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ABSTRACT Many factors influence the connection states between nodes of wireless sensor networks,
such as physical distance, and the network load, making the network’s edge length dynamic in abundant
scenarios. This dynamic property makes the network essentially form a graph with stochastic edge lengths.
In this paper, we study the stochastic shortest path problem on a directional graph with stochastic edge
lengths, using reinforcement learning algorithms. we regard each edge length as a random variable following
unknown probability distribution and aim to find the stochastic shortest path on this stochastic graph. We
evaluate the performance of path-finding algorithms using regret, which represents the cumulative reward
difference between the practical path-finding algorithm and the optimal strategy that chooses the global
stochastic shortest path every time. We model the path-finding procedure as a Markov decision process
and propose two online path-finding algorithms: QSSP algorithm and SARSASSP algorithm, both combined
with specifically-devised average reward mechanism. We justify the convergence property and correctness
of the proposed algorithms theoretically. Experiments conducted on two benchmark graphs illustrate the
superior performance of the proposed QSSP algorithm which outperforms the SARSASSP algorithm and
other competitive algorithms about the regret metric.

INDEX TERMS Stochastic shortest path finding, reinforcement learning, Q-learning, SARSA, convergence
proof.

I. INTRODUCTION
Wireless sensor networks (WSN) is an autonomous sensor
network with spatially dispersed sensors harvesting the ambi-
ent environmental information. The environmental informa-
tion is mostly transmitted by the distributed sensors in a
hop-by-hop manner to a centralized station wirelessly, which
processes the gathered information and dispatches control
instructions [1]. WSN has been widely applied in various
areas, including area monitoring [2], health care monitor-
ing [3], [4], and earth sensoring [4], [5]. Despite regularWSN
application, there are a large number of other applications,
including battlefield probing, critical region surveillance, and
emergency rescue.

In order to support these complicated and critical appli-
cations, sensors have to operate reliably with limited
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energy, bandwidth, and computational resources. Further-
more, the resource-limited sensors must be extensively effi-
cient to ensure low time-delay and long network lifetime.
Tomeet the quality of service requirements in these scenarios,
one of the critical issues in WSNs is the data transmission
scheme, i.e., the data relay paths. There have been efforts
aiming to tackle these challenges by combining WSNs and
Software-defined networking (SDN) [6], [7]. SDN [8] is a
new networking paradigm which separates the forwarding
hardware and the control decisions [9]. Therefore, the upper
control plane can dispatch dynamic routing rules to different
network devices, endowing the network with programmabil-
ity and flexibility. The flexibility and dynamics provide novel
insight on data transmission schemes for WSNs. Therefore,
the data transmission strategy, i.e., the data path selection
issue is particularly important.

Machine learning algorithms have been progressively
popular for data path selection in WSNs in the past
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decades [10]–[13]. Many protocols primarily utilize Rein-
forcement Learning (RL) to learning a path selection pol-
icy [10], [11], [14], [15]. QELAR [14] and QL-EEBDG [15]
both use Q-learning algorithm [16], a classic RL algorithm,
to choose the data routing path. They take into account the
forwarder node’s residual energy and energy distribution of
its adjacent nodes in the reward function design, to force
the network nodes’ residual energy evenly distributed and
prolong the whole network lifetime. FROMS [11] is designed
for multi-sink data path selection using each node’s local
information as feedback to its neighbor nodes to update the Q
function. However, most of these methods regard the single
hop length or cost as a constant, i.e., static, and merely mix
one node’s extra information in the reward function design.
While in abundant practical scenarios, the hop length or
network graph edge length itself is not a constant but acts as
a random variable, i.e., dynamic. This random variable can
be influenced by the location of nodes, the randomness of
demand [17], and more commonly, the network load. The
dynamics of network connections essentially form a stochas-
tic graph, i.e., a graph with dynamic edges.

Under this circumstance, the important issue becomes find-
ing the stochastic shortest path (SSP) on a stochastic graph,
i.e., finding a path with minimal expected total length on a
stochastic graph. A stochastic graph has dynamic, instead of
static, edge lengths. The traditional shortest path is the foun-
dation of many path selection strategys [18], [19]. However,
selecting the same path may lead to congestion or hotpots.
We can regard the time delay between two nodes as the
ideal dynamic edge length, instead of their physical distance.
Under this perspective, once congestion happens on a specific
path, it is not the stochastic shortest path anymore, and the
stochastic shortest path solution will choose a different path.
Hence the solution for the stochastic shortest path problem
still works and is especially valuable. Furthermore, the solu-
tion of this problem can also be applied in other areas, includ-
ing emergency response [20], robot navigation [21], and road
networks [22]. Therefore, the solution of SSP problem is
advantageous in diverse areas, including the wireless sensor
networks.

A. RELATED WORK
Frank [23] and Pritsker [24] primarily analyzed the stochastic
shortest path problem. Their analyses leverage multiple inte-
grals to represent the probabilistic quantities, necessitating
numerical evaluation to estimate the integrals. To overcome
the fast-growing evaluation cost, Mirchandani [25] intro-
duced the reliability computation, measuring the connectivity
of each link. However, this method suffers the tight con-
straint that it assumes the edge lengths to be discrete random
variables. Fishman [26], Adlakha [27], and Sigal et al. [28]
adopted Monte-Carlo simulation to estimate the probabilistic
quantities. However, the simulation procedure is computa-
tionally inefficient.

Also, the methods mentioned above require the prior
knowledge of edge length distributions of a stochastic graph,

which is not applicable for numerous practical scenarios.
Beigy and Meybodi [29] proposed to construct a distributed
learning automata (LA) network to find the stochastic shortest
path for packet routing. Guo et al. [30] improved this LA-
based method by modifying the distributed LA architecture
to its hierarchical counterpart and adopted the corresponding
hierarchical convergence criteria. Liu and Zhao [31] pro-
posed to adopt whole path feedback and devised a forced
exploration algorithm in which a random barycentric spanner
is used for exploration. The methods mentioned above use
bandit feedback (feedback for the whole path) to improve the
packet path strategy. He et al. [32] chose to use semi-bandit
feedback (feedback of each edge) for path planning. This
method uses one path for exploitation and possibly another
path for exploration. Talebi et al. [17] proposed to model the
path planning process as a Markov decision process (MDP),
which coincides with our model in this paper, and pro-
posed the KL-Hop-by-Hop Routing (KL-HHR) algorithm.
However, their method has to combine with line search and
Bellman-Ford algorithm to choose the next node for a path.
Besides, the combinatorial upper confidence bound (CUCB)
algorithm [33] and Thompson sampling (TS) algorithm [34]
can also be used for this problem. The CUCB algorithm is
used initially to solve the multi-armed bandit (MAB) prob-
lem, and it takes several simple arms to form a super arm to
interact with the environment. The TS algorithm maintains
parameters of a Beta distribution for each possible action.
It generates a value according to the maintained Bata distri-
bution and chooses the best action according to the generated
values each time. For this problem, we can regard the possible
paths as actions and then use these two algorithms to solve the
SSP problem.

B. CONTRIBUTION OF THE PAPER
In this paper, we treat the stochastic shortest path problem
from the reinforcement learning (RL) perspective, and pro-
pose two counterpart algorithms, the off-policy QSSP algo-
rithm and the on-policy SARSASSP algorithm. The reward
function is crucial for an RL algorithm to learn a feasible
policy. Hence we specifically devise the reward mechanism
using a simple while useful trick which stabilizes and facili-
tates the learning process. The proposed algorithms converge
fast and has low regret w.r.t number of transmissions, com-
pared with competitive algorithms.

We analyze the convergence property of the proposed algo-
rithms, showing that there exists some appropriate interval
for the discounted factor γ of the RL algorithms, during
which the algorithmswill converge w.p.1 and find the optimal
stochastic shortest path.

We conduct experiments on two benchmark graphs, reveal-
ing that the proposed algorithms converge significantly fast
and are insensitive to the initial learning rate parameter. Fur-
thermore, compared with other algorithms for the stochastic
shortest path problem, the proposed QSSP algorithm outper-
forms SARSASSP and other algorithms.
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The remaining of this paper is organized as follows.
In section 2, we review the preliminaries related to stochastic
graph and RL and formulate the SSP problem. The pro-
posed algorithms and convergence proof lie in section 3.
Section 4 illustrates the experimental results and performance
analysis. Section 5 concludes this paper and provides several
future research directions.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. STOCHASTIC GRAPH
A stochastic graph can be represented by a triple
G = (V ,E,F), where V = {1, 2, · · · , n} represents the node
set, E ⊂ V × V denotes the edge set, and Fn×n indicates the
probability distribution of each edge length. Note that for a
general stochastic graph, there may exist both uni-directional
and bi-directional edges. The length L(vi, vj) of edge (vi, vj) is
considered as an random variable with the probability density
function fij, stored in Fij.

B. REINFORCEMENT LEARNING
Reinforcement learning has illustrated great potential in var-
ious challenging tasks, including game playing [35]–[37],
real-time ads bidding [38], neural network architec-
ture searching [39], [40] and iterative recommender
systems [41], [42]. Reinforcement learning is conventionally
modeled as a Markov decison process (MDP) [43]. MDP
is described as a tuple (S,A,P,R, γ ). S is the state space
whileA is the action space.P : S×A×S → [0, 1] is the state
transition function.R : S×A×S → R is the reward function
determined by the environment. γ is the discounted factor
discounting the future rewards. At each timestep, the RL
agent will choose an action to interact with the environ-
ment following the policy πθ according to current state,
i.e., at = πθ (st ), then the environment will give the
agent an immediate reward feedback rt , and transfer to
the next state st+1. The interaction procedure is depicted
in figure1. The goal of the agent is to find an optimal
policy π∗ to maximize the expected cumulative reward
from any state s ∈ S, i.e., π∗ = maxπθ V

πθ (s), where
V πθ (s) = Eπθ [

∑
∞

k=0 γ
krt+k |st = s] is the state value

function of policy πθ , representing the expected cumulative
discounted reward from state s, following policy πθ . Equiv-
alently, the optimal policy can be defined by the state-action

FIGURE 1. The RL interaction sketch.

value function, i.e. Q function: π∗ = maxπθ Q(s, a) at any
given state s after choosing an action a, where Qπθ (s, a) =
Eπθ [

∑
∞

k=0 γ
krt+k |st = s, at = a], measuring the expected

cumulative discounted reward at state s after choosing action
a then following policy πθ .

C. STOCHASTIC SHORTEST PATH PROBLEM
FORMULATION
The goal of stochastic shortest path problem is to find
a path on a stochastic graph with minimal expacted total
length. A stochastic path, indexed by i, on a stochastic
graph from node vs to node vd can be represented by
pi = {vi,1(vs), vi,2, · · · , vi,ni , vi,ni+1(vd )}, with ni edges, and
pi,j is the index of the jth edge on path pi, i.e. edge (vi,j, vi,j+1).
Each stochastic path pi has an expected length

∑ni
j=1 epi,j ,

where epi,j denotes the expected length of edge pi,j, i.e.,
epi,j = E[L(vi,j, vi,j+1)]. Finding the stochastic shortest
path can be formalized as finding the optimal solution p∗

in path space P = {pi, i = 1, 2, 3 · · · k}, such that
p∗ = minpi

∑ni
j=1 epi,j .

III. REINFORCEMENT LEARNING BASED SSP
ALGORITHMS
A. PROBLEM MODELING AND ALGORITHMS
We model the stochastic shortest path-finding process as an
MDP. RL updating rules are adopted by the algorithm/agent
to learn a feasible value function. Specifically, the agent
chooses an action to interact with the stochastic graph (i.e.,
the environment) to arrive at the next node periodically,
to obtain a path from the source node to the destination node,
aiming to maximize the expected cumulative reward given by
the stochastic graph environment. We describe the MDP as
follows:
• States S . Each node on the stochastic graph is model as
a state. The current state is the current node in the path-
finding procedure on the stochastic graph. The possible
transition states of a state (node) consist of its out-link
neighbor nodes.

• ActionsA. The action set of a state is formed by its out-
link neighbor nodes, which is identical to its transition
state set. Note that different nodes have diverse adjacent
nodes, thereby different states have unequal action sets.
This property differs from traditional MDPs, in which
all states have identical action sets.

• Transitions P . As we model the state as the current
node on the stochastic graph, once the agent samples
an action, the next state is naturally determined by the
action chosen, i.e., we have a deterministic state trans-
formation function.

• Reward R. We set the reward for a state-action pair
(s, a) as the negative length sampled on edge (s, a) of the
stochastic graph. The stochasticity of edge length means
we have a stochastic reward function.
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• Discounted factor γ . The discounted factor γ ∈ [0, 1]
is used to discount future rewards. γ = 0 means the
agent considers the immediate reward exclusively, while
γ = 1 reveals the agent regards future rewards equiva-
lently important as the immediate reward.

To find the stochastic shortest path, the agent initially
observes the start state s0, i.e., the source node, and then
chooses an action following the current policy, until the agent
arrives at the final state (the destination node) or a state at
which there have no selectable actions. As described above,
the action set consists of all the selectable contiguous out-
link nodes of the current state. Thereby, the state transition is
deterministic, i.e., the next state equals the action chosen by
the agent at the current state.

The state space and action space are naturally discrete in
this problem, making tabular-based and value-based meth-
ods more appropriate. For value-based methods, the state-
value function can be evaluated by Monte-Carlo simulation
or TD methods. Monte Carlo methods can only update the
state-value function and the policy in an episode-by-episode
sense, i.e., only after the completion of an episode. Hence,
we adopt the TD methods to update the value functions,
which update the value function after each interaction. We
propose to devise Q-learning [16] and SARSA [43] based
algorithms for the SSP problem. They are two representa-
tive TD methods, updating the Q function in an off-policy
and an on-policy manner, respectively. The update rule of
Q-learning is:

Q(St ,At ) = Q(St ,At )

+αt (Rt + γ max
a
Q(St+1, a)− Q(St ,At )) (1)

At each state St , Q-learning chooses an action At following its
behavioral policy and updates the Q function using a greedy
policy, i.e., choosing an action with the maximal state-action
value at state St+1. While SARSAfirstly determines an action
At+1 at state St+1, and then uses the At+1 for both updating
the Q function and interacting with the environment at next
timestep. The update rule of SARSA is:

Q(St ,At )=Q(St ,At )+αt (Rt+γQ(St+1,At+1)−Q(St ,At ))

(2)

Another central concern for RL is the balance between
exploration and exploitation. We adopt the standard ε-greedy
policy for the behavioral policy of Q-learning and the SARSA
policy, and the greedy policy for Q-learning’s target policy.
Formula3 describes the ε-greedy policy strategy, i.e., we
choose the optimal action with probability 1−ε and a random
action with probability ε. We set the epsilon to 0.1 for both
algorithms. Note that the stochastic shortest path should be
acyclic, i.e., there are no duplicate nodes in the optimal path.
Hence, the nodes appearing in the path should not be chosen
as actions at any future state at all. The action set for every
state will dynamically shrink during the interactions between

the agent and the stochastic graph.

π (S) =

{
argmaxaQ(S, a), 1− ε
∀a, ε

(3)

More importantly, the ε-greedy ensures that each state-action
pair will be visited with infinite times, i.e., every state-action
pair will be updated infinitely often, which is necessary for
the convergence of the Q-table iteration [44].

The reward function design is specifically crucial for the
RL agent. Because different rewards stimulate RL agent to
learn different policies. As mentioned above, under this prob-
lem modeling, the reward given by the environment is set
to be the negative length sampled on the stochastic graph
on the corresponding edge. Considering the stochasticity of
the edge length, directly using the negative length as the
reward feedback for the agent leads to instability on the value
updating stage, as the reward for an identical state-action
pair varies at different timesteps, leading to inconstant update
directions. Thus, we introduce a simple while efficient trick,
phrased as reward-averaging, which stabilizes the received
reward, and facilitates the convergence. Reward-averaging
maintains the average historical reward for each state-action
pair Ravg(s, a), and Num(s, a) represents the number that
(s, a) has been chosen. After receiving a reward feedback rt
from the environment at timestep t , for the state-action pair
(st , at ), the new average reward Rnewavg (st , at ) will be calcu-
lated according to the Ravg(s, a) and rt via Eq.4, and then
the Rnewavg (st , at ) is regarded as Rt in Eq.1 and Eq.2. Finally,
the Ravg(st , at ) is updated by Rnewavg (st , at ). Experiments have
justified the effectiveness of this technique.

Rnewavg (st , at ) =
Num(st , at )× Ravg(st , at )+ rt

Num(st , at )+ 1
(4)

The learning rate αt is an hyper-parameter that affects the
convergence speed sharply. More importantly, it influences
the convergence property of the algorithm. To ensure the
convergence of the Q table, the αt has to satisfy

∑
t αt = ∞

and
∑

t α
2
t < ∞, and we will discuss this in detail in

sectionIII-B. Hence, we adopt αt satisfying the properties
mentioned above as follows

αt =

α0, t ≤ 100
1

d
1
α0
+
t−100
10 e

, t > 100 (5)

The parameter γ is another crucial hyper-parameter that
affects the performance and correctness of the algorithm. In
this problem, γ < 1 means we discount the future edge
lengths when estimating the expected total length of a path.
However, future edges lengths contribute equally with the
immediate edge length for a specific path. Hence we should
set γ = 1 naturally. In this case, the maxa Q∗(vs, a) indicates
the negative shortest expected length. In other words, under
the γ = 1 setting, |Q∗(x, a)| represents the shortest expected
length from node x to destination if choosing next node as a,
as is shown in formula6. Hence the greedy strategy ensures
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the correct stochastic shortest path under the optimal Q∗.

|Q∗(x, a)| = E

[
destination∑

s=x

|R(s, π(s))|

]
(6)

However, we find that, for some specific γ < 1, the greedy
strategy could still obtains the correct path. We define the
appropriate γ to be the γ ∈ [0, 1) that still ensures the greedy
strategy obtains the correct stochastic shortest path underQ∗γ ,
i.e., if

nm∑
i=1

epm,i ≤
nk∑
i=1

epk,i , ∀k ∈ N+, k ≤ N (7)

where pm is the stochastic shortest path. The appropriate γ
guarantees the following inequation.
nm∑
i=1

(γ )i−1epm,i ≤
nk∑
i=1

(γ )i−1epk,i , ∀k ∈ N+, k ≤ N (8)

where N is the number of total loop-free paths, and epk,j
denotes the expected length of jth edge of kth path pk .
Since we have the appropriate γ < 1, we can prove that

the Q table, according to the update rule1 or 2 converges to

Algorithm 1 The QSSP Algorithm
1: Initialize the Q table, QCounter table, QMeanReward table,

according to the stochastic graph
2: Initialize the path set 8
3: T = vd
4: episode = 0
5: for episode<EpisodeNum do
6: S = vs
7: 8 = S
8: while S 6= T do
9: ActionSet = adjecent nodes of node S
10: U = ActionSet/8
11: if U is empty set then
12: break
13: end if
14: A = ε-greedy(S) in U
15: R, S′ = Env.Step(S, A)
16: TotalReward = Rnewavg (S,A)× Num(S,A)+R
17: TotalNum = Num(S,A)+ 1
18: Ravg = TotalReward/TotalNum
19: Rnewavg (S,A) = Ravg
20: Num(S,A) = TotalNum
21: Q(S, A) = Q(S, A) + α(Ravg + γ maxaQ(S′, a) -

Q(S, A))
22: S = S′

23: 8 = 8 ∪ S
24: end while
25: episode = episode + 1
26: end for
27: FinalPath = greedy path w.r.t (Q, vs, vd )
28: return FinalPath

Algorithm 2 The SARSASSP Algorithm
1: Initialize the Q table, QCounter table, QMeanReward table,

according to the stochastic graph
2: Initialize the path set 8
3: T = vd
4: episode = 0
5: for episode<EpisodeNum do
6: S = vs
7: 8 = S
8: ActionSet = adjecent nodes of node S
9: U = ActionSet/8
10: A = ε-greedy(S) in U
11: while S 6= T do
12: R, S′ = Env.Step(S, A)
13: ActionSet = adjecent nodes of node S′

14: U = ActionSet/8
15: if U is empty set then
16: break
17: end if
18: A′ = ε-greedy(S′) in U
19: TotalReward = Rnewavg (S,A)× Num(S,A)+R
20: TotalNum = Num(S,A)+ 1
21: Ravg = TotalReward/TotalNum
22: Rnewavg (S,A) = Ravg
23: Num(S,A) = TotalNum
24: Q(S, A) = Q(S, A) + α(Ravg + γQ(S′, A′) - Q(S,

A))
25: S = S′

26: A = A′

27: 8 = 8 ∪ S
28: end while
29: episode = episode + 1
30: end for
31: FinalPath = 8
32: return FinalPath,

the optimal Q∗γ , with the infinite state-action pair visitation
guarantee. Moreover, the greedy policy with Q∗γ finds the
correct stochastic shortest path. We prove and compute a
precise interval of the appropriate γ in sectionIII-B.

Based on the analysis and settings mentioned above,
we propose two practical algorithms: the QSSP algorithm,
and the SARSASSP algorithm. The details of QSSP algo-
rithm (resp. SARSASSP algorithm) are shown in Algo.1 (resp.
Algo.2). Note that the environment modeling is merely used
for experimental simulations, while the algorithms operate in
an online and model-free manner.

B. CONVERGENCE AND CORRECTNESS OF
PROPOSED ALGORITHMS
Since the QSSP updates the Q table in an off-policy manner,
which makes the convergence proof more easy to handle,
in this section we will prove the convergence and correctness
of the proposed QSSP algorithm with an appropriate γ and
prove the existence of such an appropriate γ .
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1) CONVERGENCE OF QSSP ALGORITHM WITH γ < 1
Theorem 1: A random process 1t+1(x) = (1 − αt (x))

1t (x)+αt (x)Ft (x) converges to zero w.p.1 under the follow-
ing assumptions:
• 0 ≤ αt (x) ≤ 1,

∑
t αt (x) = ∞,

∑
t αt (x)

2 <∞;
• ‖E[Ft (x)|Ft ]‖W ≤ γ ‖1t‖W , with γ < 1, ‖ · ‖W is
some weighted maximum norm, andFt denotes the past
information {Xn−1, · · · ;Fn−1, · · · ;αn−1, · · · }.

• var[Ft (x)|Ft ] ≤ C(1+ ‖1t‖
2
W ), for C > 0.

Proof: The proof can be found in [44]
Theorem 2: For the proposed QSSP algorithm, the Q table

converges to the optimal Q table with γ < 1.
Proof: The proof here is similar with that in [45],

however, [45] adopts a stochastic state transformation func-
tion setting and a deterministic reward function assumption.
While the MDP for the SSP problem has a deterministic state
transformation function and a stochastic reward function,
which can not be directly tackled by the methods of [45].

In the SSP problem, the reward r(x, a, y) at timestep t is
regrarded as a bounded random varibale R(x, a) (the reward
is only releated with x and a, i.e., the edge (x, a), hence y can
be ignored). Defining operator T as

T Q(x, a) =
∑
y∈X

Pa(x, y)(r(x, a, y)+ γ max
b∈A

Q(y, b))

= E[R(x, a)]+ γ max
b∈A

Q(a, b) (9)

Then we have:

‖T Q1 − T Q2‖∞ = max
x,a
‖E[R1(x, a)]+ γ max

b∈A
Q1(a, b)

−E[R2(x, a)]− γ max
b∈A

Q2(a, b)‖

= max
x,a

γ ‖max
b∈A

Q1(a, b)−max
b∈A

Q2(a, b)‖

≤ max
x,a

γ max
b∈A
‖Q1(a, b)− Q2(a, b)‖

= γ max
a,b
‖Q1(a, b)− Q2(a, b)‖

= γ ‖Q1 − Q2‖∞ (10)

Accodring to the update rule of formula1:

Qt+1 = Qt (xt , at )+ αt (xt , at )(Rt (xt , at )

+ γ max
b∈A

Qt (xt+1, b)− Qt (xt , at )) (11)

We can substract Q∗(xt , at ) and let

1t (x, a) = Qt (x, a)− Q∗(x, a) (12)

then we have

1t+1 = (1− αt (xt , at ))1t + αt (xt , at )(Rt (xt , at )

+ γ max
b∈A

Qt (xt+1, b)− Q∗(xt , at )) (13)

And we can write

Ft (x, a) = Rt (x, a)+ γ max
b∈A

Qt (y, b)− Q∗(x, a) (14)

where y is the next state followed by x after choosing
action a.

It’s easily to verify that {1t } fits the first assumption of
theorem1, according to formula5.

Note that in this problem, the next state is not sampled from
a Markov chain but determined by the action a, Hence hence
we have:

E[Ft (x, a)|Ft ] = E[Rt (x, a)+ γ max
b∈A

Qt (y, b)− Q∗(x, a)]

= E[Rt (x, a)]+ γ max
b∈A

Qt (a, b)− Q∗(x, a)

= T Qt (x, a)− Q∗(x, a)
= T Qt (x, a)− T Q∗(x, a) (15)

The last equation is because for the optimalQ∗(x, a), we have
T Q∗(x, a) = Q∗(x, a).
Finally we have

‖E[Ft (x, a)|Ft ]‖∞ = ‖T Qt (x, a)− T Q∗(x, a)‖∞
≤ γ ‖Qt (x, a)− Q∗(x, a)‖∞
= γ ‖1t (x, a)‖∞ (16)

Note that the maximum norm ‖·‖∞ is a special case of ‖·‖W .
Hence the {1t } fits the second assumption in theorem1

According to formula22, the exptectation of Ft (x, a) under
Ft is T Qt (x, a) − Q∗(x, a), hence the variance of Ft (x, a)
under Ft is

var[Ft (x, a)|Ft ]

= E[(Rt (x, a)+ γ max
b∈A

Qt (y, b)− Q∗(x, a)

− T Qt (x, a)+ Q∗(x, a))2]
= E[(Rt (x, a)+ γ max

b∈A
Qt (a, b)− T Qt (x, a))2] (17)

The γ maxb∈AQt (a, b) − T Qt (x, a) term is constant and
Rt (x, a) is bounded, hence we have var[Ft (x, a)|Ft ] < ∞,
e.g. there exists a constant C , such that

var[Ft (x, a)|Ft ] ≤ C(1+ ‖1t‖
2
W ) (18)

holds. Eq.18 shows that {1t } fits the third assumption of
theorem1.
According to theorem1, {1t } converges to zero w.p.1,

revealing that Qt converges to the optimal Q∗ w.p.1, for the
QSSP algorithm.

2) CONVERGENCE OF SARSASSP ALGORITHM WITH γ < 1
Theorem 3: For the proposed SARSASSP algorithm, the Q

table converges to the optimal Q table with γ < 1.
Proof: The convergence proof of SARSASSP algorithm

is similar with that of the QSSP algorithm, as the SARSASSP
differs from QSSP about the action adopted for the Q table
update.Wewill show that these three assumptions of theorm1
still hold for the SARSASSP algorithm.

According to the update rule of formula2,

Qt+1 = Qt (xt , at )+ αt (xt , at )(Rt (xt , at )

+ γQt (xt+1, at+1)− Qt (xt , at )) (19)
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and the definition of 1t (Eq.12) in the previous section,
we modify the definition of 1t+1 as

1t+1 = (1− αt (xt , at ))1t + αt (xt , at )(Rt (xt , at )

+ γQt (xt+1, at+1)− Q∗(xt , at )) (20)

and modify the definition of Ft (x, a) as

Ft (x, a) = Rt (x, a)+ γQt (y, b)− Q∗(x, a) (21)

Recall the definition of opeator T andE[Ft (x, a)|Ft ] in the
previous subsection, we can deduce that

E[Ft (x, a)|Ft ]

= E[Rt (x, a)+ γQt (y, b)− Q∗(x, a)]
= E[Rt (x, a)]+ γ

∑
b∈A

P(b|a)Qt (a, b)− Q∗(x, a)

≤ E[Rt (x, a)]+ γ max
b′∈A

Qt (a, b′)− Q∗(x, a)

= T Qt (x, a)− Q∗(x, a)
= T Qt (x, a)− T Q∗(x, a) (22)

Similarly, we have that ‖E[Ft (x, a)|Ft ]‖∞ ≤ ‖T Qt (x, a) −
T Q∗(x, a)‖∞ ≤ γ ‖1t (x, a)‖∞, i.e. the second assumption
of theorem1 holds.

Next, the third assumption holds. The variance of Ft (x, a)
under Ft is

var[Ft (x, a)|Ft ] = var[(Rt (x, a)+ γQt (y, b)− Q∗(x, a)]

= var[(Rt (x, a)+ γQt (a, b)] (23)

as the Rt (x, a) andQt (a, b) are all bounded random variables,
hence we have var[Ft (x, a)|Ft ] < ∞. Hence, the third
assumption of theorem1 holds. Thereby, the {1t } converges
to zero w.p.1, revealing that Qt converges to the optimal Q∗

w.p.1, for the SARSASSP algorithm.

3) THE EXISTENCE OF APPROPRIATE γ < 1
Wecan prove that there exists a γ < 1, such that the algorithm
can still find the correct optimal path without violating the
γ < 1 constraint in previous convergence proofs.
Theorem 4: There exists a γ < 1, such that the discounted

stochastic shortest path is precisely the undiscounted stochas-
tic shortest path.

Proof: Without loss of generality, we assume that the
path p1 is the stochastic shortest path, with n1 edges. And
there has totalN paths, represented as {p1, p2, · · · , pN }.What
we need to prove is, if

n1∑
i=1

ep1,i ≤
nk∑
i=1

epk,i ∀k ∈ N+, k ≤ N (24)

where pi,j indicates the index of the j-th edge on path pi. Then
there exists an γ < 1, such that:

n1∑
i=1

γ i−1ep1,i ≤
nk∑
i=1

γ i−1epk,i , ∀k ∈ N+, k ≤ N (25)

We define the minimal expected length difference between
all paths as 1.

1 = min
i,j
|

ni∑
k=1

epi,k −
nj∑
k=1

epj,k | (26)

It’s clear to verify that

lim
γ→1

nk∑
i=1

γ i−1epk,i =
nk∑
i=1

epk,i , ∀k ∈ N+, k ≤ N (27)

Eq.27 means that, for ∀ε > 0, ∃δ > 0, such that if γ > 1− δ,
we have

nk∑
i=1

epk,i −
nk∑
i=1

γ i−1epk,i =
nk∑
i=1

(1− γ i−1)epk,i < ε (28)

Letting ε = 1, then there exists a γ1 < 1, such that
nk∑
i=1

(1− γ i−11 )epk,i < 1, ∀k ∈ N+, k ≤ N (29)

Scaling up the number of nk toN , and denoting the maximum
expected length of all edges as emax , we yield a stronger
inequality,

|E|∑
i=1

(1− γ i−11 )emax < 1 (30)

Further, we can scale up the power of γ1, yielding the fol-
lowing inequality

|E|∑
i=1

(1− γ |E|−11 )emax < 1 (31)

e.g.,

emax |E|(1− γ
|E|−1
1 ) < 1 (32)

As is shown above, InEq.32 is stronger than the original
InEq.25. Hence we can solve InEq.32 and obtain a smaller
appropriate interval of γ1,

1 > γ1 > (1−
1

emax |E|
)

1
|E|−1 (33)

Theorem 4, cooperated with theorem2 and theorem3
reveal that we can choose a valid γ in the interval
((1− 1

emax |E|
)

1
|E|−1 , 1), such that the QSSP and SARSASSP algo-

rithm can converge as well as find the correct path, without
violating the constraint of γ < 1, which is necessary for the
convergence proofs.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we compare the performance of proposed
algorithms with KL-Hop-by-Hop routing (KL-HHR) algo-
rithm [17], combinatorial upper confidence bound (CUCB)
algorithm [33], and Thompson sampling (TS) algorithm [34]
applied for this problem. The details of KL-HHR algo-
rithm can be found in [17]. The CUCB algorithm chooses
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TABLE 1. Edge length distributions of stochastic graph 1.

a whole path for the nth packet according to the following
strategy [33]

p(n) ∈ argminp∈P
∑
i∈p

1

êi(n)+
√
1.5log(n)/ti(n)

(34)

The TS algorithm chooses the shortest path according to the
sampled length of each edge based on the posterior distribu-
tion of edge parameters.

A. EXPERIMENTAL SETUP AND METRIC
Weadopt the benchmark stochastic graphs utilized in [29] and
[30] to compare the performance of proposed algorithms and
competitive algorithms. Fig.2 depicts the network topology
of benchmark graphs, on which the source node (resp. desti-
nation node) is colored red (resp. blue). The first graph has
10 nodes and 23 edges, and the stochastic shortest path is
φ∗ = (1, 4, 9, 10). The second graph is more complicated,
with 15 nodes and 42 edges, and the stochastic shortest path
is φ∗ = (1, 2, 5, 15). There are 68 possible loop-free paths
on graph 1, and 720 possible loop-free paths on graph 2. The
edge length distributions of graph 1 and graph 2 are shown in
table1 and table2, respectively.

We can evaluate the performance of SSP algorithms by
the metric of regret, which is defined as the cumulative path
length difference between the path chosen by the policyπ and
that by the optimal policy π∗, which chooses the optimal path
every time. More precisely, the regret of policy π up to the
N -th episode is defined as the expected difference of rewards
for the first N episodes, denoted by Rπ (N ).

Rπ (N ) = E

[
Nrπ

∗

−

N∑
i=1

rπ (i)

]
(35)

TABLE 2. Edge length distributions of stochastic graph 2.

B. RESULTS AND ANALYSIS
The reward curve w.r.t learning episodes is intuitive to illus-
trate the performance of an RL algorithm. Fig.3 shows the
rewards of QSSP and SARSASSP with diverse initial hyper-
parameter α0, to verify the influence of this parameter.
The reward curve shows α0 will affect the convergence
speed significantly, especially on more sophisticated graph 2.
α0 = 0.01 leads to the slowest convergence speed, while
α0 = 0.25 shows the fastest convergence. However, both
algorithms with different α0 converge to approximately same
reward level, indicating that α0 has a limited effect on the
converged value of the Q table.

The reward curve also illustrates the fast convergence
speed of the proposed algorithms. The convergence speed
of the proposed RL-based algorithms can be affected by
the learning parameters and the environment/graph. Hence
it may be infeasible to derive a closed-form algorithm
complexity. To compare the performance and convergence
speed of QSSP and SARSASSP, we illustrate the accuracy
of both algorithms in Fig.5, on the more sophisticated
graph 2, which has 720 possible paths with only one correct
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FIGURE 2. Network topology of benchmark stochastic graphs.

FIGURE 3. Rewards versus number of learning episodes of QSSP algorithm and SARSA-SSP algorithm, under different α0 settings.

FIGURE 4. Regret comparison versus number of packets/paths under QSSP , SARSASSP , KL-HHR, CUCB, and TS algorithms.

stochastic shortest path. The accuracy is defined as the prob-
ability that an algorithm outputs the correct stochastic path,
estimated in 100 repeated experiments. Fig. 5 demonstrates
that QSSP convergences with almost 1.0 accuracy with less
than 500 episodes, while SARSASSP attains 0.9 accuracy
in 2000 learning episodes, with minor fluctuation, which

may be caused by the action-selection strategy. Nevertheless,
the result reveals that the proposed QSSP algorithm has a
relatively feasible convergence speed and high accuracy com-
pared with SARSASSP.

We also illustrate the regret w.r.t the number of episodes
under different algorithms/policies in Fig.4. We can see that
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FIGURE 5. Accuracy comparison between QSSP and SARSASSP w.r.t
number of learning episodes.

the proposed QSSP algorithm and the TS algorithm have bet-
ter performance than the KL-HHR, CUCB, and SARSASSP
algorithm on both graphs. The QSSP performs the best than
other competitors. The SARSASSP algorithm is inferior to
the QSSP algorithm, which may be caused by the action
selection strategy. When choosing a path, the off-policy QSSP
algorithm adopts the greedy policy according to the cur-
rent Q table, while using a ε-greedy policy for learning.
In contrast, the SARSASSP algorithm uses the ε-greedy policy
for both learning and path planning. We can induce that
even the SARSASSP algorithm learns the optimal Q table,
the probability of finding the correct path is approximate
(1 − ε)n, where n is the number of edges on the optimal
path. In short, the proposed algorithms, especially QSSP,
converge faster and are non-sensitive to the initial parame-
ter setting. The QSSP algorithm outperforms other competi-
tors significantly, with fast learning procedure and lower
long-term regret.

V. CONCLUSION
In this paper, we tackle the stochastic shortest path problem
using reinforcement learning schemes by modeling the path
searching procedure as an appropriate discounted Markov
decision process. Specifically, we devise the off-policy QSSP
algorithm and the on-policy SARSASSP algorithm. The pro-
posed algorithms learn and find the stochastic shortest path
in an online manner, utilizing every timestep’s feedback to
adjust state-action value functions, instead of thewhole path’s
feedback. The specially devised negative reward-averaging
technique stabilizes and facilitates the learning process, lead-
ing to fast and accurate convergence. We theoretically prove
the existence of an appropriate discounted factor γ < 1,
which ensures the convergence as well as the correctness. We
compare the regret of proposed algorithms and other algo-
rithms on two benchmark graphs. The experimental results
have shown that QSSP performs better than competitive algo-
rithms and the SARSASSP algorithm. The reward curves and
accuracy curve indicate that QSSP and SARSASSP algorithm
have fast convergence speed. Furthermore, the proposed solu-
tions can be easily scaled to more massive stochastic graphs,

with just minor modifications to the Q table, making them
scalable to more complicated graphs.
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