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ABSTRACT The occurrence of fault in induction motors is dangerous in our daily life. It is significant
to diagnose motor component faults accurately and quickly. In this paper, we propose an efficient and
responsive motor fault diagnostic method based on Feature Incremental Broad Learning (FIBL) and Singular
Value Decomposition (SVD). Firstly, we extract fault features from raw signals with Particle Swarm
Optimization-Variation Model Decomposition, Sample Entropy and Time Domain Statistical Features.
Secondly, these features are input into a broad learning system to train a network. Then we use FIBL to
retrain the network if the diagnosis accuracy is unsatisfactory. Finally, SVD is used to further simplify the
system structure to reduce diagnostic errors. In order to evaluate the performance of the diagnostic system,
experiments are conducted. Experimental results show that with the proposed diagnostic method, motor
component faults detection is quicker and more accurate.

INDEX TERMS Fault diagnosis, feature extraction, incremental broad learning, singular value decomposi-
tion, induction motor.

I. INTRODUCTION
Induction motors are the principal purveyor of motive force
in our daily lives. They usually carry out heavy duty tasks
and run for a long time under high power and high load con-
ditions. This will potentially affect either production or per-
sonal safety when they suffer from failure [1]. Therefore, it is
necessary to monitor and diagnose their working conditions
in order to avoid serious accidents or personal injuries. Recent
studies showed that induction motors usually have problems
such as unbalanced windings, an unbalanced stator or rotor,
broken rotor bars, eccentricity, and bearing defects [2], [3].

With the advent of machine learning, there is an increasing
interest in studying the fault diagnosis of machine learning
applying to traditional rotating machinery [4]. At present,
DeepBelief Networks (DBN) [5], DeepBoltzmannMachines
(DBM) [6], Support Vector Machines (SVM) [7], Extreme
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Learning Machines (ELM) [8], and Convolutional Neural
Networks (CNN) [9]–[11] are all widely used in the diag-
nostics of DC motors and AC motors. These methods are
particularly suitable for AC motors where the relationship
between motor current and speed is non-linear [12]. Deep
learning such as DBN, DBM and CNN can improve the
diagnostic accuracy by a great number of hyper parameters
and complicated structures. However, their training process
is highly time-consuming and their complications make it so
difficult to analyze the deep structure theoretically. So, deep
learning cannot be suitable for electric motor fault diagnosis.
In the existing literature [7], support vector machines (SVM)
is frequently used as classifiers to diagnose the induction
motor faults, but SVM has a disadvantage in respect of the
non-probabilistic output. Therefore, SVM is not considered
in this study. For ELM, the training time is fast due to a
simple structure which contains three layers. However, if the
diagnostic accuracy is not good, the whole ELM structure
should be adjusted and retraining from scratch is necessary.
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In recent years, Broad Learning has been proposed to further
improve training performance. In contrast to the previously
discussed methods, Broad Learning consists of two layers:
one input layer, which contains mapped feature nodes and
enhancement nodes, and one output layer [13]. Despite a
simple structure, it can yield an improved performance by
increasing the number of nodes. In our previous work [14],
we have increased the number of enhancement nodes. But
the number of enhancement nodes is very large. It is hard
to find the best enhancement node. In order to solve this
problem, Feature Incremental Broad Learning (FIBL) is pro-
posed to retrain a network. The FIBL is designed to easily
update weights without the need for an entire training cycle.
Furthermore, feature nodes are small than enhancement
nodes. So, it is very effective to remodel a system. This
makes them a suitable tool for diagnosing induction motors,
improving predictive accuracy while reducing training time
and avoiding retraining from scratch.

It should be noted that data collection and pre-processing
are required before network training. Typically, some kinds of
feature extraction methods are used to improve the diagnostic
accuracy in open literature. Fast Fourier Transform (FFT)
is a commonly used in signal processing [15]. However,
it is not suitable for non-stationary signals which require a
time-frequency analysis [16]. Short Time Fourier Transform
(STFT) may be a viable alternative but it has defects in
the resolution of time and frequency, making it impossible
to resolve both time and frequency at the same time [17].
Wavelet Transform is also a good alternative, but it suf-
fers from energy leakage [18] when there are some signal
features that do not match the shape of the mother wavelet
function. Empirical Mode Decomposition (EMD) is a self-
adaptive signal processing method that can be applied to
nonlinear and nonstationary processes perfectly. However,
the major disadvantage of EMD is the issue of mode
mixing. Dragomiretskiy and Zosso [19] recently proposed a
new method called Variation Model Decomposition (VMD)
which assumes that each extracted pattern has a limited
bandwidth and is compressed around a matching center
frequency. The sparse prior of each submodule is chosen
as the center bandwidth of the spectral domain. However,
VMD is not model-adaptive in practical applications and
its modulation capability is largely dependent on inherent
parameter settings [20]. That is, the different configurations
of the penalty ball, α, and the number of sub-components, K ,
result in a variable decomposition performance. Therefore,
the parameters α and K need to be prioritized for optimiza-
tion. Particle Swarm Optimization (PSO) algorithm is an
evolutionary computation [21]. It comes from the predatory
behavior of birds and is easy to adjust parameters. At present,
it has been widely used in function optimization and neural
network training [22]. In this paper, we employ PSO to
optimize the parameters of α and K of the original VMD.
After the system finishes training, the FIBL system may

contain some redundant nodes due to the wide increment
of feature nodes. It will lead the system to have poor

accuracy. Therefore, the system should be simplified by
using a low rank approximation. There are many low rank
approximations. The common methods are Singular Value
Decomposition (SVD) and Non-Negative Matrix Factoriza-
tion (NMF) [23]. The drawback of NMF is that the weight
matrix can’t allow to be a negative value. SVD is a nonpara-
metric tuning technique. Furthermore, the signal can usually
be converted into a matrix where the singular value represents
the nature of the fault signal [24], [25]. It indicates that some
singular values of the fault signal matrix can be enhanced,
while others can be constrained. This paper uses the SVD
algorithm to simplify the incremental broad learning system.

The innovations of this research are as follows:
1. A feature extraction with PSO-VMD is first used in

inductionmotor fault diagnosis to improve the accuracy
of the diagnostic system.

2. A Feature Incremental Broad Learning (with feature
nodes) method is proposed to optimize the system net-
work to improve the diagnostic system both in accuracy
and training speed.

3. SVD is successfully used to simplify the FIBL structure
to further reduce the test error of this diagnostic system.

This paper is organized as follows: the proposed motor
fault diagnostic method is presented in the coming sections,
including a description of the methodology, technology and
the relevant experimental setup and data pre-processing; the
experimental results and comparisons with other methods are
discussed in Section V before presenting our conclusions in
the last section.

II. PROPOSED DIAGNOSTIC FRAMEWORK
The proposed motor fault diagnostic method (FIGURE 1)
consists of four sub-modules: (a) Data acquisition and data
processing, (b) Broad Learning, (c) Feature Incremental
Broad Learning, and (d) Simplification by SVD.

A. DATA ACQUISITION
Since the induction motor is supplied with three-phase sym-
metrical currents, it just requires two stator currents [26].
The signal acquisition sub-module digitally detects
Windings A, B, sound, and the signals are then recorded as
x1, x2, x3 respectively. We use a limiting filter to reduce their
interference after acquiring these raw signals [27].

B. DATA PROCESSING
In terms of data pre-processing, the original sound signal x3 is
decomposed by using PSO-VMD. Then, feature extraction is
carried out using the effective statistical algorithm of sample
entropy (SampEn). The result is saved as x3−SE . In addition to
the signal features, Time Domain Statistical Features (TDSF)
are appended to the signals of x1, x2, x3 [28]. To ensure
that all features have a uniform contribution, each feature
is normalized to [0,1]. Then, each feature is divided into
three independent groups namely, xk−Proc−Train, xk−Proc−Vali,
xk−Proc−Test .
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FIGURE 1. Proposed motor diagnostic method.
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C. BROAD LEARNING
In Broad Learning module, the processed datasets,
xk−Proc−Train, are first trained by using the Broad Learn-
ing (BL) network. Secondly, the trained BL network outputs
a training accuracy based on training datasets. The network
stops training if the training accuracy reaches the target
percentage (TP). Otherwise, the Broad Learning is entered
to Feature Incremental Broad Learning by increasing the
number of feature nodes.

D. FEATURE INCREMENTAL BROAD LEARNING
The validation dataset is applied to the Feature Incremental
Broad Learning sub-module. The accuracy will increase as
the number of feature nodes is increased within a range.
However, the FIBL network will have over-fitting if the
number of feature nodes is increased too much. Therefore,
the number of feature nodes should be optimized. This
dynamic process will continue until the accuracy is satis-
factory. Finally, the optimized feature node N is obtained.
To avoid the system from trapping into infinite loops, we set
the maximum iteration with 1000.

E. STRUCTURE SIMPLIFICATION
It should be noted that redundant nodes may be included due
to the wide increment of feature nodes. Firstly, we simplify
feature nodes by SVD algorithm. Secondly, we test the accu-
racy 10 times based on the processed test datasets. Then,
we calculate minimum test errors (MTEs) and average test
errors (ATEs) to evaluate its effectiveness.

III. METHODOLOGY AND TECHNOLOGY
A. VARIATION MODEL DECOMPOSITION AND PARTICLE
SWARM OPTIMIZATION
VMD translates the raw signal into a series of dependent
subcomponents {uk}, which have specific sparsity proper-
ties [24]. The sparsity prior of each sub-mode is selected to be
a bandwidth in frequency domain. That is, VMD requires sub-
modes to be close around a center frequency {ωk}. To calcu-
late the bandwidth of each sub-component, the VMDmethod
applies H1 Gaussian smoothness to the demodulated signal.
Thus, the constrained variation problem of VMD is then
concluded to calculate the minimum of the L2 norm of the
gradient shown in Eq. (1). Where {uk} =

{
u1,u2,. . . uK

}
,

and {ωk} =
{
ω1,ω2,. . . ωK

}
are the modes and the center

frequencies. K is the number of decomposed components.

min
{uk },{ωk }

{∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

}
(1)

Assuming that the sum of sub-modes
∑
uk = x, the recon-

struction constraint given by Eq. (1) can be addressed with a
quadratic penalty term α and Lagrange multiplier λ(t). The
augmented Lagrange L({uk} , {ωk} , λ) is shown in Eq. (2).

L ({uk} , {ωk} , λ)=α ·L1 ({uk} , {ωk} , λ)

+L2 ({uk} , {ωk} , λ) (2)

where the sub-component

L1 =
∑
k

∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥2
2
, and L2 =∥∥f (t)−∑k uk (t)

∥∥2
2 +

〈
λ(t), f (t)−

∑
k uk (t)

〉
The quadratic penalty term, α, and the number of sub-

modes,K , are the critical parameters in the process of decom-
position. It is impossible to find the optimal pair of α and K
manually.

The PSO algorithm, introduced by Kennedy and Eberhart
[29], [30], is a population based stochastic approach for
solving continuous and discrete optimization problems. The
position of a particle in PSO represents a candidate solution to
the optimization problem. Each particle searches for a better
position in the search space by changing itsmigration velocity
according to the rules inspired by behavioral models of bird
flocking. The key to run the PSO algorithm is to set up a
reasonable objective fitness function [20]

〈
α̂, K̂

〉
= argmin

(α,K )

−1K̂
K̂∑
i=1

K∑
1

pi log2(pi)

 (3)

where α̂ and K̂ indicate an optimal group of parameters and
pi is the normalized envelope of sub-mode uk .
A population of n particlesX = (X1, X2, . . . , Xn) represents

a vector ofD-dimensions.X i = (Xi1, Xi2, ..., XiD)T represents
the position of the ith particle in the D-dimensional search
space. The fitness value of each particle position X i can be
calculated according to the fitness function. The velocity of
the ith particle is V i = (Vi1, Vi2, ..., ViD)T . The particle-best
is represented as P i = (Pi1, Pi2, ..., PiD)T . The global-best is
represented as Pg = (Pg1, Pg2, ..., PgD)T .

The particle updates its speed and position through the
particle-best and the global-best in each iteration. That is:

V k+1
id = ωV k

id + c1r1(P
k
id − P

k
id )+ c2r2(P

k
gd − P

k
id ) (4)

X k+1id = X kid + V
k+1
id (5)

where ω is the weight of inertia; d=1, 2, ..., D; i=1, 2, ..., n;
k is the number of current iterations; Vid is the velocity
of the particle; c1 and c2 are non-negative constants called
acceleration factors; r1 and r2 are random numbers from the
interval [0, 1].

B. FEATURE INCREMENTAL BROAD LEARNING
In a deep learning network, the number of layers can be
increased if it produces a poor training result. This train-
ing process is ineffective because the deep learning needs
to change the whole weights during a retraining process.
However, with the proposed Feature Incremental Broad
Learning, a mapped feature can be incremented to create a
new structure of the Broad Learning network. The incremen-
tal broad learning doesn’t need to change the entire structure
network. It only adjusts the weights of incremental feature
nodes. It is the first study on applying Feature Incremental
Broad Learning to the induction motor fault diagnosis.
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We suppose the Broad Learning structure consists of n
groups of mapped feature nodes and m groups enhancement
nodes. Then we increase (n+1)th group mapped feature
nodes to this structure. The equation of the (n+1)th group
mapped feature is as follows:

Zn+1 = φ(XW en+1 + βen+1) (6)

W en+1 is the weight of the (n+1)th feature node, and βen+1 is
the bias value of (n+1)th feature node.

The enhancement nodes are generated as follows:

Hexm= [ξ
(
Zn+1W ex1+βex1

)
, . . . , ξ

(
Zn+1W exm+βexm

)
]

(7)

W exm is the weight of the mth enhancement node, βexm is the
bias value ofmth enhancement node. They are randomly gen-
erated. DenoteAmn+1= [Amn |Zn+1|Hexm ], which is the upgrade
of new mapped features and the corresponding enhancement
nodes. The relatively upgraded pseudoinverse matrix is given
as follows:

(Amn+1)
+
= [

(Amn )
+
− DBT

BT
] (8)

where D = (Amn )
+[Zn+1|Hexm ],

BT =

{
(C)+ if C 6= 0(

1+ DTD
)−1

DT ((Amn )
+ if C = 0

, and

C = [Zn+1|Hexm ] − Amn D. They are intermediate matrix
for calculation.

The new weight is:

Wm
n+1= [

Wm
n − DB

TY
BTY

] (9)

In fact, the new weight of the FIBL can be obtained by
calculating the matrix of D and BTY . TheWm

n does not need
to be recalculated. FIGURE 2 shows the incremental network
of (n+1) mapped feature nodes.

FIGURE 2. Feature incremental broad learning.

C. SINGULAR VALUE DECOMPOSITION
There is a risk of redundancy if the mapped features of the
BL are increased too much. In general, the structure can be
simplified by a series of low-rank approximation algorithms.
SVD is one of the low-rank approximation algorithms to pro-
vide structural simplifications for BL. The SVD can truncate
smaller singular value components [31].

SVD is a nonparametric tuning technique. The feature
nodes can be converted into a matrix where the singular value
represents the nature of feature nodes. It indicates that some
singular values of the feature node matrix can be enhanced,
while the others can be constrained.

SVD is applied to the ith feature Zi as follows

Zi = UZi ·
[
6P
Zi

∣∣6Q
Zi

]
·
[
VP
Zi

∣∣VQ
Zi

]T
= ZPi + Z

Q
i (10)

where UZi is an k × k orthogonal matrix whose columns are
the eigenvectors of UZiU

T
Zi ,
[
VP
Zi

∣∣VQ
Zi

]
is an l× l orthogonal

matrix whose columns are the eigenvectors of UT
ZiUZi , and[

6P
Zi

∣∣6Q
Zi

]
is an k × l diagonal matrix.

By compressing Zi by the principal portion ZPi , the equa-
tion between Zi and ZPi is derived as follows

ZPi V
P
Zi=UZi6

P
ZiV

PT
Zi V

P
Zi+UZi6

P
ZiV

QT

Zi
VP
Zi=ZiV

P
Zi (11)

Assume that the random initial network with n groups
of feature nodes can be represented as the equation of the
following form: Y =

[
Z1, . . . , Zn

]
W0

n. We denote all the
feature nodes of n groups

[
Z1, . . . , Zn

]
as A0

n.
So

Y = A0
nW

0
n (12)

For original network, we define: W0
n , [W {0,n}Z1

| . . .

|W {0,n}Zn ]T .
So

Y =
[
Z1VP

Z1 , . . . , ZnV
P
Zn

]VPT
Z1W

{0,n}
Z1

. . .

VPT
ZnW

{0,n}
Zn

 (13)

Assume thatW {0,n}F =

VPT
Z1W

{0,n}
Z1

. . .

VPT
ZnW

{0,n}
Zn

,
A{0,n}F =

[
Z1VP

Z1 , . . . , ZnV
P
Zn

]
So

Y = A{0,n}F W {0,n}F (14)

Then

W {0,n}F = (A{0,n}F )
+

Y (15)

In this way, the original A0
n is simplified to A{0,n}F .

157800 VOLUME 7, 2019



S. B. Jiang et al.: Fault Diagnostic Method for Induction Motors

IV. EXPERIMENTAL SETUP AND DATA PREPROCESSING
To obtain representative sample data formachine learning and
verify the effectiveness of the proposed framework, experi-
ments were carried out. All the proposed methods mentioned
were implemented by using MATLAB R2016a and executed
on a personal computer with 4 Core i5-4590 @3.30GHz and
12GB RAM onboard.

A. TEST RIG AND TEST SCHEME
The test rig used in this example is called TCDJ-03A which
was set up in [14]. We test nine different faults of three-phase
induction motors according to [32], [33]. TABLE 1 shows
details. (Note: In order to collect data from all faults, all the
faults are broken slightly. So, the motor can be test under full
load or over load)

TABLE 1. Nine different faults.

B. SAMPLE DATA ACQUISITION
There are three load conditions (underload, rated load and
overload). Each case is tested for 100 seconds and generates
800,000 data points. There are 1000 data points in each sam-
ple. As mentioned above, each fault under a load condition
has a total of 800,000 data points. These data points are
divided into 800 sample data (1000 data points in each sample
data).

C. FEATURE EXTRACTION BY PSO-VMD AND SAMPEN
The parameters of K and α should be optimized by PSO
before VMD is applied. We select 4 and 50 as the optimized
K and α respectively according to [20]. FIGURE 3 shows
the VMD decomposes the sound signal into 4 intrinsic mode
functions (IMFs), but the input dimension of each IMF
remains unchanged after decomposition. This leads to poor
accuracy of fault diagnosis because the input dimensions of
each classifier is very massive. To overcome this problem,
an effective feature selection method for dimension reduction
is considered. This research uses an effective statistical algo-
rithm, Sample Entropy (SampEn), to compute representative
features from each IMF. Therefore, the input cases. It states
that there are different SampEn values for each IMF in differ-
ent cases. It is helpful for classification.

D. TIME-DOMAIN STATISTICAL FEATURES
In this paper, ten Time-Domain Statistical Features are used
to further analyze the features of current A signal x1, current B
signal x2 and sound signal x3. TABLE 2 shows the equations
of 10 common Time-Domain Statistical Features [35].

FIGURE 3. VMD of sound signals in normal condition (one sample with 1000 data points).
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TABLE 2. Definitions of common statistics in time-domain for motor
current and sound signals.

E. NUMBER OF EXTRACTED FEATURES
TABLE 3 indicates the number of extracted features
after using PSO-VMD+SampEn and TDSF. As shown in
TABLE 3, the sound signal contains 14 features which consist
of 4 PSO-VMD+SampEn features (i.e. IMF1, IMF2, IMF3,
IMF4) and 10 TDSF features which is calculated by the
equations in TABLE 2. Winding A current contains 10 TDSF
features, whereas number of feature of Winding B current is
the same as that ofWinding A current. All of these 34 features
are used altogether to import to Broad Learning algorithm.
To ensure that all these features have a uniform contribution,
all of them are normalized to [0, 1].

TABLE 3. Number of extracted features from different signal types.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
Since there are many combinations of the techniques for fea-
ture extraction andmachine learning, a set of experiments was
carried out on a computer to determine the best combination
for the proposed framework.

A. RESULT AND DISCUSSION OF DIFFERENT FEATURE
EXTRACTION METHODS
There are many feature extraction methods for data
classification, e.g. FFT, STFT, PSO-VMD+SampEn,
PSO-VMD+SampEn+TDSF [36]. Their parameters must

be set before use. The number of TDSF of Winding A,
Winding B and sound is set to 10 [35]. For FFT, the sample
frequency is set to 8000, the sample points are the same as
the time domain which is set as 1000 [16]. For STFT, the
window function is set as a Hamming window [17]. For PSO-
VMD, K and α are optimized to 4 and 50 [20]. For SampEn,
m and r are set to 2 and 0.2, respectively according to [37].
FIGURE 5 shows that the test accuracy is the highest for
the PSO-VMD+SampEn+TDSF method, while the other
feature extraction methods are lower, especially for methods
that do not use any feature extraction. The main reason is
that PSO-VMD is a self-adaptive time-frequency technique.
It can decompose the signal into several IMFs and vary with
the signal itself. SampEn can reduce dimension by calculating
representative features for each IMF. TDSF can enhance the
diagnostic accuracy through time-domain statistical features.
So, the diagnostic accuracy of PSO-VMD+SampEn+TDSF
is better than the other approaches. (Note: The experiment
was performed in BL with 70 feature nodes and 240 enhance-
ment nodes).

FIGURE 4. SampEn value of each IMF in 9 faults.

FIGURE 5. Comparison of different feature extraction methods.

B. RESULT AND DISCUSSION OF DIFFERENT
CLASSIFICATION
We compare different recent classification methods, includ-
ing Deep Belief Network (DBN), Convolutional Neural
Network (CNN), Extreme Learning Machine (ELM), Broad
Learning (BL), and Feature Incremental Broad Learning
(FIBL). For DBN, we use a 5400-100-240-9 structure with
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100 iterations and set a learning rate to 0.1 [38]. For CNN,
we use the original deepCNN structure (LeNet-5) [39], which
contains 7 layers. The kernel size of the convolutional layer 1
is 5× 5. The combined size of the sampling layer 2 is 2× 2.
The kernel size of the convolutional layer 3 is 5 × 5. The
combined size of the sampling layer 4 is 2 × 2. The kernel
size of the convolutional layer 5 is 5 × 5. The number of
nodes in the fully connected layer is 84. The number of
nodes in the output layer is 9. The learning rate is set to 0.1,
and the activation function is sigmoid. For Extreme Learning
Machine [40], the number of hidden nodes is set to 310. The
activation function is configured as a sigmoid function. For
Broad Learning [13], the regularization parameter λ of the
ridge regression is set to 1×10∧(−8). The sigmoid function is
selected to build the enhancement features. For Feature Incre-
ment Broad Learning, we add 10 additional feature nodes
in each incremental broad learning. In order to play fair for
experimental comparisons, the inputs for DBN and CNN are
the same as that for BL which are extracted features listed in
TABLE 4.

TABLE 4. Comparison of diagnostic accuracies and training time for
different methods.

The experimental result is shown in TABLE 5. The highest
test accuracy is FIBL, which is up to 92.73%. The second
highest is DBN. However, the training time is the longest
with 378.7479 seconds. The training time of ELM, which
contains 310 hidden nodes, is the fastest, but the test accuracy
is very low. This test accuracy can be increased to 92.52%
by adding 3000 hidden nodes to the system, but the training
time increases at the same time. In contrast to the above
methods, the test accuracy of FIBL is 92.73% and the train-
ing time is only 1.2857 seconds. Therefore, FIBL is more
efficient.

The reason is that DBN or CNN can improve the test
accuracy by a deep structure. However, this takesmore time to
train the network. ELM runs fast. However, its test accuracy
is very low. BL has only two layers. It can improve a test
accuracy by feature increment. As shown in TABLE 4, Fea-
ture Incremental Broad Learning can improve test accuracy
by increasing the feature nodes. Since a mapped feature can

TABLE 5. Network structure compression by SVD.

be added to create a new structure of the Broad Learning
network to improve its accuracy. However, the FIBL doesn’t
need to change the entire network structure. It only adjusts
the weights of the incremental feature nodes. Therefore,
by adding 10 feature nodes, the FIBL can reach 92.73%
and the retraining time is only 0.0528 seconds. That is very
effective.

C. RESULT AND DISCUSSION OF FEATURE INCREMENTAL
BROAD LEARNING
Although Feature Incremental Broad Learning can effectively
improve test accuracy by adding feature nodes, when the
number of feature nodes is increased too much, the FIBL
network will suffer from over-fitting. Feature nodes should,
therefore, be optimized to an appropriate number. In this
experiment, the number of enhancement node is set to 240.
The number of feature nodes is initially specified as 10 and
increased by 10 nodes per step. The number increased
10 times to 100. FIGURE 6 indicates that the original BL
network has the lowest test accuracy. The maximum accuracy
is 92.73% when the number of feature nodes reaches 70.

FIGURE 6. Test accuracy of feature incremental broad learning.
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It drops as the number of feature nodes increases to 80. This
is due to overfitting. Therefore, the optimal number of feature
nodes is selected to be 70. Themaximum accuracy is 92.73%,
which requires initial training and six times of incremental
retraining. (Note: The network needs more available training
data during every incremental training process. We generate
these training data from raw signal data by using the random
distribution function which is defined in MATLAB.)

In order to ensure that the best feature node number is close
to 70, more additional numbers of feature nodes between
60 and 80 are also tested. Startingwith 60, themodel is further
expanded with additional 5 feature nodes at every iteration
until reaching 80. The interval between 60 and 80 in Figure 6
shows that the extra test result and the optimal number of
feature nodes is exactly 70.

D. RESULT AND DISCUSSION OF RETRAINING TIME
To prove the efficiency of the retraining of Feature Incre-
mental Broad Learning, the training time and retraining time
are introduced to the same enhancement node for com-
parison (the number of enhancement nodes is set to 240).
FIGURE 7 presents that the initial training time is the longest.
It takes 0.9398 seconds for the network training. However,
retraining time is shorter in the next nine steps of Feature
Incremental Broad Learning. The time required for the nine
steps is 0.0465s, 0.0771s, 0.0656s, 0.0423s, 0.0616s, 0.0528s,
0.0533s, 0.0868s, 0.0657s respectively. It is because the
FIBL algorithm does not need to change its original weights.
It only needs to calculate the weights of the incremen-
tal nodes. Therefore, its retraining time is faster. The total
training time for weight optimization is 1.2887 seconds,
which includes 7 steps (0.9388s, 0.0465s, 0.0771s, 0.0656s,
0.0423s, 0.0616s, 0.0528s).

FIGURE 7. Training time of feature increment broad learning.

E. RESULT AND DISCUSSION OF STRUCTURE
SIMPLIFICATION
This study uses SVD to compress the FIBL structure
to reduce its error. TABLE 5 shows the comparison
between FIBL (original structure without compression)
and SVD-FIBL (new structure with SVD compression).

In TABLE 5, the symbol � represents the network structure
of FIBL in which the first number represents the number of
feature nodes and the second number represents the number
of enhancement nodes. The column SVD-FIBL in TABLE 5
means the network is compressed by SVD from an original
structure �1 to a new structure �2. Both FIBL and SVD
FIBL methods are repeated ten times. Then, the minimum
test error (MTE) and average test error (ATE) are recorded in
TABLE 5.
Remarks: (�) denotes (Number of feature nodes, Number

of enhancement nodes); (�1)-(�2) denotes the structure is
simplified from (�1) to (�2).
TABLE 5 reveals that both MTE and ATE of FIBL and

SVD-FIBL are generally reduced as the total number of
nodes is increased. The MTE & ATE of SVD-FIBL reach the
maximum values of 0.037882% and 0.224981% respectively
when the structure of the FIBL network is simplified from
(70,240) to (55,240). In general, themore the nodes, the better
the accuracy (except for overfitting networks). TABLE 5 also
shows that bothMTE and ATE in SVD-FIBL are smaller than
those in FIBL. It means that the SVD can effectively reduce
redundant nodes. Therefore, the simplified structure is more
concise and stable.

VI. CONCLUSIONS
In this paper, a framework for three-phase induction motor
fault diagnosis is proposed that combines feature extraction,
Feature Incremental Broad Learning, and SVD-FIBL. Firstly,
raw sample data from Winding current A, Winding current
B and acoustic signals are collected. Subsequently, the raw
sample data are processed by using filters, PSO-VMD,
SampEn, TDSF, and Normalization. Secondly, this processed
data are import into Broad Learning to train the network.
Then, the network is continually trained through Feature
Incremental Broad Learning until the test accuracy is satisfac-
tory. Finally, the network structure is simplified by SVD. The
experimental results show that the Feature Incremental Broad
Learning and SVD can improve the diagnostic accuracy
and training speed. The contributions of this research are as
follows:

1. A feature extraction with PSO-VMD is first used in
inductionmotor fault diagnosis to improve the accuracy
of the diagnostic system.

2. A Feature Incremental Broad Learning (with feature
nodes) method is proposed to optimize the system net-
work to improve the diagnostic system both in accuracy
and training speed.

3. SVD is successfully used to simplify the FIBL structure
to further reduce the test error of this diagnostic system.

The proposed fault diagnostic method is suitable for
three-phase induction motors and other similar motors such
as DC motors or permanent magnet synchronous motors.
However, some points should be improved in the future.
Firstly, it takes more attempts to choose a better feature
extraction method and the feature extraction method of
PSO-VMD+SampEn+TDSF is perhaps not the best.
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Secondly, the number of feature nodes is manually tested
in the Feature Incremental Broad Learning process. It can
be tested automatically by developing a proper optimization
algorithm. Thirdly, we can try to increase the number of
inputs instead of adding the number of feature nodes to
improve system performance. Finally, we need more com-
parisons with many existing activation functions instead of
the sigmoid function in FIBL network.
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