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ABSTRACT Indoor temperature is an important criterion for evaluating the operation quality of district
heating systems (DHSs) and has a significant impact on improving the energy efficiency of heat exchange
station regulation. Accurate prediction of indoor temperature is of great help to the precise control of heating
systems. However, due to the thermal inertia and response delay characteristics of heating systems, there is
a complex nonlinear relationship between indoor temperature and its many related factors. A hierarchical
attention gated recurrent unit (HAGRU) neural network is innovatively proposed for predicting the indoor
temperature of energy-saving buildings in which the indoor temperature is optimally regulated based on
a newly designed smart on-off valve. The network is divided into two levels of attention model, which
can realize the representation of a single influencing factor and the fusion of multiple feature inputs.
Detailed simulation results show that the predictive accuracy of the proposed algorithm is 98.4%, which
is significantly better than state-of-art algorithms, such as support vector machine (SVM), random forest
regression (RFR), decision tree regression (DTR), gradient boosting regression (GBR), recurrent neural
network (RNN), long short-term memory (LSTM) and gated recurrent units (GRU). Therefore, the proposed
HAGRU algorithm has good nonlinear feature extraction and expression ability. The indoor temperature
prediction results are used as feedback input to assist the control strategy of the heat exchanger station, which
is conducive to the improvement of energy efficiency. In addition, the optimal selection of hyperparameters
of the HAGRU algorithm is also analyzed in detail.

INDEX TERMS Indoor temperature prediction, HAGRU, attention mechanism, energy saving buildings,
smart on-off valve.

I. INTRODUCTION
As an important infrastructure and livelihood project in north-
ern China, district heating systems (DHS) have developed
rapidly with the process of urbanization [1]. Heating systems
consume a large amount of energy and cause serious environ-
mental pollution, so it is urgent to improve energy utilization
efficiency under the premise of satisfying users’ heating com-
fort. Indoor temperature is one of the important indexes for
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evaluatingDHS operation quality [2]. The accurate prediction
algorithm of indoor temperature in energy-saving buildings
is helpful for improving the control strategy of heat exchange
stationCs and improving the operating efficiency of the DHS.
It is of great significance to realize energy-saving operation
under the premise of satisfying the thermal comfort of resi-
dential buildings [3]. Indoor temperature is used as the feed-
back input of the optimal energy-saving regulation of the heat
exchanger station to realize the balance between heat demand
and production in the heating system on the premise of fully
satisfying the heat comfort of residents [4]. However, it is very
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difficult to collect each indoor temperature of the residential
buildings in real time due to the constraints of economic cost
and lack of appropriate sensors. It is well known that indoor
temperature is affected by many factors during the heating
season, such as meteorological parameters, operation param-
eters of heat exchanger stations, maintenance structure and
thermal inertia of buildings. In addition, due to the thermal
heat transfer effect, the indoor temperature between adjacent
households will also affect each other. Green heating requires
a more accurate indoor temperature prediction algorithm as a
solid foundation, especially to improve the accuracy of indoor
temperature prediction under the environment of complex
multiparameter interactions.

As one of the key technologies of DHS, an accurate predic-
tion algorithm of indoor temperature has important guiding
significance for optimized regulation [5]. It has attracted
many scholars’ attention, and a large number of related stud-
ies have been published, which can be mainly classified as
the following categories:

A. TRADITIONAL STATISTICAL MODELING METHOD
Aliberti et al. [6] proposed an innovative methodology for
indoor temperature forecasting based on a nonlinear autore-
gressive neural network. Gustin et al. [7] developed an
autoregressive model using exogenous inputs (ARX) to pro-
vide reliable short-term forecasts of indoor temperature.
Hietaharju et al. [8] proposed a novel dynamic model for
the temperature inside buildings to improve energy efficiency
by providing predictive information on the heat demand, and
the average modeling error during a 28 h prediction horizon
was constantly below 5%. In Ref [9], [10], a mathemati-
cal model for indoor temperature calculation of a building
that integrates a combined passive solar system was pro-
posed. Moreno et al. [11] proposed a short-term indoor tem-
perature prediction model based on knowledge discovery.
Lee et al. [12] analyzed the thermal performance of buildings
by a performance-based method using indoor temperature
patterns. Refs [13], [14] studied the influence of the window-
wall ratio on the indoor temperature in rural residential areas.

The inadequacy of traditional algorithms in representing
the nonlinear characteristics of heating systemsmakes it diffi-
cult to improve prediction accuracy. Researchers later turned
to machine learning to improve the expression of complex
features.

B. MACHINE LEARNING
Machine learning, represented by artificial neural networks
(ANNs), support vector machines (SVMs), genetic algo-
rithms (GAs), extreme learning machines (ELMs) and other
improved models, is a kind of data-driven feature extraction
and representation algorithm that has been widely used in
various kinds of prediction problems. ANN is an outstanding
representative of the traditional machine learning algorithm,
which is widely used to establish indoor temperature pre-
diction models [15]–[17]. In Ref [18], a comparative study
of ANN models for forecasting the indoor temperature in

smart buildings was conducted. Magalhāes et al. [19], [20]
developed models for predicting the daily indoor tem-
perature using an enhanced linear regression and ANN.
Zamora-Martínez et al. [21] developed a predictive module
based on ANN to produce short-term forecasts of indoor
temperature and studied the development viability of predic-
tive systems for a totally unknown environment by apply-
ing online learning techniques. Zamora-Martínez et al. [22]
studied the indoor temperature prediction of a house based
on ANN and presented the impact on forecasting perfor-
mance of different covariate combinations. In Ref [23],
an improved predictionmodel based on backpropagation neu-
ral networks (BPNN) was established to forecast indoor air
temperature and relative humidity in advance. Yu et al. [24]
evaluated the accuracy of indoor temperature prediction
based on a generalized regression neural network (GRNN)
algorithm. Li et al. [25] presented an indoor temperature pre-
diction control method based on the Elman neural network.
Poczȩta et al. [26] presented the structure optimization
genetic algorithm (SOGA) for predicting indoor temper-
ature. Zhang et al. [27] proposed an integrated indoor
prediction approach that aims to reduce excess heat loss.
Dahlblom et al. [4] evaluated the principle for feedback
control of heating systems based on actual indoor tempera-
ture measurements. Yan et al. [2] explored the influencing
mechanism of outdoor temperature on indoor air tempera-
ture in residential buildings with heating systems during the
heating season in three northern cities of China. Hagentoft
and Kalagasidis [28] presented a convenient analytical model
for a building connected to a district heating system that
can be used to estimate both the reduction in heating power
demand and the discomfort that follows based on the impact
on indoor temperature. Wu et al. [29] developed a practical
CHP-DHS model and multiregional coordinated operation
strategy based on predictive control for planning and oper-
ating a CHP system. Zenglin et al. [30] studied an advanced
indoor temperature controller system.

The classic ANN algorithm improves the accuracy of non-
linear feature expression compared with traditional statistical
methods, but its shortcomings such as fewer network lay-
ers, difficulty in parameter tuning and inadequate prediction
accuracy of nonlinear features, are also significant. With the
rapid development of artificial intelligence technology, many
kinds of prediction algorithms based on deep learning have
attracted the attention of scholars [31]–[33]. Romeu et al. [34]
presented an indoor temperature forecasting model based
on pretrained deep neural networks. Candanedo et al. [35]
studied the indoor temperature reconstruction problem by
predicting the missing data from other measured variables
using machine-learning techniques.

Deep learning has also been studied in other industrial
Internet and Internet of things fields, such as Internet of vehi-
cles [36]–[38] and it’s energy management [39], [40], etc.,
which can usually achieve better accuracy than traditional
machine learning algorithms. However, research on room
temperature prediction algorithms based on deep learning

VOLUME 7, 2019 157269



J. Song et al.: Indoor Temperature Prediction Framework Based on HAGRU Model for Energy Efficient Buildings

is still rare. To improve the accuracy of indoor temperature
prediction for existing energy-saving buildings, this paper
first designs a smart on-off valve and proposes an indoor
temperature prediction algorithm based on the HAGRU
model. This algorithm provides a higher prediction accuracy
of 98.4%, which can significantly improve the control strat-
egy of heat exchange stations and is helpful in realizing green
heating with energy savings and consumption reduction.

In general, the main contributions of our paper are demon-
strated as follows.

First, a smart on-off valve for existing energy-efficient
buildings is proposed, which can realize the independent
regulation of indoor temperature and on-demand heating for
each household. The hydraulic balance between households
can be achieved through on-off regulation.

Second, an indoor temperature prediction algorithm based
on HAGRU is proposed, which includes two attention GRU
models. The first model realizes the self-attention predic-
tion of a single feature, and the second model realizes the
attention prediction of all feature vectors. Compared with
existing state-of-the-art algorithms, this proposed algorithm
has higher prediction accuracy.

Finally, the neighborhood indoor temperature as the feature
input is proposed in the HAGRU algorithm for the first time
due to the heat transfer between households in the DHS. The
experimental results show that the prediction accuracy of this
algorithm is much higher after introducing this feature.

The remainder of this paper is organized as follows:
Section II demonstrates the basic principle of the smart
on-off valve for energy-saving buildings. Section III presents
the data description and feature selection. Section IV intro-
duces the architecture and mathematical model of the pro-
posed HAGRU algorithm in detail. Section V represents
the experimental analysis, and performance evaluation
Section VI presents the conclusion.

II. BASIC PRINCIPLE OF THE SMART ON-OFF VALVE
The hydraulic imbalance problem of traditional district heat-
ing systems leads to different heat acquisition by the house-
holds in each building, resulting in thermal imbalance, which
makes the indoor temperature of the households near the heat
exchange station higher and the indoor temperature of the
households far lower. In addition, the imbalance problem also
leads to pressure fluctuation in the heating pipe, which greatly
restricts the stability of the heating system and reduces energy
efficiency. Additionally, the inhomogeneity of indoor tem-
perature greatly reduces the quality of heating, resulting in
a high complaint rate. The imbalance problem also increases
energy consumption, which makes the goal of green energy
saving increasingly difficult to achieve. Therefore, it is urgent
to solve the balance problem for the modern SDHS, which is
an important basis and technical guarantee for energy saving,
emission reduction and on-demand heating.

Considering energy-saving buildings, a wireless smart on-
off valve to solve the hydraulic balance between households

is designed in this paper. The system schematic diagram is
shown in Figure 1, which mainly includes the following:

FIGURE 1. Schematic diagram of the indoor temperature control system
based on a smart-valve.

1) Each household is equipped with a smart on-off valve,
which is shown in Figure 2(a). The valve communicates with
the indoor temperature sensor through a wireless link and
automatically opens or closes the valve intelligently accord-
ing to the user’s indoor temperature setting goal. The smart-
valve can realize remote online monitoring and real-time
control.

FIGURE 2. The IoT sensors, (a) smart on-off valve, (b) socket-type
wireless indoor temperature sensor.

2) A heat meter for measuring the heat consumed by the
household for change management;
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3) A wireless indoor temperature sensor based on narrow-
band IoT (NB-IoT), as shown in Figure 2(b), has the shape of
a traditional socket, which can realize remote communication
with the data center. Additionally, it can cooperate with the
smart on-off valve in real time and automatically control the
open state of the smart-valve according to the setting target.

The smart on-off valve alleviates the problem of hydraulic
balance to a certain extent. However, due to the complexity of
the heating system, the indoor temperature of the household is
affected by many factors. To optimize the operation parame-
ters of heat exchanger stations, accurate prediction of indoor
temperature is still a great challenge. Next, we analyze the
influencing parameters of indoor temperature and determine
the feature selection for the prediction algorithm.

III. DATA DESCRIPTION AND FEATURE SELECTION
The DHS is a complex nonlinear dynamic system. Energy-
saving buildings have good maintenance structure and great
thermal inertia; however, from a spatial point of view, heat
sources, heat exchanger stations and buildings spread over a
wide geographical range, coupled with the different pressures
of the pipeline network, lead to different delayed responses of
indoor temperature to outdoor temperature change or water
supply temperature regulation.

The indoor temperature is one of the core indexes for
evaluating the operation quality of the heating system, which
mainly includes four related factors:

1) Meteorological parameters: outdoor temperature;
2) Building’s thermal characteristics: maintenance struc-

ture, energy saving, radiator type (floor or radiator), historical
indoor temperature;

3) Operating parameters of the heat exchanger station: first
supply temperature, first return temperature, second supply
temperature and second return temperature;

4) The indoor temperature of adjacent households: the
indoor temperature of four adjacent households;

First, the maintenance structure, radiator performance,
thermal inertia and other information of the building are
essentially included in the operation history data of the build-
ings. Based on the data-driven method, we can mine the
implicit features from the historical data of indoor temper-
ature. The objective of this paper is to predict the indoor
temperature, so we only need to make full use of the indoor
temperature historical data, and without the analysis, the
maintenance structure and radiator form characteristics of the
building separately.

Our team set up a smart heating energy-saving monitoring
system in Xingtai City, Hebei province, China, which makes
use of many sensors on the supply side. The monitoring data
are collected every 20 seconds and stored into the history
database every 10 minutes; our designed smart on-off valve
and indoor temperature sensors are installed on the user
side, and these data are transmitted by the NB-IoT protocol
once every 20 minutes. Additionally, the meteorological
data parameters and weather forecast are collected from the

Internet every 20 seconds and stored into the rational SQL
server database every 10 minutes.

Different acquisition frequencies of various parameters
lead to different time scales, which greatly affect the conve-
nience of subsequent analysis. Therefore, we need to adjust
the sampling frequency of different parameters to the same
time scale for the model based on HAGRU. To simplify the
analysis, the values of all parameters are scaled to hourly data.



Tin = 1
N

N∑
i=1

Tin,i (i = 1, 2, 3)

TO = 1
N

N∑
i=1

TO,i (i = 1, . . . , 6)

T1s = 1
N

N∑
i=1

T1s,i (i = 1, . . . , 6)

T1r = 1
N

N∑
i=1

T1r,i (i = 1, . . . , 6)

T2s = 1
N

N∑
i=1

T2s,i (i = 1, . . . , 6)

T2r = 1
N

N∑
i=1

T2r,i (i = 1, . . . , 6)

(1)

where
Tin represents the hourly indoor temperature (◦C);
To represents the hourly outdoor temperature (◦C);
T1s represents the hourly first supply temperature (◦C);
T1r represents the hourly first return temperature (◦C);
T2s represents the hourly second supply temperature (◦C);
T2r represents the hourly second return temperature (◦C);
N represents the sample size per hour.
The variables Tin,To,T1s, T1r , T2s, and T2r represent the

single sample values of the corresponding parameters.
After the preprocessing of the original data, we obtain

regular hourly statistics, which are shown in Figure 3.
As seen in Figure 3, the indoor temperature of several

households fluctuates within ±1.5◦C, and the water supply
temperature and backwater temperature fluctuated within
±5◦C. The outdoor temperature shows an obvious daily peri-
odicity and a downward trend. The statistical characteristics
of the data can be obtained by boxplots, which are shown
in Figure 4. We studied the relationship between indoor
temperature and the influencing factors. The scatter plot
between nine factors, and indoor temperature is shown in
Figure 5. We can see that there is a significant nonlinear rela-
tionship between indoor temperature and the related factors,
which also creates a great challenge to accurately predicting
indoor temperature. Second, we further analyze the corre-
lation between indoor temperature and nine related factors.
Because of the intrinsic complexity and large time delay of
the heating system, the correlation between the indoor tem-
perature data series and the influencing factors with different
time delays should also be studied. In this paper, the Pearson
correlation coefficient is used for correlation analysis, which
is defined as the quotient of the covariance and standard
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FIGURE 3. The data curve for original factors.

deviation between two variables.

ρX ,Y =
cov(X ,Y )
σXσY

=
E [(X − µX ) (Y − µY )]

σXσY
(2)

where
µX and σX represent the mean and standard deviation,

respectively, for the X sample.
µY and σY represent the mean and standard deviation,

respectively, for the Y sample.

In this paper, we study the correlation characteristics of
delay from 1 hour to 24 hours. We can see the following
information from the results, which is shown in Figure 6:
1) The correlation between indoor temperature and its

historical data is the greatest. Even when the time delay is
24 hours, the correlation between the indoor temperature and
its historical data is more than 0.8, which is also caused by
the thermal inertia of energy-saving buildings.

2) In addition, the negative correlation value between
indoor temperature and first supply temperature
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FIGURE 4. The boxplot of various historical data parameters (Tin: the indoor temperature of the middle household;
Tin,1, Tin,2, Tin,3, and Tin,4: the indoor temperatures of four neighbors; To: the outdoor temperature; T1s: the first supply
temperature; T1r : the first return temperature; T2s: the second supply temperature; T2r : the second return temperature).

FIGURE 5. Scatter diagram of indoor temperature vs. the related factors.

exceeds −0.6. Correspondingly, the correlation value
between the first return temperature and the indoor tem-
perature is generally approximately −0.1, which indicates
that the contribution of the first supply temperature to the
indoor temperature is greater than the first return temperature.
Similarly, the contribution of the second supply temperature
and return temperature to the indoor temperature is also
smaller.

3) There is a positive correlation between outdoor tem-
perature and indoor temperature. When the outdoor tem-
perature decreases, the indoor temperature of the household
decreases. In contrast, when the outdoor temperature
increases, the indoor temperature of the household increases.

4) Because of the heat transfer between buildings,
the indoor temperature of the four neighboring households
has a significant impact on the indoor temperature of the
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FIGURE 6. The correlation value between the indoor temperature and other factors with different time delays.

middle household. If the four neighboring households are
heating normally, the indoor temperature of the household is
more comfortable.

IV. METHODOLOGY AND ANALYSIS
A. THE ARCHITECTURE OF THE PROPOSED INDOOR
TEMPERATURE PREDICTION ALGORITHM BASED
ON HAGRU
As demonstrated in the previous section, the indoor temper-
ature is affected by many related factors in DHS, such as the
length of the pipeline from the heat exchange station to each
building, and the maintenance structure and thermal inertia
of buildings are also different, which makes the response
of indoor temperature to other factors a complex nonlinear
mapping relationship. Traditional prediction methods lack
the ability to remember long-term features, so it is difficult
to improve the prediction accuracy of such complex nonlin-
ear problems. Fortunately, with the recent development of
artificial intelligence technology, RNNs can obtain high-level
feature representation of long time series and realize higher
prediction accuracy. However, RNNs have the problem of
vanishing and exploding gradient during reverse propagation:
the gradient decreases gradually as time passes, the layer
that receives small gradient updates stops learning, and the
RNN forgets the knowledge it learned in a long sequence,
so it has only short-term memory. In contrast, the exploding
gradient problem leads to a gradual increase in the gradient,
which leads to the oscillation and instability of the network
model. LSTM introduces three gates, the forget gate, input
gate and output gate, which can control the retention or dis-
carding of information in the sequence, so it can obtain more
long-term feature information than RNNs. GRU is simplified

on the basis of LSTM using only two gated structures, a
reset gate and an update gate, which reduces the computa-
tional complexity but has an equivalent performance with
LSTM.

Therefore, this paper proposes an improved GRU-based
indoor temperature prediction algorithm, which mainly
includes the following:

1) adding an attention mechanism;
2) increasing the number of GRU layers.
The architecture and principles of the GRU model are

shown in Figure 7. The forward calculation formula for GRU
can be modeled as follows:

zt = sigmoid (Wz · [ht−1, xt ]) (3)

rt = sigmoid (Wr · [ht−1, xt ]) (4)

h̃t = tanh (Wh · [rt � ht−1, xt ]) (5)

ht = (1− zt)� ht−1 + zt � h̃t (6)

yt = sigmoid (Wo · ht) (7)

where
� represents the dot product of a vector;
zt represents the update gate;
rt represents the reset gate;
yt represents the output of the GRU at time t.
The nonlinear mapping functions sigmoid and tanh can be

defined as follows:

sigmoid (x) =
1

1+ e−x
(8)

tanh (x) =
ex − e−x

ex + e−x
(9)

We assume that for time t , the output of the GRU is ŷt ,
the input is xt , and the state at the previous time is St−1.
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FIGURE 7. The architecture and the principle of GRU algorithm.

The backpropagation gradient calculation process of GRU
mainly includes the following steps:

zt = sigmoid (Uzxt +Wzst−1 + bz) (10)

rt = sigmoid (Urxt +Wrst−1 + br ) (11)

ht = tanh (Uhxt +Whst−1 � rt + bh) (12)

st = (1− zt)� ht + zt � st−1 (13)

ŷt = softmax (Vst + bv) (14)

If the cross-entropy loss function is adopted, then the loss
at time t is:

Lt =
∑
t

(
−yt � log

(
ŷt
))

(15)

The GRU can imitate the memory function of the brain
when processing historical heating data. The output of its
network model depends on the current input and the his-
torical output, but it cannot distinguish the contribution of
these characteristic data to the accuracy of indoor temperature
prediction. Therefore, an attention mechanism is introduced
into the GRU-based indoor temperature prediction algorithm.
As the name implies, the attention mechanism is a unique
signal processing mechanism of the human brain. The human
brain scans the whole image quickly to obtain the focus area
and then focuses on this area to obtain the main details of
the target, ignoring other unimportant information. This is
the ability of human beings to quickly screen out high-value
information from massive data in long-term evolution, which
greatly improves the processing efficiency and accuracy of
visual information in the brain.

Similar to the selective visual attention mechanism of
human beings, the attention mechanism of the AI algorithm

is essential for quickly selecting more critical information for
the current target from the input of many features, which is
the core idea of the attention model. The attention mechanism
is represented by weighted summation in mathematical form
and can be understood as a similarity measure in the physical
sense. Because of the different thermal inertia of buildings
in the heating system and the various lengths of the pipeline
from the heat exchange station, the response delay of indoor
temperature is different, so the influencing degree of each
part of the historical heating data on indoor temperature
prediction is also different. The attention mechanism assigns
different weights to each part of the time series related to the
input factors. Its calculation method is based on the output
sequence.

This paper proposes an indoor temperature prediction
algorithm based on HAGRU, which is shown in Figure 8.
It has two AGRU models based on the encoder-decoder. The
bottom AGRU is a self-attention model that is used to predict
the individually-related factors. The top AGRU of the fusion
attention model combines all the relevant factors to predict
future change in indoor temperature. The model assumes
that the current decoder output is Yt . The hidden layer on
the decoder outputs is St−1 at the previous time. The model
outputs hj with the hidden layer at each time of the encoder.
The result calculated by the fatt operation is transformed
into probability by softmax, which is the attention weight a
we need. The new expression C of the input sequence is
calculated as part of the decoder’s current input by summing
the weights of input with weight a, and Yt is generated.

For related K d-dimensional features: hi (i = 1, 2 . . . k),
each feature has a different influence on indoor temperature
prediction. The attention mechanism weight ai is introduced
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FIGURE 8. The architecture of HAGRU for indoor temperature prediction.

to integrate K vectors weighted average into a d-dimensional
vector h∗, i.e.,

h∗ =
k∑
i=1

aihi (16)

The steps for estimating the attention mechanism coeffi-
cient ai are described as follows:
1) Design an evaluation function fatt and calculate a score

Si for each hi according to the correlation degree between hi
and the attention vector. The larger the correlation value is,
the larger the Si is.

si = fatt (hi) (17)

2) For the K score Si (i − 1, 2 . . . k), the final weight ai is
obtained by using the softmax function:

ai = softmax(si)

=
esi∑k
i=1 e

si
(18)

For the indoor temperature prediction algorithm based on
HAGRU, the bottom self-attention focuses on hi of the cor-
responding parameters individually, while the top attention
focuses on the input vectors of all parameters. The evaluation
function fatt is designed as follows:

si = fatt (hi)

= activation
(
W T hi + b

)
(19)

where W ∈ Rd , b ∈ R, si ∈ R, and there are two types of
activation functions: tanh and ReLU.

B. THE MATHEMATICAL MODEL OF INDOOR
TEMPERATURE PREDICTION BASED ON HAGRU
The flowchart of the indoor temperature prediction algorithm
based on HAGRU is shown in Figure 9. The bottom self-
attention can be demonstrated as follows:

Xt = f1 (Xt−1,Xt−2, . . . ,X1,X0) (20)
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FIGURE 9. The flowchart of the indoor temperature prediction algorithm based on HAGRU.

where
Xt represents each feature value of time t;
Xt−i (i = 0, . . . t) represents each feature value of time t-i;
f1 represents the bottom self-attention function;
According to the feature analysis of the previous section,

the input of the HAGRU-based indoor temperature prediction
algorithm in this paper includes nine features. The mathe-
matical model of the top fusion AGRU algorithm can be
expressed as follows:

T tin = f2
(
T t−iin ,T t−i1s ,T

t−i
1r ,T

t−i
2s ,T

t−i
2r ,T

t−i
o ,T to,T

t−i
in,j

)
(where, j = 1..4) (21)

where
f represents the nonlinear map between the indoor temper-

ature and related factors.
T tin represents the indoor temperature at t-time needs to be

predicted.
T t−iin (i = 1, 2, . . . , n) represents a total of n historical data

of indoor temperatures from time t-1 to t-n;
T t−i1s (i = 1, 2, . . . n) represents a total of n historical data

of the first supply temperature collected by the heat exchange
station belonging to the household from timet-1 to t-n.
T t−i1r (i = 1, 2, . . . n) represents a total of n historical data

of first return temperatures collected by the heat exchange
station belonging to the household from time t-1 to t-n.
T t−i2s (i = 1, 2, . . . n) represents a total of n historical data

of the second supply temperatures collected by the heat
exchange station belonging to the household from time t-1
to t-n.

FIGURE 10. Diagram of the neighborhood of the current household.

TABLE 1. The optimal parameter selection of bottom-level self-attention
GRU for the indoor temperature prediction algorithm.

T t−i2r (i = 1, 2, . . . n) represents a total of n historical data
of second return temperatures collected by the heat exchange
station belonging to the household from time t-1 to t-n.
T t−io (i = 1, 2, . . . n) represents a total of n historical out-

door temperatures collected by weather forecasting systems
from time t-1 to t-n;
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FIGURE 11. The architecture of the system.

TABLE 2. Comparisons of different parameters for the indoor temperature prediction algorithm based on AGRU.

T to represents the outdoor temperature at t-time predicted
by the weather forecast.
T t−iin,j (i = 1, 2, . . . , n, j = 1, 2, 3, 4) represents a total of n

historical indoor temperature data for the jth neighbor of the

current household from t-1 to t-n. For simplicity, if the current
household number is j = 0, the number of the four adjacent
households in the apartment will be from j = 1 to j = 4,
as shown in Figure 10.
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C. MEASURES TO AVOID OVERFITTING
To make the HAGRU algorithm have the best generalization
performance and avoid overfitting, a batch normalization
method is adopted in this paper. Because the input data
are standardized in the preprocessing of the indoor temper-
ature prediction algorithm with the adjustment of network
parameters, the input data of the next layer is constantly
changing, so the training of each layer needs to constantly
change to adapt to this new data distribution, which makes
the training difficult to converge. The batch normalization
algorithm normalizes the input of each layer to ensure that
the input data are stable to achieve the purpose of accelerating
training.

V. EXPERIMENTS AND DISCUSSION
A. SYSTEM BACKGROUND AND SYSTEM ARCHITECTURE
Our team built a complete SDHS platform in Xingtai City,
northern China, which includes the control of heat exchange
stations on the supply side and the smart on-off valve subsys-
tem on the demand side. The smart on-off valve system was
installed in energy-saving buildings in several communities.
Its main purpose is to provide feedback input for energy-
saving regulation of heat exchanger stations.

Because of the abnormal data caused by equipment faults
and electromagnetic interference in the heating field, we used
the Kalman filtering algorithm to preprocess the data, which
reduces the influence of random interference while eliminat-
ing abnormal values.

The system architecture designed in this paper is shown in
Figure 11. It mainly includes four layers, the sensor layer,
acquisition and transmission layer, database layer and appli-
cation layer. A large number of sensors were installed in heat
exchanger stations and households of heating systems, which
belong to the sensor layer. Data acquisition software was
responsible for real-time data acquisition, transmission, pars-
ing and storage of the system, which belongs to the acquisi-
tion and transmission layer. The database layer mainly refers
to relational databases, such as the SQL server or MySQL,
which are in charge of the persistence of historical data. The
prediction algorithm of indoor temperature based on HAGRU
is located in the application layer, and the generation of an
energy-saving control strategy is also the main content of the
application layer.

B. DIVISION OF EXPERIMENTAL DATA
A cross-validation method was used to verify the perfor-
mance of the proposed HAGRU algorithm. In the subsequent
experiment, the dataset was split into three parts: a training
dataset (70%), validation dataset (20%), and a testing dataset
(10%). In actual forecasting scenarios, due to the time length
of hourly weather forecasting, we usually used the HAGRU
algorithm to predict indoor temperature from 24 hours to
168 hours, so the remaining data were used for training and
validation.

FIGURE 12. The performance of indoor temperature prediction based on
the HAGRU algorithm for different prediction time horizons.

FIGURE 13. The loss function curve of the iteration process for HAGRU.

C. PERFORMANCE EVALUATION
The eight parameters, i.e., first supply temperature, first
return temperature, second supply temperature, second return
temperature and indoor temperature of four neighbors, were
collected and stored in the database regularly by the DHS.
The relevant 8 factors needed to generate the next prediction
based on the self-attentionGRU in advance, while the outdoor
temperature data was obtained by weather forecasting for the
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FIGURE 14. The performance comparisons between the proposed HAGRU algorithm and state-of-the-art algorithms.

next seven days or more. Therefore, the HAGRU algorithm
uses a two-layer AGRUmodel: the bottom self-AGRUmodel
to predict these eight parameters and then sends the prediction
results to the top fusion AGRU model. Additionally, the out-
door temperature was directly sent to the top AGRU model.

The optimum parameters of the bottom self-attention GRU
model are shown in Table 1. Because this self-attention
GRU model only focuses on one relevant factor at a time,
the optimal selection of hyperparameters of the self-attention
GRU model was not analyzed in detail in this paper.
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Thus, the fusion attention GRU model is the focus of this
paper, and the main hyperparameters include the learning
rate, hidden unit, step size, batch size and iteration number.
In this paper, their initial values are selected from the same
parameter values shown in Table 1, and the grid method is
used to search for the optimal value of each parameter.

Based on the three evaluation indexes, RMSE, MAE and
MAPE, Table 2 gives the performance statistics of AGRU
under different values of the algorithm’s hyperparameters in
detail. As seen from the Table 2, when the learning rate was
0.0006, the MAPE index of the AGRU algorithm reached a
minimum of 2.3% in the testing stage, and RMSE and MAE
were also the minima. Similarly, when the batch size was 20,
the AGRU algorithm reached theminimum value for the three
evaluation criteria in the test process, and the optimal value
of each parameter was determined one by one. All preferred
values of the AGRU parameters are shown in Table 3.

TABLE 3. The final parameter selection for the indoor temperature
prediction algorithm based on AGRU.

In the training and testing process, the performance of the
indoor temperature prediction algorithm based on HAGRU
for different prediction time lengths with evaluation criteria
such as RMSE, MAE, and MAPE are shown in FIGURE 12.
The accuracy of the HAGRU algorithm in the training process
was better than that in the testing stage, and the prediction
accuracies in the interval from 24 hours to 168 hours were
all better than 4%. Thus, this HAGRU algorithm has low
sensitivity to prediction time lengths, i.e., it has good stability.

The evolution curve of the loss function of the HAGRU
algorithm in the training process is shown in Figure 13. As the
number of iterations increased, the gradient of the loss func-
tion decreased rapidly, and the algorithm approximated the
local optimum quickly in the initial stage. When the number
of iterations increased to approximately 100, the renewal
amplitude of the loss function decreased, and a fine search
was carried out near the optimal value of the solution space,
which shows that the optimization efficiency of the proposed
algorithm is very high, and the intrinsic characteristics of the
data can be obtained in a relatively short time.

D. COMPARISONS WITH OTHER ALGORITHMS
To evaluate the performance of the indoor temperature
prediction algorithm based on HAGRU proposed in this
paper, the comparisons between the proposed HAGRU algo-
rithm and the state-of-the-art algorithms such as SVM-poly,
SVM-RBF, RFR, DTR, GBR, RNN, LSTM and GRU, were
conducted in detail. For simplicity, the predicted length of
time for indoor temperature was 72 hours. The performance

results with theRMSE,MAE, andMAPE indicators are shown
in Table 4. We can see that the performance of the HAGRU
algorithm outperformed other algorithms and that theMAPE
index reached the smallest value of 1.6%.

TABLE 4. Comparisons of indoor temperature prediction performance
with other state-of-art algorithms.

The predicted indoor temperature curves of HAGRU and
other algorithms are shown in Figure 14. We can learn from
Figure 14 that the prediction accuracy of the indoor tempera-
ture prediction algorithm based on HAGRU is better than that
of other algorithms.

VI. CONCLUSION
Due to the complex nonlinear dynamic characteristics of
district heating system and various influencing factors, it is a
challenging task to accurately predict the indoor temperature
of energy-saving buildings with smart on-off valves. In order
to obtain the multi-scale and time delay nonlinear feature
representation of indoor temperature, an indoor temperature
prediction framework based on HAGRU is proposed in this
paper. The algorithm has two-level GRUmodels. At the same
time, the attention mechanism is designed and introduced to
automatically obtain the influence weights of the data at dif-
ferent historical moments on the future indoor temperature,
which can further improve the prediction accuracy of indoor
temperature and provide more accurate feedback input for
the optimization and regulation strategy of heat exchange
station. Compared with state-of-the-art algorithms, such as
SVM-poly, SVM-RBF, RFR, DTR, GBR, RNN, LSTM and
GRU, the proposed HAGRU prediction framework has the
best MAPE accuracy of 98.4%. In addition, this paper ana-
lyzes the parameters of the HAGRU algorithm in detail and
uses batch normalization to avoid overfitting problems.

In the next step, we will expand from a household to
a building or community to study the indoor temperature
prediction algorithm for collaborative control amongmultiple
heat exchanger stations.
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Nomenclature
AGRU attention gated recurrent unit
AI artificial intelligence
ANN artificial neural networks
ARX Autoregressive using exogenous inputs
BPNN back propagation neural networks
CHP Combined heat and power
DHS district heating system
ELM Extreme Learning Machines
GA Generic algorithm
GBR Gradient Boosting Regression
GRNN Generalized Regression Neural Network
GRU Gated Recurrent Unit
HAGRU Hierarchical Attention Gated Recurrent Unit
IoT Internet of Things
LSTM Long Short Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLR Multiple Linear Regression
NB-IoT Narrow Band Internet of Things
RFR Random Forest Regression
RMSE Root-Mean-Square Error
RNN Recurrent Neural Networks
SDHS Smart District Heating System
SOGA Structure Optimization Genetic Algorithm
SVM Support Vector Machine
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