applied by
the automatic control engineers and scientists. The first frac-
tional order controller ‘‘CRONE’’ was proposed in 1996 [27].
Later on the researchers extended the application of fractional
calculus to other advanced control methods such as sliding
mode and terminal sliding mode controllers [29], [30]. Apart
from the non-integer controllers, fractional order modeling
has emerged as a new topic of interest. In this regard some
recent experimental results have been published in [31]. In the
published work [31], it has been shown that fractional order
controllers based on fractional order system models exhibit
additional advantages such as low power and low mem-
ory consumption when implemented over the processors.
A robust control system based on fractional order model of a
permanent magnet synchronous machine is discussed in [32].
The authors have explained the fractional order model identi-
fication process in a detailed manner. Similarly the fractional

order model and a control system for a robotic manipula-
tor is proposed in [33]. In [34] the authors presented the
passive implementation of fractional order impedance using
fractional RLC circuits and elements. The solution of a frac-
tional order continuously variable order spring mass damper
equation is presented in [35] and the applications of fractional
order DC motor model for control system design is discussed
in [36]. In the author’s previous work, a fractional order
fuzzy back stepping controller is proposed [39]. Although
it has been shown that the fractional order controllers per-
form better as compared to the integer order but since the
controllers are formulated using integer order dynamics of
the ELS system, so the advantages presented in [31] have
not been exploited. The hardware realization of fractional
order controllers is presented in [40] and [41] and its detailed
stability analysis is given in [42].

Based on the above literature survey, this work is focused
on deriving a fractional order dynamic model of the ELS sys-
tem and then using the derived model a non-integer adaptive
fuzzy back stepping torque control law is formulated. The
proposed fractional order control law is different in formu-
lations as compared to the author’s previous work [1]. A non-
integer state predictor is proposed for the estimation of the
state vector and the algebraic method is used to estimate the
unknown parameters of the system. Moreover to estimate
the uncertainty, adaptive laws are derived using fractional
order Lyapunov function. The proposed control has more
degree of freedom as compared to its integer order version
presented in [1]. A control component namely transient per-
formance controller [1] is eliminated and it is verified from
the numerical simulations that the transient response of the
system is enhanced using fractional order tuning. As com-
pared to [1] and from the methodological point of view the
original contribution of this proposal is obvious from the
following:

1: Mathematical treatment of fractional calculus is totally
different from the integer calculus.

2: The previous integer order model of the ELS system [1]
has been extended to the fractional order model( Eq. 22-24.)

3: With the fractional order model the derivation of the
fractional order control system is different as compared to the
integer order controller [1].

4: In the proposed work, the first derivative of the Lya-
punov function contains fractional order terms so the math-
ematical treatment of Eq. 33, 34 and so on is quite different
from the previous work [1]

5: In this work, the non-integer model parameters of the
actual system are estimated from the experiment while in the
previous work this part was not discussed.

7: The derived adaptive laws given in Eq. 41 and the
algebraic estimator on Eq. 53 are non-integer.

The rest of the paper is organized as following. In section 2
the readers are introduced with the basics of the frac-
tional calculus, analysis of extra torque disturbance and the
non-integer modeling of ELS system. In section 3, the frac-
tional order controller is derived step by step and section 4
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discusses the results. Finally the conclusion is made in
section 5.

II. FRACTIONAL ORDER MATHEMATICAL MODELING
AND ANALYSIS OF EXTRA TORQUE
All the previous research work is focused on the integer
order modeling and control of ELS system. But in practice,
the dynamics of the physical elements like Inductor and
capacitor can be modeled using fractional calculus. To iden-
tify the accurate dynamics of the system and for formulation
of control law, it is necessary to understand the basics of the
fractional calculus.
Definition 1: The Riemann–Liouville fractional order inte-

gration and derivative of a function f (t)are expressed as
shown in Eq. 1 and Eq. 2 [37], [38].

t0 It
αf (t) = D−αt f (t) =

1
0(α)

t∫
t0

f (τ )

(t − τ )1−α
dτ (1)

t0Dt
αf (t) =

dα

dtα
f (t) =

1
0(m− α)

dm

dtm

t∫
t0

f (τ )

(t − τ )α−m+1
dτ

(2)

Here 0(.) represents the gamma function,, m ∈ N and m− 1
< α ≤ m

From Eq. 1 and Eq. 2 the following relation holds:
t0Dt

α(t0 It
αf (t)) = f (t)

Definition 2: The Caputo fractional order derivative of a
function f (t) is given by [37], [38].

t0Dt
αf (t)=


1

0(m−α)

t∫
t0

f (m)(τ )

(t−τ )α−m+1
dτ ; m−1<α<m

dm

dtm
f (t); , α = m

(3)

From [37], the Caputo fractional order integral is similarly
expressed as of Eq. 1. So by combining Eq. 1 and Eq. 3 the
following relation also holds true for Caputo definitions:
t0Dt

α(t0 It
αf (t)) = f (t). Rieman-Liouville and Caputo defini-

tions are very much similar; the only difference lies in dealing
with the initial conditions. In Rieman-Liouville definition,
the initial conditions are non-integer while for Caputo defi-
nition they are of integer order.
Definition 3: Laplace transform of a fractional order

derivative of a function is defined as following [41].

L(Dαf )=sαF(s)−
m−1∑
i=0

sα−i−1f (i)(0) ; m−1<α ≤ m (4)

Here i and m represent integer numbers. In this work frac-
tional operator is approximated using Oustaloup recursive
method [27]. Let the fractional operator be represented as;

W (s) = sα ;α ∈ R+ ; (5)

FIGURE 1. Applied step command and motor angular response.

Let the function W(s) is approximated using a rational func-
tion of the form;

Ŵ (s) = C0
N
5

k=−N

s+ wk
s+ w′k

(6)

The above function is approximated for a frequency range of
[wb wh] using the following relations:

{w′k=wb

[
wh
wb

] k+N+0.5(1−α)
2N+1

;wk=wb

[
wh
wb

] k+N+0.5(1+α)
2N+1

(7)

Here k = −N : N ,C0 = whα ,α represents fractional order,
wb and wh represent high and low band frequencies. In this
work [wb wh] = [0.001 1000]rad/sec, the approximation
order is N = 4 and fractional operator is tested in the range
between 0 and 1.
Remark 1: In light of the concepts presented in [37], in the

rest of the paper the Riemann–Liouville definitions are used
for fractional operator.

A. RESEARCH MOTIVATION AND JUSTIFICATIONS
A fractional order controller is proposed for the ELS system
using non-integermodel. To identify fractional ordermechan-
ical and electrical dynamics of the system, a single exper-
iment is performed using permanent magnet synchronous
motor (PMSM) with unknown parameters. A step signal of
vq = +15Volts is applied to the drive of motor with inverse
park/Clark transformation and it moves by 20 degrees which
corresponds to +13.4 Volts as per the measurement taken
from the position sensor. Fig. 1 shows applied command
and motor position response. MATLAB parameter estima-
tion toolbox is used to approximate the unknown parame-
ters of the PMSM motor with integer order and fractional
order dynamics. The electrical parameters of the motor are
assumed to be the same in d and q reference frames. The
step command is treated as input and the measured angular
response as output for MATLAB parameter estimation tool-
box. Nonlinear least square optimization method is selected
with 100 maximum iterations and 400 maximum function
(evals). ODE4 (Runge- Kutta) solver is used with fixed step
size of the order 0.0004 sec. The cost function is the sum
of squared errors (SSE). Fig. 2a compares motor’s measured
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FIGURE 2. Experimental VS identified output response (a) integer order
model (b) fractional order model.

TABLE 1. Identified parameters of motor with integer and fractional
order dynamics.

and identified output response with integer order electrical
and mechanical dynamics. The estimated parameters with
integer order dynamics are shown in Table. 1. The second
case deals with estimation of motor parameters when its
electrical and mechanical dynamics are non-integer in nature
i.e. [Lsα + R]−1 and [Jsα + B]−1. Here L and R represent
the inductance and resistance of the motor coil; J and B
represent the inertia and damping coefficient and α is the
fractional operator. For the second case α = 0, 8. Fig. 2b
shows system’s measured and identified output response
with fractional order dynamics. The estimated parameters are
given in Table. 1. For the similar identified responses shown
in Fig. 2a and Fig. 2b, the estimated parameters for integer
and non-integer cases are different. From this experiment it is
concluded that the dynamics of the motor can be fractional in
nature. It is further concluded that for the nearly same output
response the identified system parameters are different. The
analysis presented in the above section justifies fractional
order representation of the dynamics of the ELS System.

B. FRACTIONAL ORDER MODELING
The assumptions listed in author’s previous work [1] are used
to derive fractional order model of ELS system.
Assumption 1: System parameters are unknown, slowly

time varying and upper bounded such that

a = an +1a(t)

b = bn +1b(t)

c = cn (8)

From [1] we have the following relation;{
b =

KsKt
JRs
; a =

KbKt
JRs
+
B
J
; c =

Ks
J

From (8), {an bn cn} represent nominal system parameters and
{an bn cn} are assumed to be the slow time varying input gain
parameters such that

a ∈ �1 : {amin ≤ a ≤ amax}

b ∈ �2 : {bmin ≤ b ≤ bmax}

c ∈ �3 : {cmin ≤ c ≤ cmax} (9)

Assumption 2: The unknown system parameters are esti-
mated using algebraic method with finite time convergence
property. The effects of slow time varying parameters along
with other disturbances have been modeled as lumped distur-
bance term which is expressed as following:

9(t) ∈ �4 : f ∗(dp(t), def ) (10)

Here 9(t) represents the lumped disturbance and it is
represented as 9(t) = cndef + dp(t), f ∗(dp(t), def ) is a
function of dp(t) and def , �4 represents range of disturbance
term,dp(t) is disturbance term due to parameters variation and
def represents fuzzy error. Further details are available in [1].
Assumption 3: To simplify the calculations, electrical

dynamics of the system LsqDαiq∗ and LsqDαiq are ignored.
A direct drive permanent magnet synchronous motor

(PMSM) acts as ELS system. Sinusoidal back emf of PMSM
motor makes it convenient to drive it by sinusoidal excitation
waveform with minimum torque ripples [28]. The fractional
order dynamics of ELS system in rotating reference frame can
be written as

ud = idRs + LsdDαid − PLsqiqwm
uq = iqRs + LsqDαiq + PLsd idwm + P9mwm

Te =
3P
2
[9miq + (Lsd − Lsq)id iq] = JDαwm

+Bwm + Tf + TL (11)

Here Dα represents fractional derivative, α is the order of
fractional operator. All other parameters of Eq. (11) are given
in Appendix B. The simplified model of torque sensor is
expressed in Eq. 12.

TL = Ks(θm − θa) (12)

To decouple the speed and current dynamics of the system and
to achieve largest torque operation, d –axis reference current
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FIGURE 3. ELS system configuration.

idr is set to zero. The inner loop PI controllers are used to
regulate d and q–axis currents. Fig. 3 shows working diagram
of ELS system. The following procedures are adopted to
derive a meaningful state model

Step1: From Fig. 3 if the servo actuator is following a
reference command i.e. θa 6= 0 with zero excitation of ELS
loading motor, i.e. uq = 0, then as a result of the actuator,s
movement, ELS loading motor also moves with following
fractional order dynamics;

−Kbwa = iq ∗ (Rs)+ LsqDαiq ∗ (13)

Tsft − Te∗ = −JDαwa − Bwa (14)

In Eq. (13) Kb = P9m is the back emf constant.
Step2: If both motors are excited i.e.θa 6= 0 and uq 6= 0,

then from (11), the fractional order model can be derived as;

uq= (iq − iq∗)Rs + LsqDα(iq − iq∗)+ Kb(wm − wa)

(15)

Te − Te∗=Kt [iq − iq∗] = [
3P
2
9m][iq − iq∗]

= JDα(wm − wa)+ B(wm − wa)− Tsft + Tf + TL
(16)

As per Assumption 3, by simplifying Eq. (15)one obtains the
following expression:

(iq − iq∗) =
uq − Kb(wm − wa)

Rs
(17)

Set Kt = 3P
2 9m and by replacing Eq. (17) in Eq. (16), one

obtains:

Kt [
uq − Kb(wm − wa)

Rs
] = JDα(wm − wa)+ B(wm − wa)

− Tsft + Tf + TL (18)

Multiply Eq. (18) by Ks

KsDα(wm − wa)

= −Ks[
B
J
+
KbKt
JRs

](wm − wa)

+ (
KsKt
JRs

)uq −
Ks
J
(Tsft + Tf )−

Ks
J
TL (19)

Let a = [BJ +
KbKt
JRs

] , b = [KsKtJRs
] , c = Ks

J . Similarly Using
Eq. (12),DαṪL = KsDα(wm − wa) and ṪL = Ks(wm − wa),
Eq. (19) is written as

DαṪL = −aṪL + buq − cf (Textra,Tf )− cTL (20)

In Eq. (20),the term cf (Textra: is expressed as: cf (Textra,Tf ) =
Ks
J (Tsft + Tf ). Here f (Textra,Tf ) corresponds to the distur-
bance torque acting on the loading motor due to the actua-
tor’s movement and friction. Using assumption 1, Eq. (20) is
expressed as following:

DαṪL = −(an +1a(t))ṪL + (bn +1b(t))uq
− cnf (Textra,Tf )− cnTL (21)

Eq. (21) is simplified as following:

DαṪL = −anṪL + bnuq
− cnTL − cnf (Textra,Tf )− dp(t) (22)

dp(t) = 1a(t)ṪL +1b(t)uq (23)

The lumped disturbance is expressed as9(t) = cndef +dp(t).
It consists of fuzzy approximation error and time varying
parameters disturbance. A fractional order state predictor is
formulated as following:

Dα ˆ̇TL=−an ˆ̇TL+bnuq−cnT̂L−cn f̂ (Textra,Tf )+9̂(t) +0E

(24)

Heref̂ (Textra,Tf ) is nonlinear term to be estimated online
using fuzzy system, 0 is gain matrix, E represents error
between actual plant and state predictor, i.e. E = e =
T̂L − TL; ė = ˆ̇TL − ṪL . [ ˆ̇TL , T̂L] represents state vector to
be estimated and 9̂(t) is the adaptive controller for the com-
pensation of the lumped disturbances to be derived later on.

III. CONTROL LAW FORMULATION
In this section a fractional order torque control law is derived
based on the identified fractional order model presented in
Eq. (22). Extra torque and nonlinear friction are compensated
using fractional order adaptive fuzzy system. Fractional order
algebraic method is used to estimate the unknown parameters
of the system. Moreover fractional order lumped uncertainty
controller is formulated using Lyapunov method. The work-
ing diagram of the overall control system is shown in Fig. 4.

With desired and output loading torque vector {Tr TL} ,
the error vector is expressed as following:{

e1 = TL − Tr ; ė1 = ṪL − Ṫr ; e2 = ė1 (25)

From Fig.4, error dynamics between system and state predic-
tor are formulated as following:

e = T̂L − TL; ė = ˆ̇TL − ṪL (26)

Using Eq. 22, 24 and 26, the fractional order error dynamics
between the actual plant and the state predictor are expressed
as Eq. 27.

Dα ė=Dα ˆ̇TL − DαṪL = −anė− cne+ ( ˆ9(t)−9(t))+0E

(27)
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FIGURE 4. Controller working diagram.

In Eq. 27, the lumped uncertainty term is expressed as9(t) =
cndef + dp(t), while the factor def is written as: def =
f̂ (Textra,Tf ) − f (Textra,Tf ). From Eq. (25), define the first
virtual control law as a function of error in form of Eq. 28.

ė1 = α1 − Ṫr (28)

Here α1 represents the first virtual control. Choose a Lya-
punov function as V1 = 1

2e1
2. From the first derivative of V1,

the first virtual control law is derived as α1 = −q1e1 + Ṫr .
By combining α1 andV̇1 one obtains;

V̇1 = −q1e12 (29)

In Eq. 29 q1 represents a constant. By letting q1 > 0 the
expression in Eq. 29 is rewritten as V̇1 < 0. The second
tracking error vector is written as following:

[e2 = ṪL − α1 ;Dαe2 = DαṪL − Dαα1] (30)

By combining Eq. (22) and Eq. (30), one obtains.

Dαe2=−anṪL+bnuq−cnTL−cnf (Textra,Tf )−dP(t)−Dαα1
(31)

Using property of fractional order derivatives;ė2 =

D1−α(Dαe2) and ë = D1−α(Dα ė), choose the second Lya-
punov function as expressed in Eq. 32.

V2 = V1 +
1
2
e22 +

1
2ηi

n∑
i=1

D−α θ̃iD−α θ̃i

+
1
2γ

D−α(9̂(t) −9(t))D−α(9̂(t) −9(t))+
1
2
ė2 (32)

In Eq. 32, θ̃i represents an unknown parameter to be estimated
by the fuzzy system. Here θ̃i is explicitly utilized to estimate
the unknown function f (Textra,Tf ). By taking first derivative
of Eq. (32)yields:

V̇2 = V̇1 + e2ė2 +
1
ηi

n∑
i=1

D1−α θ̃iD−α θ̃i

+
1
γ
D1−α(9̂(t) −9(t))D−α(9̂(t) −9(t))+ėë (33)

V̇2 = V̇1 + e2D1−α[Dαe2]+
1
ηi

n∑
i=1

D1−α θ̃iD−α θ̃i

+
1
γ
D1−α(9̂(t) −9(t))D−α(9̂(t) −9(t))

+ ėD1−α(Dα ė) (34)

Here learning rates of adaptive control system are represented
as ηi,γ . By combine Eq. 27, Eq. 31 and Eq. 34, one obtains
the following expression.

V̇2 = V̇1 + e2D1−α[−anṪL + bnuq
− cnTL − cnf (Textra,Tf )− dp(t) − Dαα1]

+
1
ηi

n∑
i=1

D1−α θ̃iD−α θ̃i +
1
γ
D1−α(9̂(t) −9(t))

∗D−α(9̂(t) −9(t))

+ ėD1−α(−anė− cne+ 9̂(t) −9(t) + 0E) (35)

Choose the proposed control law as following:

uq =
1
bn

(−q2Dα−1e2 + anṪL + cnTL + cn f̂ (Textra,Tf )

+Dαα1)−
1
bn
Dα−1[k1e2+k2. sgn(e2)]+

9̂(t)
bn

(36)

In Eq. (36) k1 and k2 represent reaching law gain matrix and
q2 is a constant.

A. STABILITY PROOF
To prove the stability of the closed loop system, com-
bine Eq. (35) and Eq. (36) and the following expression is
obtained.

V̇2 = −q1e21 − q2e
2
2 + e2D

1−α[cn f̂ (Textra,Tf )

− cnf (Textra,Tf )− dp(t) + 9̂(t) − k1Dα−1e2

− k2.Dα−1sgn(e2)]+
1
ηi

n∑
i=1

D1−α θ̃iD−α θ̃i

+
1
γ
D1−α(9̂(t) −9(t))D−α(9̂(t) −9(t))

+ ėD1−α(−anė− cne+ 9̂(t) −9(t) + 0E) (37)

Define fuzzy error def as following [17].

def = f (Textra,Tf )− f̃ (Textra,Tf )/θ∗,
n∑
i=1

θ̃iξi(θ̇i) = cn f̂ (Textra,Tf )/θ − cn f̃ (Textra,Tf )/θ∗ (38)

By adding and subtracting cn f̃ (Textra,Tf )/θ∗ in Eq. (37), one
obtains:

V̇2=−q1e21 − q2e
2
2 + e2D

1−α[
n∑
i=1

θ̃iξi(θ̇i)+(−cndef − dp(t))

+ 9̂(t) − k1Dα−1e2 − k2.Dα−1sgn(e2)]

+
1
ηi

n∑
i=1

D1−α θ̃iD−α θ̃i
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+
1
γ
D1−α(9̂(t) −9(t))D−α(9̂(t) −9(t))

+ ėD1−α(9̂(t) −9(t))+ ėD1−α(−anė− cne+ 0E)

(39)

In Eq. (39),−9(t) = −cndef − dp(t). By re- arranging
similar terms in Eq. 39, one obtains

V̇2 = −q1e21 − q2e
2
2 + [e2

n∑
i=1

D1−α θ̃iξi(θ̇i)

+
1
ηi

n∑
i=1

D1−α θ̃iD−α θ̃i]+ e2D1−α(9̂(t) −9(t))

+
1
γ
D1−α(9̂(t) −9(t))D−α(9̂(t) −9(t))

+ ėD1−α(9̂(t) −9(t))− k1e22 − k2. |e2|

+ ėD1−α(−anė− cne+ 0E) (40)

By defining Ẽ9(t) = (9̂(t) − 9(t)) the following adaptive
laws are derived using Eq. (40){

D−α θ̃i = −ηie2ξi(θ̇i)
D−αẼ9(t) = −γ

−1(e2 + ė)
(41)

After solving Eq. (40) and Eq. (41) one obtains:

V̇2 = −q1e21 − q2e
2
2 +

n∑
i=1

D1−α θ̃i[e2ξi(θ̇i)− e2ξi(θ̇i)]

+D1−αẼ9(t)[e2 + ė− e2 − ė]− k1e22 − k2. |e2|

+ ėD1−α(−anė− cne+ 0E) (42)

V̇2 = −q1e21 − q2e
2
2 − k1e2

2
− k2. |e2|

+ ėD1−α(−anė− cne+ 0E) (43)

FromEq. (43), by letting the term ėD1−α(−anė−cne+0E) =
µ, Eq. 43 is expressed in the following form:

V̇2 = −ε − k2. |e2| + µ (44)

The accumulated term ε = −q1e21 − q2e
2
2 − k1e2

2 is always
negative. From Eq. (44) by choosing q1 > 0, q2 > 0, k1 >
0, k2 > µ,where k2 is positive, then it is easy to show that the
first derivative of the Lyapunov function V̇2 < 0, so sliding
condition exists and e2 = 0 is zero. From Eq. (29)V̇1 < 0,
it means that e1 = 0; t →∞. When sliding condition occurs,
then from Eq. 25 it is concluded that TL ≈ Tr and ṪL ≈ Ṫr
which shows that the closed loop system is stable.

B. ALGEBRAIC PARAMETERS ESTIMATION
With perfect compensation control, the simplified version of
Eq. (22) is expressed in the following form:

DαṪL + anṪL + cnTL = bnuq
D1+αTL + anṪL + cnTL = bnuq (45)

The algorithm is derived based on the concepts presented
in [19], [20]. Using Definition 4, the Laplace transform of

TABLE 2. ELS motor and controller parameters.

Eq. (45) yields:(
s1+αTL(s)− sαTL(0))+ an(sTL(s)− TL(0))
+cnTL(s) = bnuq(s)

)
(46)

Multiply (46) by s2(
s3+αTL(s)− s2+αTL(0)− s2ṪL(0)

)
+ an(s3TL(s)

− s2TL(0))+ s2cnTL(s) = s2bnuq(s) (47)

Take 3rd derivative of (47) with respect to s

d3

ds3
(s3+αTL(s))+ an

d3

ds3
(s3TL(s))

+ cn
d3

ds3
s2TL(s) = bn

d3

ds3
(s2uq(s)) (48)

By expanding Eq. (48), the resultant expression can bewritten
in the following form:

s3+α
d3

ds3
TL(s)+ 3(3+ α)s2+α

d2

ds2
TL(s)

+3(3+ α)(2+ α)s1+α
d
ds
TL(s)

+(3+ α)(2+ α)(1+ α)sαTL(s)


+ an(s3

d3

ds3
TL(s)+ 9s2

d2

ds2
TL(s)+ 18s

d
ds
TL(s)

+ 6TL(s))+ cn(s2
d3

ds3
TL(s)+ 6s

d2

ds2
TL(s)+ 6

d
ds
TL(s))

= bn(s2
d3

ds3
uq(s)+ 6s

d2

ds2
uq(s)+ 6

d
ds
uq(s)) (49)

In Eq.(49), the highest derivative of the complex variable is
of 3+ αth order. Multiply Eq. (49) by s−3−α d3

ds3
TL(s)+ 3(3+ α)s−1

d2

ds2
TL(s)+ 3(3+ α)(2+ α)

∗s−2
d
ds
TL(s)+ (3+ α)(2+ α)(1+ α)s−3TL(s)


+ an(s−α

d3

ds3
TL(s)+ 9s−α−1

d2

ds2
TL(s)+ 18s−α−2

d
ds
TL(s)

+ 6s−α−3TL(s))+ cn(s
−α−1 d3

ds3
TL(s)+ 6s

−α−2 d2

ds2
TL(s)

+ 6s−α−3
d
ds
TL(s)) = bn(s

−α−1 d3

ds3
uq(s)+ 6s

−α−2 d2

ds2
uq(s)

+ 6s−α−3
d
ds
uq(s)) (50)
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FIGURE 5. a) Extra torque disturbance (b) Enlarged view.

Multiply Eq. (50) by s−1 and s−2 to get another two equations
of the form:
s−1

d3

ds3
TL(s)+ 3(3+ α)s−2

d2

ds2
TL(s)

+3(3+ α)(2+ α)s−3
d
ds
TL(s)+ (3+ α)

∗(2+ α)(1+ α)s−4TL(s)


+ an(s−α−1

d3

ds3
TL(s)+ 9s−α−2

d2

ds2
TL(s)

+ 18s−α−3
d
ds
TL(s)+ 6s−α−4TL(s))+ cn(s

−α−2 d3

ds3
TL(s)

+ 6s
−α−3 d2

ds2
TL(s)+ 6s−α−4

d
ds
TL(s)) = bn(s

−α−2 d3

ds3
uq(s)

+ 6s
−α−3 d2

ds2
uq(s)+ 6s−α−4

d
ds
uq(s)) (51)

s−2
d3

ds3
TL(s)+ 3(3+ α)s−3

d2

ds2
TL(s)

+3(3+ α)(2+ α)s−4
d
ds
TL(s)

+(3+ α)(2+ α)(1+ α)s−5TL(s)


+ an(s−α−2

d3

ds3
TL(s)+ 9s−α−3

d2

ds2
TL(s)

+ 18s−α−4
d
ds
TL(s)+ 6s−α−5TL(s))+ cn(s

−α−3 d3

ds3
TL(s)

+ 6s
−α−4 d2

ds2
TL(s)+ 6s−α−5

d
ds
TL(s)) = bn(s

−α−3 d3

ds3
uq(s)

+ 6s
−α−4 d2

ds2
uq(s)+ 6s−α−5

d
ds
uq(s)) (52)

FIGURE 6. Estimated parameters.

FIGURE 7. Enlarged view.

FIGURE 8. Measured TL with noise.

Re arranging Eq. (50), (51) and (52)

anA11 + bnA12 + cnA13 = B1
anA21 + bnA22 + cnA23 = B2
anA31 + bnA32 + cnA33 = B3 (53)

Expression (53) can be represented in matrix form as
following:A11 A12 A13

A21 A22 A23
A31 A32 A33

  anbn
cn

 =
B1B2
B3

 (54)
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FIGURE 9. Estimated parameters from noise measurement.

FIGURE 10. (a) Estimation of extra torque (b) Enlarged view.

From theory of linear algebra the solution is written in the
form given below.

an =

∣∣∣∣∣∣
B1 A12 A13
B2 A22 A23
B3 A32 A33

∣∣∣∣∣∣∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣
, bn =

∣∣∣∣∣∣
A11 B1 A13
A21 B2 A23
A31 B3 A33

∣∣∣∣∣∣∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣
,

cn =

∣∣∣∣∣∣
A11 A12 B1
A21 A22 B2
A31 A32 B3

∣∣∣∣∣∣∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣
(55)

FIGURE 11. (a) Phase response of estimated extra torque (b) Estimated
friction torque.

In Eq. (54) the coefficients of 3x3 matrix are recorded in
Appendix (A).

IV. RESULTS AND DISCUSSION
Simulink tool ofMATLAB software is used for validating the
promising performance of the proposed control scheme.To
verify the effectiveness of proposed method, the parameters
of ELS system and controller are given in Table 2.

A. EXTRA TORQUE ANALYSIS AND SIMULATION
Extra torque acts on loadingmotor due to themovement of the
loaded actuator. The input command of loading motor is set
to zero. It means that uq = 0. Reference command of loaded
actuator is set to 10 degrees. Fig. 5a and 5b show the induced
extra torque in the loading motor with both the integer order
and fractional order dynamic model. From Fig. 5a, 10 Nm
peak to peak extra torque disturbance is induced with integer
order model.The disturbance torque peak increases further as
we use and decrease the fractional order of the non-integer
model. The peak extra torque is generated when the fractional
order of the non- integer model is 0.93. Apart from the
magnitude, phases of the induced extra torque with different
fractional orders are analyzed in Fig. 5b. At fractional order
of 0.93, system dynamics aremuch faster as compared to inte-
ger ordermodel.Moreover themagnitude of the induced extra
torque is maximum but at the same time system the dynamics
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FIGURE 12. (a) estimated torque (Nm) (b) estimated torque derivative
(Nm/s).

are faster. With faster dynamics, response of compensation
control will be faster which is advantageous.

B. PARAMETERS ESTIMATION COMPARISON
Unknown system parameters are estimated using integer and
fractional order algebraic estimation algorithm. After its con-
vergence to true values, both the controller and the state
predictor are updated. The estimated system parameters are
shown in Fig. 6. The convergence time of the fractional
order method is faster as compared to integer order method.
Enlarged view of Fig. 6 is shown in Fig. 7. Apart from the
convergence time, the rise time of fractional order method is
smaller as compared to integer order method. From [20], [21],
it is clear that algebraic method is robust to noise and nonzero
initial conditions. To simulate the effects of noise, band lim-
ited white noise is added to the loading torque signal TL . The
composite signal is given as input to algebraic parameters
estimation algorithm. The noisy signal is shown in Fig. 8.
The parameters of noise signal are selected as follows: noise
power (np = 0.0001 ), noise samples (ns = 0, 001) and
initial seeds 100. The estimated parameters with noise are
shown in Fig. 9. From the simulation results, it is clear that
the integer order algebraic method is robust against noise,
but at the same time, the estimated parameters oscillate about
the nominal values. However in case of non-integer method,
the oscillations reduce significantly and the estimated param-
eters remain in the vicinity of the nominal parameters. So the
proposed method is more appropriate from the implementa-
tion point of view.

FIGURE 13. (a) Torque tracking using fractional order controller
(b) Enlarged view(c) Torque tracking using integer order controller.

C. EXTRA TORQUE AND FRICTION ESTIMATION
The reference command of ELS loading motor is: Tr = 2π ft
with frequency of 10 Hz. Extra torque disturbance is esti-
mated using Eq. (41). Fig. 10a and 10b show estimated extra
torque using integer and non-integer methods. From Fig. 10a,
the extra torque using integer order adaptive fuzzy system is
accurately estimated. It is already confirmed from Fig. 5a that
in case of integer order dynamics extra torque disturbance is
less in magnitude. From Fig. 10b, the magnitude of estimated
extra torque with α = 0.95 and α = 0.93 is large as
compared to the integer order. Since dynamics of fractional
order ELS system is faster. So in-spite of large estimated extra
torque, fractional order adaptive fuzzy system is superior to
the integer order version as it will ensure improved transient
performance. Fig. 11a shows the phase response of the esti-
mated extra torque. Phase of the estimated extra torque with
α = 0.93 is leadingwhich in turn improves transient response
of the proposed control. Friction torque compensation is
shown in Fig. 11b. To avoid noisy feedback, estimated state
vector [T̂L ˆ̇T L] is used. The estimation results are compared
in Fig. 12a and 12b. From the author’s previous work [1], with
the same gain matrix [01,02], fractional order state estimator
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FIGURE 14. (a) Torque tracking Error (b) Enlarged view.

ensures noise free state estimation. Here [01,02] represent the
gains of the state estimator.

D. TORQUE TRACKING SIMULATION
The reference command of ELS torque motor is Tr = 2π ft
with frequency 10 Hz. Fig. 13a shows the torque tracking
performance using ideal measured states. Enlarged view of
Fig. 13a is shown in Fig. 13b. Torque tracking response
using integer order controller is shown in Fig. 13c. From the
comparison it is concluded that the initial transient response
of the proposed controller is faster as compared to the
integer order controller. As compared to author’s previous
work ‘‘Fig. 8a’’ [1], the transient performance under the
proposed control scheme significantly improves. From [1],
excellent transient performance were achieved using tran-
sient performance controller while in this work the proposed
controller is much simpler. Tracking error comparisons are
given in Fig. 14a and 14b. From the results presented it is
concluded that the proposed control law with α = 0.93
ensures minimum tracking error. Under the proposedmethod,
the control signal exhibits reduced chattering phenomena.
This fact is conformed from the simulation results presented
in Fig. 15a and 15b. From Eq. (36), If the fractional order is
set as: α = 1, then the remaining expression of the equation
represents the integer order version of proposed controller.
Fig. 15a shows the control signal simulations using integer
order method. The control signal contains high frequency

FIGURE 15. Control input (a) Integer order controller (b) Proposed
controller.

chattering and thus it is not feasible for practical imple-
mentation. Fig. 15b shows the control signal simulations
using non-integer method. By utilizing the proposed control
method, chattering phenomena significantly reduces. This is
due to the fractional order integration of the discontinuous
function represented as − 1

bu
Dα−1[k1e2 + k2. sgn(e2)].

E. TIME VARYING PARAMETERS SIMULATIONS
To simulate the effect of time varying parameters, the un-
modeled disturbance dp(t) = 1a(t)ṪL + 1b(t)uq is
assumed to be a sinusoidal type function varying with time.
Fig. 16 compares the 9̂(t)

b adaptation using integer order con-
trol [1] and the proposed method. Un-modeled disturbance is
applied at t = 0.08 sec. In comparison to the integer order
method, adaptation of 9̂(t)

b using the proposed method is
faster. Although the control effort using the proposed method
is a little more but it is still within the saturation limit of the
drive stage. Fig. 17 shows 9̂(t)

b adaptation when the system is
subject to un-modeled disturbance and measurement noise.
With noisy states 9̂(t)

b adaptation using the proposed algo-
rithm with α = 0.93 is less corrupted by the measurement
noise as compared to the integer order algorithm [1]. So the
proposed algorithm is feasible from the practical implemen-
tation point of view. Enlarged view of Fig. 17 is shown
in Fig. 18. From the simulation results presented in Fig. 18,
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FIGURE 16. 9̂(t)
b Adaptations with Time Varying Parameters.

FIGURE 17. 9̂(t)
b adaptations with time varying parameters and noise.

FIGURE 18. Enlarged view for 9̂(t)
b adaptations with time varying

parameters and noise.

the response of fractional order method with α = 0.93 is
faster and 9̂(t)

b adaptation is smooth.

V. CONCLUSION
In this article a fractional order adaptive fuzzy back-stepping
torque control is proposed for ELS system using fractional
order dynamics. The proposed method eliminates the use
of transient performance controller [1] and ensures good
transient performance. Similarly high frequency chattering
is significantly reduced. Fractional order algebraic method
offers more degrees of freedom to adjust the convergence
speed and overshoots in the estimated parameters with noisy

measurements. Moreover adaptation response of fractional
order adaptive laws is faster as compared to integer order
methods. The faster the adaptation, the more robust is the
controller. Fractional order adaptation is also less corrupted
from measurement noise.

APPENDIX A

A11=−
∫ α

t3TL+9
∫ α+1

t2TL−18
∫ α+2

tTL+6
∫ α+3

TL

A21=−
∫ α+1

t3TL+9
∫ α+2

t2TL−18
∫ α+3

tTL+6
∫ α+4

TL

A31=−
∫ α+2

t3TL+9
∫ α+3

t2TL−18
∫ α+4

tTL+6
∫ α+5

TL

A12 =
∫ α+1

t3u− 6
∫ α+2

t2u+ 6
∫ α+3

tu

A22 =
∫ α+2

t3u− 6
∫ α+3

t2u+ 6
∫ α+4

tu

A32 =
∫ α+3

t3u− 6
∫ α+4

t2u+ 6
∫ α+5

tu

A13 = −
∫ α+1

t3TL + 6
∫ α+2

t2TL − 6
∫ α+3

tTL

A23 = −
∫ α+2

t3TL + 6
∫ α+3

t2TL − 6
∫ α+4

tTL

A33 = −
∫ α+3

t3TL + 6
∫ α+4

t2TL − 6
∫ α+5

tTL

B1 = t3TL − 3(3+ α)
∫
t2TL + 3(3+ α)(2+ α)

∫ 2
tTL

− (3+ α)(2+ α)(1+ α)
∫ 3

TL

B2=
∫
t3TL−3(3+ α)

∫ 2
t2TL+3(3+ α)(2+α)

∫ 3
tTL

− (3+ α)(2+ α)(1+ α)
∫ 4

TL

B3=
∫ 2

t3TL−3(3+ α)
∫ 3

t2TL+3(3+ α)(2+α)
∫ 4

tTL

− (3+ α)(2+ α)(1+ α)
∫ 5

TL

APPENDIX B
[a b c] system parameters
[anbncn] nominal parameters
[1a(t) 1b(t)] slow time varying parameters
[�1�2�3�4] domain of parameters uncertainty
[amin bmin cmin],
[amax bmax cmax] bounds of parameters
dp(t) disturbance term due to slow time vary-

ing parameters
def fuzzy approximation error
9(t) Lumped disturbance due to fuzzy

approximation error and slow time
varying disturbance
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9̂(t) Estimated 9(t)
[ud uq] voltage in d and q axis
[id iq] current in d and q axis
[id ∗ iq∗] Extra induced current in d and q axis

due to actuator,s movement
idr d axis reference current
θ∗ Unknown Parameter vector
Rs stator winding resistance
[Lsq Lsd ] Stator winding inductance in dq frame
[wm wa] Loading motor and actuator angular

speed
[θm θa] Loading motor and actuator angular

position
[P 9m] Number of pole pairs andmagnetic flux

of rotor
[J B] Total inertia and damping coefficient
[Te Tf TL] Electromagnetic, friction and loading

torque
Te∗ Induced electromagnetic torque

in loading motor due to actuator
movement

Tsft Mechanical torque due to actuator
movement when input command of
loading motor is zero [Kt Kb Ks]
Motor torque constant, back emf
constant and total stiffness of torque
sensor and shaft

f (Textra,Tf ) Nonlinear function representing extra
torque and friction torque

f̂ (Textra,Tf ) Estimated nonlinear function repre-
senting extra torque and friction torque

α1,V1,V2 First virtual control, first and second
Lyapunov functions

γ , γ1, γ2, ηi Learning rates for adaptive laws
[ur ûr ] Fixed gain and transient performance

controller
f (dp(t), def ) Nonlinear function representing slow

time varying and fuzzy estimation error

[T̂L ˆ̇T L] Estimated state vector
[(e1 ė1), e ] Error vector, error between ELS system

and state predictor

[k1 , k2 , q1, q2] Controller parameters
[Tr Ṫr ] Reference torque command vector
01,2 State predictor gain
E Error vector between ELS plant and

state predictor
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