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ABSTRACT The notion of covariant-contravariant refinement (CC-refinement, for short) is a generalization
of the notions of bisimulation and refinement. This paper interprets semantically a CC-refinement as bisim-
ulation plus model restriction, that is, a CC-refinement model of a given model may be obtained from one
bisimilar duplicate of this model by adding some transitions labelled by covariant actions and removing some
transitions labelled by contravariant actions. By using certain proposition letter to witness a contravariant
action, the standard bisimulation quantified modal logic is able to capture the characterization of this action,
however, this fails for covariant actions. This paper, based on the notion of CC-refinement, introduces
an extended bisimulation quantified modal logic with the universal modality � (EBQML�), describes
syntactically CC-refinement quantification as the extended bisimulation quantification plus relativization,
and establishes a translation from the language of CC-refinement modal µ-calculus to the language of
EBQML� such that every CC-refinement modal µ-formula is equivalent to its translation. The language of
EBQML� may be considered as a specification language for describing the properties of a system referring
to reactive and generative actions, which are represented respectively by covariant and contravariant actions,
and may be used to formalize some interesting problems in the field of formal methods.

INDEX TERMS Bisimulation quantification, modal logic, covariant-contravariant refinement modal
µ-calculus, relativization.

I. INTRODUCTION
A number of different compatible relations between
labelled transitions systems (LTSs) have been presented
in the literature (see [1], [2]), which are adopted to cap-
ture the behaviour relations between processes. Among
them, the notion of covariant-contravariant refinement
(CC-refinement, for short), which generalizes the notions
of bisimulation and refinement considered in [1], is often
used to describe the refinement relations between systems
referring to reactive (passive) and generative (active) actions
(e.g., input/output (I/O) automata) [2]–[5]. The notion of
CC-refinement partitions all actions into three sorts: covariant
actions which capture the passive actions of a system; con-
travariant actions which represent the generative actions; and
bivariant actions which are treated as in the usual notion of
bisimulation. The transitions labelled with covariant actions
in a given specification should be simulated by any correct
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implementation and the transitions for contravariant actions
in an implementation must be allowed by its specification.

The notion of bisimulation is a basic one among the
coinductively defined notions of behavior relations between
systems. It is more easily understood and realized. Hence
these behavior relations are often analyzed under the situation
of bisimulation. In the notion of bisimulation, related states
are required to satisfy the same propositional properties and
have matching transition possibilities. Through weakening
such propositional requirement, there is a natural way of
approximating this notion. For example, given a subset P
of the propositional properties, two systems are said to be
P-restricted bisimilar whenever related states satisfy the same
propositional properties except the ones in P and have match-
ing transition possibilities. Bisimulation quantifier, a kind of
non-standard propositional quantifier, is presented to quantify
over all P-restricted bisimulations of a given system. This
kind of quantifier is very interesting and useful. It was first
introduced in [6] for intuitionistic propositional logic, and
then investigated as a tool to prove uniform interpolation
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for modal logic and modal µ-calculus (see, e.g., [7]–[10]).
Moreover, bisimulation quantifiers are useful in formal anal-
ysis, design and development of dynamic systems. For exam-
ple, Kripke structures may be considered as the models of
optimization problems in control theory and planning the-
ory. A Kripke model is an LTS with its states labelled by
propositional properties, that is, it consists of a set of states
labelled by propositional properties and relations between
these states. In this situation, the propositional properties in
P are not as important as the ones not in P, and hence two
P-restricted bisimilar Kripke models may be considered to
be ‘‘equivalent’’.

In [11], Bozzano et al. presented and explored the first
formal method to the design of Fault Detection and Identi-
fication (FDI) components for discrete event systems, which
is available in autonomous critical systems, such as satellites
and space rovers. This method uses LTSs as the models of
systems. If the states in an LTS are labelled with all possible
environmental properties affecting FDI, then FDI may work
under different environments, that is, we could neglect those
properties which are not important under some environment
and try to search one bisimilar system except for those prop-
erties as desired.

Bisimulation quantified modal logic (BQML) is an exten-
sion of the modal system K with bisimulation quantifier
∃p where p is a proposition letter [12]. Given a set Atom
of proposition letters, a formula ∃pα is true in a pointed
model Mu if there are a pointed model Nv satisfying α and a
{p}-restricted bisimulation linking Mu and Nv. The modal
µ-calculus augments the standard modal logic with the
least and greatest fixed-point operators of monotone oper-
ators [13]. This gives a significant increase in expressive
power, however µ-calculus formulas are hard to understand
and it is also complex to construct their models. The modal
µ-calculus is often used to describe some properties of a
system in model checking. It is known that BQML is equiv-
alent to the modal µ-calculus, which implies that BQML is
able to express any monadic second-order property which is
invariant under bisimulation [8]. More work on the expres-
sivity and decidability of BQML may be found in [12], [14].
D’Agostino and Lenzi have given a sound and com-
plete axiomatization for BQML via the modal µ-calculus
in [15].

BQML focuses on reasoning and formalizing of the prop-
erties such as ‘‘there exists a bisimilar model, except for
a proposition letter p, which satisfies ϕ’’. In such cases,
a system ismodeled usingKripke-structures and its properties
will be expressed by the ones which are invariant under {p}-
restricted bisimulation. Note that, here, we are interested in
the system more than any model representing it. In other
words, given a system S1 presented as a Kripke model M ,
we are interested in whether there is some system S2 differing
from S1 only in the propositional property p, which satisfies
some property ϕ. Hence, in interpreting ∃p, it is natural to
consider all the interpretations of the propositional property
p in all the models bisimilar to M .

The notion of simulation (refinement) is able to describe
the refinement relations between reactive systems. Based
on this notion, Laura Bozzelli et al. recently presented and
explored refinement modal µ-calculus (RMLµ) [1], [16],
which contains a refinement operator (or, quantifier) ∃B
where B is a set of actions, in addition to usual modal oper-
ators and fixed-point operators. The formula ∃Bψ intuitively
expresses that we can refine the current model so as to real-
ize ψ . In [1], Laura Bozzelli et al. semantically interpreted
that a B-refinement of a given model can be obtained from
a bisimilar duplicate of this model by deleting some transi-
tions labelled by the actions in B. Further, concern proposi-
tion letters can be used to witness those desired transitions
labelled by the actions in B. They have shown that refinement
quantification can be seen as bisimulation quantification plus
relativization, by defining an equivalent translation from the
language of RMLµ to the language Lbq� of BQML with
the universal modality �, that is, each refinement modal
µ-formula is equivalent to its translation. The universal
modality � and its duality �, also called master modal-
ity [12], quantify over all the accessible states from the actual
state in a given model. This translation applies a bisimulation
quantifier characterization of fixed-points by employing �,
which is given in [12, Lemma 2.43]. With the help of this
translation, Laura Bozzelli et al. established the soundness of
the presented axiom system for RMLµ. The language Lbq�
may be considered as a specification language for describing
the properties of reactive systems.

It is well known that the result of executing an epistemic
action in a pointed model is a refinement of that model, and
dually, for every refinement of a finite pointed model there is
an epistemic action such that the result of its execution in that
pointed model is a model bisimilar to the refinement [17].
In [18], it has been shown that a product update by an
action model can decompose in copy and remove operations.
This indeed corresponds to the semantical interpretation that
‘‘a B-refinement of a given model can be obtained from a
bisimilar duplicate of this model by deleting some transitions
labelled by the actions in B’’. It is easy to see that this
kind of copy and remove operations are easily to realize by
programming.

Following Laura Bozzelli et al’s work, we considered
CC-refinement modal logic (CCRML) in [19], which is
obtained from the modal system K by adding CC-refinement
operator ∃(A1,A2) where A1 (A2) is a set of all covariant (con-
travariant, resp.) actions. In this paper, we will investigate its
extension with fixed-point operators: CC-refinement modal
µ-calculus (CCRMLµ). Intuitively, the formula ∃(A1,A2)ψ
represents that we can refine the current model so that ψ is
realized. Thus, given a specification expressed by a Kripke
model M which involves passive and generative actions,
the problemwhether this specification has an implementation
realizing some given property ψ may be formalized as the
model checking problem: whether ∃(A1,A2)ψ holds in M .

From the above introduction, we know that the lan-
guage Lbq� can perfectly describe the characterizations of
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contravariant actions. However, unfortunately, this is impos-
sible for covariant actions, which results that there is no
translation from the language Lµ(A1,A2) of CCRMLµ to Lbq�
such that it is defined inductively and every Lµ(A1,A2)-formula
is equivalent to its translation whenever A1 6= ∅. In this
paper, to remedy this, we present an extended bisimu-
lation quantified modal logic with the universal modal-
ity (EBQML�), then define a relativization function in its
language L(A1,A2)−ebq�, and by employing this relativiza-
tion, establish an equivalent translation from Lµ(A1,A2) to
L(A1,A2)−ebq�.

This paper is organized as follows. The next section
presents CC-refinement modal µ-calculus and recalls the
standard bisimulation quantifiedmodal logic. Section 3 intro-
duces the extended bisimulation quantifiedmodal logic based
on the notion of CC-refinement. Section 4 interprets seman-
tically a CC-refinement as bisimulation plus model restric-
tion. Section 5 establishes an equivalent translation from the
language of refinement modal µ-calculus to the language of
the extended bisimulation quantified modal logic with the
universal modality. Finally Section 6 ends the paper with a
brief discussion.

II. PRELIMINARY NOTIONS
In this section, we recall the notion of CC-refinement [2]
and bisimulation quantified modal logic (BQML) [1], [12],
where we refer to the notations used in [1], and present
CC-refinement modal µ-calculus (CCRMLµ).

Let A be a finite set of actions, and let Atom be a countable
set of proposition letters.

A. MODEL
Definition 1 (Kripke model): A Kripke model M is a triple
〈SM ,RM ,VM

〉 where
(1) SM is a non-empty set of states,
(2) RM : A→ 2S

M
×SM is an accessibility function

which assigns a binary relation RMb ⊆ SM × SM to
each action b ∈ A, and

(3) VM
: Atom→ 2S

M
is a valuation function. For each

p ∈ Atom, VM (p) is the set of states in M where p is
true.

A pair (M , u) with u ∈ SM is said to be a pointed Kripke
model, often written as Mu.
In the following, we give a number of useful notations. For

any binary relation R, set T and s, we define that:
R(s) , {v | sRv},
R(T ) ,

⋃
z∈T R(z),

π1(R) , {u | ∃w(uRw)},
π2(R) , {w | ∃u(uRw)},
R+ expresses the transitive closure of R, and
R∗ expresses the reflexive and transitive closure of R.

For any model M ,
R+M , (

⋃
a∈A R

M
a )+ and

R∗M , (
⋃

a∈A R
M
a )∗.

Given a model M , a ∈ A, p ∈ Atom, R : A → 2S
M
×SM ,

D ⊆ SM × SM − RMa and S ⊆ SM , the models M | R,
M + (a,D),M | (a, S) andM | (a, p) are defined as follows:
• M | R , 〈SM ,R,VM

〉

• M + (a,D) , 〈SM ,R′,VM
〉, where R′b , RMb for all

b ∈ A− {a} and R′a , RMa ∪ D
• M | (a, S) , 〈SM ,R′,VM

〉, where R′b , RMb for all
b ∈ A− {a} and R′a , RMa ∩ (S

M
× S)

• M | (a, p) , M | (a,VM (p)).
As usual, we use the following notations:
• ◦ denotes the composition operator of relations,
• iC,C ′ with C ⊆ C ′ indicates the graph of the inclusion
function from C to C ′, that is, iC,C ′ , {〈b, b〉 | b ∈ C ⊆
C ′}, and
• M ] N expresses the disjoint union of two models M
and N such that SM ∩ SN = ∅, which is defined by
SM]N , SM ∪ SN , RM]Nb , RMb ∪ R

N
b for each

b ∈ A and VM]N (q) , VM (q) ∪ VN (q) for each
q ∈ Atom.

B. CC-REFINEMENT
Definition 2 (CC-refinement [2]): Let A1, A2 ⊆ A with

A1∩A2 = ∅. Given two models M and N, a non-empty binary
relation Z ⊆ SM × SN is an (A1, A2)-refinement relation
between M and N if, for every pair 〈u, v〉 in Z , we have
(atoms) u ∈ VM (q) iff v ∈ VN (q) for each q ∈ Atom;
(forth) for each b ∈ A− A2 and u′ ∈ SM , uRMb u

′ implies
v RNb v

′ and u′Zv′ for some v′ ∈ SN ;
(back) for each b ∈ A− A1 and v′ ∈ SN , v RNb v

′ implies
uRMb u

′ and u′Zv′ for some u′ ∈ SM .
Here A1 and A2 are said to be covariant and contravariant set
respectively. We say that Nv (A1, A2)-refines Mu (or, Mu (A1,
A2)-simulates Nv), in symbols Mu �(A1,A2) Nv, if there exists
an (A1, A2)-refinement relation between M and N linking u
and v. We also write Z : Mu �(A1,A2) Nv to indicate that Z is
an (A1, A2)-refinement relation such that uZv.

The above notion generalizes the notions of bisimulation
and refinement considered in [1]. Formally, a bisimulation
relation is exactly an (∅,∅)-refinement, and a B-refinement
relation an (∅,B)-refinement. We write Z : Mu↔Nv to
represent that Z is a bisimulation witnessing that Mu is
bisimilar to Nv. Given P ⊆ Atom, a binary relation Z is said
to be a P-restricted bisimulation, in symbols Z : M↔PN ,
if the bisimulation conditions (forth) and (back) are satisfied,
and (atoms) holds whenever the set of proposition letters is
reduced to Atom − P. If P is finite, say P = {p1, · · · , pn},
we often write M↔p1,··· ,pnN instead of M↔PN .
Example 3: Consider two models M and N depicted

in Figure 1, where A1 = {a}, A2 = {b}, and VM (q) = ∅
and VN (q) = ∅ for each q ∈ Atom. It is not difficult to see
that the relation represented by the dash arrows is an (A1,
A2)-refinement relation between Ms and Ns1 .
Proposition 4 [19]: Let A1,A2 ⊆ A with A1 ∩ A2 = ∅.

Then, for each A′1,A
′′

1,A
′

2 and A
′′

2 such that A
′

1∪A
′′

1 = A1 and
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FIGURE 1. An ({a}, {b})-refinement between two given models M and N .

A′2 ∪ A
′′

2 = A2, it holds that

�(A′1,A
′

2)
◦ �(A′′1,A

′′

2)
= �(A1,A2) .

Convention: By Proposition 4, any CC-refinement may be
captured by the CC-refinements with singleton covariant and
contravariant sets (More information about this may be found
in [19]). Hence, in the remainder of the paper, we focus on
singleton covariant and contravariant sets.

C. CC-REFINEMENT MODAL µ-CALCULUS
In this subsection, we present CC-refinement modal
µ-calculus (CCRMLµ), which is obtained from the standard
modal µ-calculus by adding CC-refinement quantifiers.
Definition 5 (Language Lµ(A1,A2)): Let Var be a set of

variables. The language Lµ(A1,A2) of CC-refinement modal
µ-calculus is generated by the BNF grammar below, where
A1, A2 ⊆ A with A1∩A2 = ∅, b ∈ A, q ∈ Atom and x ∈ Var:

ϕ ::= x | q | ¬ϕ | (ϕ ∧ ϕ) | �bϕ | ∃(A1,A2)ϕ | µx.ϕ

The fixed-point variable x is bounded inµx.ϕ and is required
to occur positively in ϕ (namely occur only in the scope
of even number of negations). The modal operator ♦b and
propositional connectives ⊥, >, ∨, ↔ and → are defined
in the standard manner. Moreover, we write ∀(A1,A2)ϕ for
¬∃(A1,A2)¬ϕ, and νx.ϕ for ¬µx.¬ϕ[¬x\x].
In the above definition, since ∨-clause and ∧-clause are

dual, it is available to write any of them as a primary clause.
In this paper, we choose the latter one as a primary clause
for all BNF grammars, whose reason will be discussed in the
proof of Proposition 11.

The fragment of Lµ(A1,A2) involving no fixed-point oper-
ator is indeed the language L(A1,A2) of CC-refinement
modal logic [19], and Lµ(∅,A2) is indeed the language of
RMLµ [1]. If A1 is singleton, say A1 = {a1}, we write
∃(a1,A2)ϕ (or ∀(a1,A2)ϕ) instead of ∃(A1,A2)ϕ (resp., ∀(A1,A2)ϕ ),
and similar if A2 is singleton or both A1 and A2 are singleton.
Convention: To save the space, we shall write ‘iff’ instead

of ‘if and only if’. Given the statements: S1, · · · , Sn, when-
ever S1 if and only if S2, and S2 if and only if S3, · · · , and
Sn−1 if and only if Sn, we shall write ‘S1 iff S2 iff · · · iff Sn’
to ease the expression.

Given a model M , the notion of a formula ψ ∈ Lµ(A1,A2)
being satisfied in M at a state u is defined inductively as
follows:

Mu |H q iff u ∈ VM (q), where q ∈ Atom
Mu |H ¬ϕ iff Mu /|H ϕ

Mu |H ϕ1 ∧ ϕ2 iff Mu |H ϕ1 and Mu |H ϕ2
Mu |H �bϕ iff Mv |H ϕ for all v ∈ RMb (u)
Mu |H ∃(A1,A2)ϕ iff Mu �(A1,A2) Nv and Nv |H ϕ

for some Nv
Mu |H µx.ϕ iff u ∈

⋂
{T ⊆ SM : ‖ϕ(x) ‖M[x 7→T ]

⊆ T }
Mu |H νx.ϕ iff u ∈

⋃
{T ⊆ SM : ‖ϕ(x) ‖M[x 7→T ]

⊇ T }

Here, ‖ϕ(x) ‖M[x 7→T ] , {w ∈ S
M
: M [x 7→T ]

w |H ϕ(x)} and the
model M [x 7→T ] is obtained from M by setting

VM [x 7→T ]
(r) ,

{
VM (r) if r 6= x
T if r = x

The semantics ofµx.ϕ (νx.ϕ) clause captures exactly the fact
that the least (greatest, resp.) fixed-point is the intersection
(union, resp.) of all the prefixed (postfixed, resp.) points.
We can see [20], [21] for more information about the modal
µ-calculus.

As usual, a formula α ∈ Lµ(A1,A2) is valid, denoted by |H α,
if Mu |H α for each pointed model Mu. It is easy to see that
P-restricted bisimulation preserves the satisfiability of
Lµ(A1,A2)-formulas containing no proposition letter from P.
Proposition 6: Let Mu↔

PNv and ϕ ∈ Lµ(A1,A2) such that
p /∈ ϕ for all p ∈ P. Then

Mu |H ϕ iff Nv |H ϕ.

Proof: By the induction on ϕ.

D. BISIMULATION QUANTIFIED MODAL LOGIC
Now we recall the language Lbq of BQML which aug-
ments the standard modal language LK by adding bisimu-
lation quantifier, and its version with the universal modality
Lbq� [1] (also refer to [12, Section 2.3], in which universal
modality is called master modality).
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Definition 7 (Language Lbq�): The language Lbq� of
bisimulation quantifiedmodal logic with the universal modal-
ity� is defined by the BNF grammar below, where b ∈ A and
p, q ∈ Atom:

ϕ ::= q | ¬ϕ | (ϕ1 ∧ ϕ2) | �bϕ | �ϕ | ∃̃pϕ

The dual ∀̃pϕ is an abbreviation for ¬̃∃p¬ϕ, and �ϕ for
¬�¬ϕ. The clause ∃̃pϕ and �ϕ are interpreted as:

Mu |H ∃̃pϕ iff Mu↔
pNv and Nv |H ϕ for some Nv

Mu |H �ϕ iff Mv |H ϕ for all v ∈ R∗M (u)

Due to the duality, it is available to choose �ϕ or �ϕ as a
primary clause in the above BNF. Here, we choose the former
because the operator � is used more often in Section V.
Moreover, we write ∃̃ and ∀̃ for the bisimulation quantifiers in
order to distinguish them from the CC-refinement quantifiers
∃ and ∀, referring to the notations used in [1].

Also, a formula α ∈ Lbq� is valid, denoted by |H α,
if Mu |H α for each pointed model Mu. P-restricted bisimu-
lation also preserves the satisfiability of Lbq�-formulas con-
taining no proposition letter from P.
Proposition 8: Let Mu↔

PNv and ϕ ∈ Lbq� such that p /∈
ϕ for all p ∈ P. Then

Mu |H ϕ iff Nv |H ϕ.

Proof: By the induction on ϕ.

III. THE EXTENDED BISIMULATION QUANTIFIED
MODAL LOGIC
This section presents the extended bisimulation quantified
modal logic (EBQML) and introduces its useful properties.

A. PRESENTING MOTIVATION
In [1], a relativization •(a,p) : Lbq → Lbq to the proposition
letter p for the action a was presented, with the help of
which, a certain proposition letter may be used to witness
a contravariant action, and then every refinement formula is
translated into an equivalent Lbq-formula. However, there is,
unfortunately, no translation t : L(A1,A2) → Lbq such that
|H t(ψ)↔ ψ for each L(A1,A2)-formula ψ whenever A1 6= ∅.
The key reason is that Lbq can not describe perfectly the
characterizations of covariant actions. The detailed proof will
be given below. Hence, we will intend to explore an extended
version of Lbq to remedy this in this paper.
To prove the statement mentioned in the above paragraph,

Proposition 10 and Proposition 11 are needed to simplify its
proof. Firstly, we give an auxiliary notion, which is regarded
as a syntactic entity that transforms formulas to formulas.
Definition 9 (Context): A context of Lbq is obtained by the

following:

F ::= ϕ | - | ¬F | (F1 ∧ F2) | �bF | ∃̃pF

where b ∈ A, p ∈ Atom and ϕ ∈ Lbq.
If F is a context and α is a Lbq-formula, we write F(α) for
the formula obtained by replacing the ‘-’ in F with α.

Proposition 10: Given a context F(-) inLbq and p ∈ Atom
such that p /∈ F, we have that

Ms |H F(p) iff Ms |H F(⊥), whenever VM (p) = ∅.

Proof: LetMs be a pointed model with VM (p) = ∅. We
proceed by the induction on F .
For F(-)≡ ϕ with ϕ ∈ Lbq, we have F(p) = F(⊥) = ϕ.
For F(-)≡-, Ms /|H p follows from VM (p) = ∅.
For F(-)≡ ¬F ′(-), Ms |H ¬F ′(p) iff Ms /|H F ′(p) iff Ms /|H

F ′(⊥) by the induction hypothesis iff Ms |H ¬F ′(⊥).
For F(-)≡ F1(-)∧F2(-), we have Ms |H F1(p) ∧ F2(p) iff

Ms |H F1(p) and Ms |H F2(p) iff Ms |H F1(⊥) and Ms |H

F2(⊥) by the induction hypothesis iff Ms |H F1(⊥) ∧ F2(⊥).
For F(-)≡ �bF ′(-), Ms |H �bF ′(p) iff Mu |H F ′(p) for

each u ∈ RMb (s) iff Mu |H F ′(⊥) for each u ∈ RMb (s) by the
induction hypothesis iff Ms |H �bF ′(⊥).
For F(-)≡ ∃̃rF ′(-), we have that Ms |H ∃̃rF ′(p) iff

Ms↔
rNw and Nw |H F ′(p) for some Nw. Let N ′w be the w-

generated submodel of N . Then

Ms↔
rNw↔N ′w

and next N ′w |H F ′(p) due to Nw |H F ′(p) and Proposition 8.
Below, we check that VN ′ (p) = ∅. Let v ∈ SN

′

. Clearly,

∃b1, · · · , bn ∈ A(w
b1
→ v1 · · ·

bn
→ vn = v).

Because of Ms↔
rN ′w,

∃u1, · · · , un ∈ SM (s
b1
→ u1 · · ·

bn
→ un)

such that Mui↔
rN ′vi (1 ≤ i ≤ n). Further, since r 6= p

due to p /∈ F , by the condition (atoms), un ∈ VM (p) if
and only if v ∈ VN ′ (p). Hence, we get that VN ′ (p) = ∅
due to VM (p) = ∅. Then, by the induction hypothesis, from
N ′w |H F ′(p), it follows that Ms↔

rN ′w |H F ′(⊥), that is
Ms |H ∃̃rF ′(⊥). The converse implication can be proved
similarly.
Proposition 11: For every context F(-) in Lbq, we have

that

|H F(p) for all p ∈ Atom implies |H F(⊥).

Proof: Suppose that F(-) is a context inLbq and |H F(p)
for each p ∈ Atom. Let Ms be an arbitrary pointed model.
We proceed by the induction on F .

For F(-)≡ ϕ with ϕ ∈ Lbq, clearly F(p) = F(⊥) = ϕ.
For F(-)≡-, it holds trivially since /|H p for all p ∈ Atom.
For F(-)≡ ¬F ′(-), taking q ∈ Atom such that q /∈ F ,

we have |H ¬F ′(q). Let Ms be an arbitrary pointed model
and then Ms |H ¬F ′(q). We consider two cases in the
following. If VM (q) = ∅, it is clear that Ms |H ¬F ′(⊥) by
Proposition 10. Then we analyze the case with VM (q) 6= ∅.
LetM ′s be themodel obtained fromMs by settingVM ′ (q) = ∅.
AsM ′s |H ¬F

′(q) (due to |H ¬F ′(q)) and VM ′ (q) = ∅, we get
M ′s |H ¬F

′(⊥) by Proposition 10. Further, since q /∈ F , it is
straightforward to check that

M ′s |H ¬F
′(⊥) iffMs |H ¬F ′(⊥)
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by the induction on F ′. Hence Ms |H ¬F ′(⊥) follows imme-
diately.

For F(-)≡ F1(-)∧F2(-), it follows from |H F1(p) ∧ F2(p)
for every p ∈ Atom that |H F1(p) and |H F2(p) for every
p ∈ Atom. By the induction hypothesis, it holds that |H F1(⊥)
and |H F2(⊥), which implies |H F1(⊥) ∧ F2(⊥). Note that:
if ∨-clause was the primary clause, i.e., we need to check
the case: F(-)≡ F1(-)∨F2(-), it is not difficult to see that the
induction hypothesis could not work well in this case.

For F(-)≡ �bF ′(-), since |H �bF ′(p) for each p ∈ Atom,
we easily get that |H F ′(p) for each p ∈ Atom (its proof:
Suppose that Nw /|H F ′(q) for some q ∈ Atom. Let N ′w′ be
the model obtained from Nw by adding a new state w′ and a

new transition w′
b
→ w. Then N ′w′ /|H �bF

′(q), contradiction).
By the induction hypothesis, we have that |H F ′(⊥). Next, it is
clear that |H �bF ′(⊥) (its proof: Assume thatNw /|H �bF ′(⊥).
Then Nv /|H F ′(⊥) for some v ∈ RNb (w), contradiction).
For F(-)≡ ∃̃rF ′(-), this is analyzed by the strategy similar

to the one for the case: F(-)≡ ¬F ′(-).
Proposition 12: There is no translation t : L(A1,A2)→ Lbq

with A1 6= ∅ which satisfies that there exists a context
F∃(A1,A2) (-) in Lbq such that

t(∃(A1,A2)ϕ) = F∃(A1,A2) (t(ϕ))

and

t(p) = p
t(⊥) = ⊥

t(¬ϕ) = ¬t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)
t(♦bϕ) = ♦bt(ϕ),

and that for each L(A1,A2)-formula ψ , |H t(ψ)↔ ψ .
Proof: By contradiction, we suppose that there is a

translation t : L(A1,A2) → Lbq with A1 6= ∅ such that, for
some context F∃(a1,a2) (-) in Lbq, t(∃(a1,a2)ϕ) = F∃(a1,a2) (t(ϕ)),
t(p) = p, t(⊥) = ⊥, t(¬ϕ) = ¬t(ϕ), t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧
t(ϕ2) and t(♦bϕ) = ♦bt(ϕ), and such that |H t(ψ) ↔ ψ for
each L(A1,A2)-formula ψ . In L(A1,A2), clearly, we have that:
(1) |H ∃(a1,a2)♦a1q for all q ∈ Atom
(2) |H ¬∃(a1,a2)♦a1⊥.

Then, as |H t(ψ)↔ ψ , we get
(1′) |H F∃(a1,a2)♦a1q↔ ∃(a1,a2)♦a1q for all q ∈ Atom
(2′) |H F∃(a1,a2)♦a1⊥ ↔ ∃(a1,a2)♦a1⊥.

Further, |H F∃(a1,a2)♦a1q for all q ∈ Atom follows
from (1) and (1′), which implies that |H F∃(a1,a2)♦a1⊥ by
Proposition 11. Hence, |H ∃(a1,a2)♦a1⊥ holds due to (2′),
contradicting (2).

B. LANGUAGE AND SEMANTICS
Nowwe give the language of the extended bisimulation quan-
tifiedmodal logic with universal modality (EBQML�) and its
semantics.
Definition 13 (Language L(A1,A2)−ebq�): The language

L(A1,A2)−ebq� (for short, Lebq�) of the extended bisimulation
quantified modal logic with the universal modality � and

∅ 6= A1,A2 ⊆ A such that A1 ∩ A2 = ∅, is generated by the
BNF grammar below, where b ∈ A and p, q, p1, p2 ∈ Atom:

ϕ ::= q | ¬ϕ | (ϕ1 ∧ ϕ2) | �bϕ | �ϕ | ∃̃(p1,p2)ϕ | ∃̂pϕ

Here, A1 and A2 correspond to covariant and contravariant
set respectively. We write ∀̂pϕ for ¬̂∃p¬ϕ, and ∀̃(p1,p2)ϕ
for ¬̃∃(p1,p2)¬ϕ. The language L(∅,A2)−ebq� is indeed
Lbq� and the language L(A1,∅)−ebq� will be discussed in
Section 6.

To define the notion of satisfiability of Lebq�-formulas,
we apply the notion of model structure instead of model.
Definition 14 (Model structure): A model structure is a

triple (M , a,D) where M is a model, a ∈ A and D ⊆
SM × SM − RMa .
(M , a,D)s with s ∈ SM is said to be a pointed model
structure. Moreover, the model structures (M , a,D) | (b, S)
and (M , a,D) | (b, p), where b ∈ A, p ∈ Atom and S ⊆ SM ,
are defined as follows:
• (M , a,D) | (b, S) , (M | (b, S), a,D), and
• (M , a,D) | (b, p) , (M , a,D) | (b,VM (p)).
Definition 15 (Bisimilarity Between Model Structures):

Given two pointed model structures (M , a,D)s and
(M ′, a,D′)s′ , a binary relation Z ⊆ SM × SM

′

is a bisimula-
tion relation between (M , a,D)s and (M ′, a,D′)s′ , in symbols
Z : (M , a,D)s↔∗(M , a,D

′)s′ , if sZs′ and for each pair
〈u, u′〉 in Z ,
(atoms) u ∈ VM (q) iff u′ ∈ VM ′ (q) for each q ∈ Atom;
(forth) for each b ∈ A and v ∈ SM , uRMb v implies

u′RM
′

b v′ and vZv′ for some v′ ∈ SM ′ , and 〈u, v〉
∈ D implies 〈u′,w′〉 ∈ D′ and vZw′ for some
w′ ∈ SM

′

;

(back) for each b ∈ A and v′ ∈ SM
′

, u′RM
′

b v′ implies
uRMb v and vZv′ for some v ∈ SM , and 〈u′, v′〉
∈ D′ implies 〈u,w〉 ∈ D and wZv′ for some
w ∈ SM .

Analogous to the notion of P-restricted bisimulation
between models, we define the one between model structures
and use Z : (M , a,D)s↔P

∗ (M
′, a,D′)s′ to indicate that Z is

a P-restricted bisimulation relation between (M , a,D)s and
(M ′, a,D′)s′ .
Let ψ ∈ Lebq�. Given a model structure (M , a,D)

with a ∈ A1, the notion of the formula ψ being satis-
fied in (M , a,D) at a state s ∈ SM is defined inductively
in Table 1.

From Table 1, it is easy to see that, actually, M + (a,D)
and (M , a,D) depict the same model and (M , a,D) | (b, S)
depicts the model obtained from M by adding the a-labelled
transitions inD and preserving only the b-labelled transitions
entering the states in S.

As usual, we say that two model structures (M1, a,D1)u
and (M2, a,D2)v are equivalent if (M1, a,D1)u |H ψ if only
if (M2, a,D2)v |H ψ for all ψ ∈ Lebq�.
Convention: In the sequel, for such structure symbols:

M + (a,D), M | (b, S), (M , a,D) and (M , a,D) | (b, S),
we always suppose a ∈ A1 and b ∈ A2 whenever referring
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TABLE 1. The satisfiability of Lebq�-formulas in a model structure (M,a,D) at a state s ∈ SM .

to covariant and contravariant actions, and if no ambiguity,
we often abbreviate these agent symbols.

C. USEFUL PROPERTIES
Model structures have some useful properties. We begin
with the invariance of Lebq�-satisfiability under P-restricted
bisimulation:
Proposition 16: Let (M ,B)s↔P

∗ (N ,D)w and ψ ∈ Lebq�
such that p /∈ ψ for all p ∈ P. Then

(M ,B)s |H ψ iff (N ,D)w |H ψ.

Proof: By the induction on ψ .
Proposition 17: (M ,B)s↔P

∗ (N ,D)w implies that (M+B,
∅)s↔P

∗ (N + D,∅)w.
Proof: Straightforward.

In the following, we intend to show that (M + B,∅)
and (M ,B) are equivalent. Moreover, in Section V, we will
intend to show the equivalence of the given translation. To
prove these results, Proposition 19 is needed to simplify their
proofs.

Proposition 19 reveals that, givenZ : ((M+B,∅) | S )s↔P
∗

(N ,∅)w with q ∈ Atom − P, S ⊆ VM (q) and
D1 ⊆ (SN × SN ) − RNa1 , we can construct (N�,D�)w′ ,
S� ⊆ VN� (q) and D�1 ⊆ (SN

�

× SN
�

)− (RN
�

a1 ∪ D
�), which

satisfy (M ,B)s↔P
∗ (N

�,D�)w′ and

((N� + (D� ∪ D�1)) | S
�,∅)w′↔

q
∗ (N + D1,∅)w.

In the following, we will explain the idea behind the con-
structions. Without loss of generality, we assume that M and
N ′ are disjoint. Since Z : ((M + B,∅) | S )s↔P

∗ (N ,∅)w,
in order to realize (M ,B)s↔P

∗ (N
�,D�)w′ , at first glance, N�

can be obtained from M ] N by modifying the accessibility
relation RM]Na2 so as to provide a matching transition for

each transition u
a2
→ z with u ∈ π1(Z) and z /∈ S in M .

We will add the a2-labelled transitions depicted by the dash
arrows in Figure 2. Next, it is not difficult to see that, in this
construction, the desired D� has to come from N . But this is
not always done successfully. For example,
Example 18: Consider the models M and N depicted

in Figure 3. Here, VM (p) = VN (p) = ∅ for each p ∈ Atom
and the dash (thick dash) arrows represent the a1-transitions
in B (resp., D1). We easily see ((M + B,∅) | S )s↔∗ (N ,∅)w
via the binary relation Z = {〈s,w〉, 〈u, z〉, 〈v, z〉}, where it
is clear that S = ∅ since S ⊆ VM (q). According to the

FIGURE 2. The added a2-transitions in the construction of the model N�.

FIGURE 3. An example to depict how to construct the desired D�

construction mentioned above, after adding the transition
z
a2
→ m, it can be guaranteed that (M ,∅)s↔∗(N

�,∅)w via the
binary relation {〈s,w〉, 〈u, z〉, 〈m,m〉}. There is no doubt that
it is the most convenient to obtain D� from the corresponding
transitions in N of the ones in B. However, disappointedly,
we just get D� = ∅ by this due to D� ∩ RN

�

a1 = ∅ so that
(M ,B)s /↔∗ (N

�,D�)w.
To obtain a desired D� of the above example, similar as

in the proof for Proposition 24 (2.2) in [19], we intend to
replace each v′ ∈ π2(Z) by all the pairs of the form 〈v′, u′〉 in
Z−1. Moreover, the transitions from these new states 〈v′, u′〉
in N� are prescribed according to the ones related to v′ in N .
In particular, the transitions between two new states 〈v1, u1〉
and 〈v2, u2〉 are captured by the rule, for all a ∈ A:

〈v1, u1〉RN
�

a 〈v2, u2〉 iff u1 RM |Sa u2 and v1 RNa v2, (∗)
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FIGURE 4. The part from N in the remedied N�.

and the a2-labelled transitions between the new state 〈v′, u′〉
and the state z′ in SM − S are captured by the rule:

〈v′, u′〉RN
�

a2 z
′ iff u′RMa2z

′ and z′ /∈ S. (∗∗)

The part fromN in the remediedN� is depicted as in Figure 4,
inwhichD� consists of the dash arrow, corresponding to 〈s, v〉
(in B). In the proof of Proposition 19, D� is defined as

D� , B ∪ {〈〈v1, u1〉, 〈v2, u2〉〉 | u1 Bu2,

v1 RNa1v2, u1Zv1 and u2Zv2}.

Clearly, it holds that (M ,B)s↔∗ (N
�,D�)〈w,s〉.

Further, we will construct D�1 and S� of the above
example. To realize

((N� + (D� ∪ D�1)) | S
�,∅)w′↔

q
∗ (N + D1,∅)w,

the transitions y
a2
→ 〈z, u〉 and y

a2
→ 〈z, v〉 need to be kept.

We may assign q to be true at the states 〈z, u〉 and 〈z, v〉 and
set S� , {〈z, u〉, 〈z, v〉} so as to keep these transitions in the
model (N� + (D� ∪D�1)) | S

�, as desired. Unfortunately, it is
destroyed that (M ,B)s↔∗ (N

�,D�)〈w,s〉 due to the condition
(atoms). To remedy this flaw, we will preserve the states in
R∗N+D1

(D1(π2(Z))) for N�, and assign q to be true at the
a2-accessible states in this part. In the proof of Proposition 19,
the q-states in the part from N , together with S, form S�, and
D�1 is defined as

D�1 , (D1 ∩ (SN
�

)2) ∪ {〈〈v′, u′〉, z′〉 | v′D1 z′ and u′Zv′}.

Actually, since the bisimilarity between two states depends
on the bisimilarity between their generated submodels, it is
enough to keep the states in Z−1 ∪ R∗N+D1

(D1(π2(Z))) in
the part from N of N�. Thus the final remedied model N� is
described in Figure 5, in which the dash (thick dash) arrows
represent the a1-transitions in D� (resp., D�1).
From Figure 5, it is not difficult to observe that it is also

available to, in the last step of the construction, add thematch-
ing transitions for each transition u

a2
→ z with u ∈ π1(Z)

and z /∈ S in M . That is, we firstly construct the part from
N by the method mentioned in the preceding paragraphs,
denoted as the model N ′, then obtain the desired model N�

fromM ] N ′ by adding the a2-labelled transitions according

FIGURE 5. The final model N� obtained by applying the remedied
constructions.

to the rule (∗∗). We proceed by this strategy in the proof for
Proposition 19.
Proposition 19: Given Lebq� and a model M, let

P ⊆ Atom and q ∈ Atom − P, and let S ⊆ VM (q) (or
S = π2(RMa2 )). If

((M + B,∅) | S )s↔P
∗ (N ,∅)w

and D1 ⊆ (SN × SN ) − RNa1 then there exist (N
�,D�)w′ ,

D�1 ⊆ (SN
�

× SN
�

) − (RN
�

a1 ∪ D
�) and S� ⊆ VN� (q) (resp.,

S� = π2(RN
�

a2 )) such that

(M ,B)s↔P
∗ (N

�,D�)w′

and

((N� + (D� ∪ D�1)) | S
�,∅)w′↔

q
∗ (N + D1,∅)w.

In particular:
(1) if B = ∅ then we may take D� = ∅,
(2) if D1 = ∅ then take D�1 = ∅,
(3) if S = VM (q) then take S� = VN� (q), and
(4) if S = π2(RMa2 ) then

(N� + (D� ∪ D�1),∅)w′↔∗ (N + D1,∅)w.

Proof: Suppose S ⊆ VM (q). Let Z : ((M + B,∅) |
S)s↔P

∗ (N ,∅)w and D1 ⊆ (SN × SN )− RNa1 , and let M | S =
〈SM ,R,VM

〉. We firstly construct the model structure (N ′,D)
as follows, and then obtain (N�,D�) from M ] N ′.
(N ′1) S

N ′ , Z−1 ∪ R∗N+D1
(D1(π2(Z))) (Here we assume

that SN ∩ Z−1 = ∅).
(N ′2) For each b ∈ A, RN

′

b ⊆ SN
′

× SN
′

is obtained from RNb
by preserving the transitions between the states in SN ∩ SN

′

,
and prescribing the behaviour of a new state 〈v, u〉 according
to the rule (∗). Formally,

RN
′

b , (RNb ∩ (S
N ′ )2) ∪ {〈〈v, u〉, 〈v′, u′〉〉 |

uRu′, v RNb v
′, uZv and u′Zv′}.

(N ′3) For each r ∈ Atom,

VN ′ (r) , (VN (r) ∩ SN
′

) ∪ {〈v, u〉 | uZv and v ∈ VN (r)}.
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Note that we do not modify the assignment of q here.
(N ′4) D ⊆ SN

′

× SN
′

is defined as

D , {〈〈v, u〉, 〈v′, u′〉〉 | uBu′, v RNa1v
′, uZv and u′Zv′}.

(N ′5) D
′

1 ⊆ SN
′

× SN
′

is defined as

D′1 , (D1 ∩ (SN
′

)2) ∪ {〈〈v, u〉, z〉 | vD1 z and uZv}.

Clearly,D ⊆ SN
′

×SN
′

−RN
′

a1 andD
′

1 ⊆ SN
′

×SN
′

−(RN
′

a1 ∪D).
We w.l.o.g. assume that M and N ′ are disjoint. Let the

modelN� be obtained fromM]N ′ by assigning q to be true at
the a2-accessible states in R∗N+D1

(D1(π2(Z))), and for every
〈v, u〉 ∈ Z−1 and z ∈ SM , imposing the clause:

〈v, u〉RN
�

a2 z iff uRMa2z and z /∈ S.

Then define

D� , B ∪ D and D�1 , D′1.

It is not difficult to see that D� ⊆ SN
�

× SN
�

− RN
�

a1 and
D�1 ⊆ SN

�

× SN
�

− (RN
�

a1 ∪ D
�). Set

Z ′ , iSM ,SN� ∪ {〈u, 〈v, u〉〉 | uZv}.

It is routine to show that

Z ′ : (M ,B)s↔P
∗ (N
�,D�)〈w,s〉.

On the other hand, put

S� , S ∪ (VN� (q) ∩ SN
′

)

Clearly, S� ⊆ VN� (q)). Thus, we immediately have

Z ′′ : ((N� + (D� ∪ D�1)) | S
�,∅)〈w,s〉↔

q
∗ (N + D1,∅)w

where

Z ′′ , {〈v, v〉 | v ∈ SN ∩ SN
�

} ∪

{〈〈v, u〉, v〉 | uZv and v ∈ R∗N (w)}.

For S = π2(RMa2 ), we apply the same constructions as the
ones in the above case except that VN� , VM

∪ VN ′ and
S� , π2(RN

�

a2 ). It is easy to observe that no a2-translation
will be removed and the assignment of qwill not be modified,
namely,

N� | S� = N� = M ] N ′.

Therefore we get

Z ′′ : (N� + (D� ∪ D�1),∅)〈w,s〉↔∗ (N + D1,∅)w.

Furthermore, if B = ∅ then D� = ∅, if D1 = ∅ then
D�1 = ∅, and if S = VM (q) then S� = VN� (q).
Proposition 20: Let ψ ∈ Lebq�. Then

(M ,B)s |H ψ iff (M + B,∅)s |H ψ.

Proof: Proceed by the induction on ψ . We analyze the
clauses: ψ ≡ ∃̂pϕ and ψ ≡ ∃̃(p1,p2)ϕ, and the analyses are
routine for the other clauses.

(1) ψ ≡ ∃̂pϕ
Let (M ,B)s |H ∃̂pϕ. So (M ,B)s↔

p
∗(N ,D)w and

(N ,D ∪ D1)w |H ϕ for some (N ,D)w and D1. By
Proposition 17, (M + B,∅)s↔

p
∗(N + D,∅)w follows from

(M ,B)s↔
p
∗(N ,D)w. Due to (N ,D ∪ D1)w |H ϕ, by the

induction hypothesis,

((N + D)+ D1,∅)w = (N + (D ∪ D1),∅)w |H ϕ

and next (N +D,D1)w |H ϕ holds by applying the induction
hypothesis again. Hence, from (M + B,∅)s↔

p
∗(N + D,∅)w

and (N + D,D1)w |H ϕ, it follows that (M + B,∅)s |H ∃̂pϕ.
Assume that (M + B,∅)s |H ∃̂pϕ. Then, for some Nw and

D1, (M+B,∅)s↔
p
∗(N ,∅)w and (N ,D1)w |H ϕ. By the induc-

tion hypothesis, we get (N+D1,∅)w |H ϕ due to (N ,D1)w |H
ϕ. Further, as (M + B,∅)s↔

p
∗(N ,∅)w, by Proposition 19 (4),

there exist (N ′,D)w′ and D′1 ⊆ (SN
′

× SN
′

) − (RN
′

a1 ∪ D)
such that (M ,B)s↔

p
∗(N ′,D)w′ and (N + D1,∅)w↔∗(N

′
+

(D ∪ D′1),∅)w′ . Next, by Proposition 16, we get (N ′ + (D ∪
D′1),∅)w′ |H ϕ due to (N + D1,∅)w |H ϕ, and then
(N ′,D ∪ D′1)w′ |H ϕ by the induction hypothesis. Hence,
(M ,B)s↔

p
∗(N ′,D)w′ and (N ′,D ∪ D′1)w′ |H ϕ imply that

(M ,B)s |H ∃̂pϕ.
(2) ψ ≡ ∃̃(p1,p2)ϕ
Let (M ,B)s |H ∃̃(p1,p2)ϕ. Then there exists (N ,D)w

such that (M ,B)s↔
p1,p2
∗ (N ,D)w |H ϕ, due to which we

get (M + B,∅)s↔
p1,p2
∗ (N + D,∅)w by Proposition 17 and

(N + D,∅)w |H ϕ by the induction hypothesis. Thus
(M + B,∅)s |H ∃̃(p1,p2)ϕ holds.

Suppose that (M +B,∅)s |H ∃̃(p1,p2)ϕ. Then, for some Nw,
(M+B,∅)s↔

p1,p2
∗ (N ,∅)w and (N ,∅)w |H ϕ. Because of (M+

B,∅)s↔
p1,p2
∗ (N ,∅)w, by Proposition 19 (2) and (4), we have

that (M ,B)s↔
p1,p2
∗ (N ′,D)w′ and (N ,∅)w↔∗(N

′
+ D,∅)w′

for some (N ′,D)w′ . Then, due to (N ,∅)w↔∗(N
′
+ D,∅)w′

and (N ,∅)w |H ϕ, it holds that (N ′ + D,∅)w′ |H ϕ by
Proposition 16, which implies that (N ′,D)w′ |H ϕ by the
induction hypothesis. Finally, (M ,B)s |H ∃̃(p1,p2)ϕ follows
from (M ,B)s↔

p1,p2
∗ (N ′,D)w′ and (N ′,D)w′ |H ϕ.

Resorting to the above proposition, it is enough to con-
sider the satisfiability of Lebq�-formulas in such model
structure (M ,∅).
Proposition 21: Let P ⊆ Atom and q ∈ Atom − P. Then

(M ,∅)s↔P
∗ (N ,∅)w implies that

((M ,∅) | (a, q) )s↔P
∗ ((N ,∅) | (a, q) )w.

Proof: The proof is routine.

IV. CC-REFINEMENT AS BISIMULATION PLUS
MODEL RESTRICTION
This section gives CC-refinement’s semantical interpretation
as bisimulation plus model restriction, based on which we
will establish a relativization function in Lebq� in Section V.

In the following, we describe this semantical interpretation
by demonstrating Lemma 25 and Lemma 26. Lemma 25
reveals intuitively that: an (a1,a2)-refinement model of a
given model may be obtained from one bisimulation of this
model by adding some a1-labelled transitions and removing
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FIGURE 6. The added a2-labelled transitions in the construction of the
model M +Z N .

some a2-labelled transitions. Given two disjoint models M
and N such that Z : Ms �(a1,a2) Nw, Definition 22 gets
such a bisimulation of M : the model M +Z N . In the fol-
lowing, we will explain the construction of M +Z N . Since
Nw↔(M ] N )w holds trivially and Ms �(a1,a2) Nw, based
on the notion of (a1, a2)-refinement, it is not difficult to
see that the construction can be realized by modifying the
accessibility relations RM]Na1 and RM]Na2 , namely, we focus on
how to, conversely, delete some a1-labelled transitions and
add some a2-labelled transitions.

Given a transition u
a2
−→ v inM , if the following conditions

hold
(1) u ∈ π1(Z) and v ∈ π1(Z), and
(2) ∃z(uZz and ∀z′(vZz′ ⇒ z

a29 z′))
then the transition u

a2
−→ v does not reflect in N . In Defini-

tion 22, the set of all these states v is denoted by SM ,Za2− , which
is defined as

SM ,Za2− , π1(Z) ∩ π2(RMa2 ∩ (Z ◦ R
N
a2 ◦ Z

−1 )).

HereRNa2 ◦ Z
−1 is the complementation ofRNa2◦Z

−1, namely,
RNa2 ◦ Z

−1 = SN × SM − RNa2 ◦ Z
−1. Clearly, the definition

of SM ,Za2− is induced by the conditions (1) and (2). Moreover,
it is easy to see that if u ∈ π1(Z) and v ∈ SM − π1(Z) then
u

a2
−→ v also does not reflect in N . To afford a matching

transition for u
a2
−→ v where v ∈ (SM − π1(Z)) ∪ SM ,Za2− ,

we will add the a2-labelled transition depicted by the dash
arrow in Figure 6.

Similarly, given a transition u
a1
−→ v in N , through

the above (1) and (2) with a1-action instead of a2-action,
we describe the motivation behind introducing the set RN ,Za1+
in Definition 22, which is defined as

RN ,Za1+ , (Z−1 ◦ RMa1 ◦ Z ) ∩ RNa1 .

Since M is given and fixed, to meet the requirement for
(back), these a1-labelled transitions will be obliged to be
deleted.
Definition 22: Given two disjoint models M and N such

that Z : Ms �(a1,a2) Nw, the model M +Z N is obtained from
M ] N by

(1) deleting the a1-labelled transitions in R
N ,Z
a1+ , and

(2) adding the a2-labelled transitions in

{〈z, v〉 | v ∈ (SM − π1(Z)) ∪ SM ,Za2− and z(Z−1 ◦ RMa2 )v}.

Here,
RN ,Za1+ , (Z−1 ◦ RMa1 ◦ Z ) ∩ RNa1 , and
SM ,Za2− , π1(Z) ∩ π2(RMa2 ∩ (Z ◦ R

N
a2 ◦ Z

−1 )).
Example 23: For the models M and N in Figure 1 with

the (a, b)-refinement relationZ between them depicted by the
dash-arrows, the model M +Z N is given in Figure 7. Here,
the dash-arrows represent the added new b-labelled transi-
tions (neither in M nor in N), and the transitions u1

a
−→ v1

and u2
a
−→ v2 from N are deleted. It is not difficult to see

that Ms ↔ (M +Z N )s1 via the relation Z ∪ {〈v, v〉, 〈w,w〉}.
Proposition 24 [19]: (1) Ms1↔M ′s2 �(A1,A2) N

′
w2
↔ Nw1

implies Ms1 �(A1,A2) Nw1 .
(2) If Ms �(A1,A2) Nw then there exist M ′s′ , N

′

w′ and Z such
that Ms↔M ′s′ , Nw↔N ′w′ , and Z : M

′

s′ �(A1,A2) N
′

w′ that is
an injective partial function from SM

′

to SN
′

, namely, Z
satisfies
(2.1) ∀z ∈ SM

′

∀v1, v2 ∈ SN
′

(zZv1 and zZv2 ⇒
v1 = v2);

(2.2) ∀v ∈ SN
′

∀z1, z2 ∈ SM
′

(z1Zv and z2Zv⇒
z1 = z2).

Lemma 25: If Z : Ms �(a1,a2) Nw then

Ms ↔ (M +Z N )w and ((M +Z N ) | R)w ↔ Nw

where R is obtained from RM+ZN by setting Rb = RNb for
b = a1, a2.

Proof: Let Z : Ms �(a1,a2) Nw. W.l.o.g., we may
suppose thatM andN are disjoint andZ is an injective partial
function from SM to SN by Proposition 24. Below we check

Z ∪ iSM ,SM+ZN : Ms ↔ (M +Z N )w.

Here we borrow the notations in Definition 22.
For 〈u, u′〉 ∈ iSM ,SM+ZN , the proof is straightforward.

In the following, we consider another case where uZu′. The
condition (atoms) holds trivially, and we next check (forth)
and (back). Let b ∈ A and SN , (SM − π1(Z)) ∪ SM ,Za2− .
(forth) Let uRMb v. We consider three cases based on b.

Case 1 b 6= a1, a2
Because of Z : Mu �(a1,a2) Nu′ and uR

M
b v, there exists

v′ ∈ SN such that u′RNb v
′ and vZv′. Further, due to the

definition of RM+ZN , we have u′RM+ZN
b v′.

Case 2 b = a1
SinceZ : Mu �(a1,a2) Nu′ and uR

M
b v, u

′RNb v
′ and vZv′ for

some v′ ∈ SN . Next we need to check u′RM+ZN
b v′. Based

on the fact that Z is an injective partial function from SM

to SN , from uZu′, uRMb v and vZv′, it follows that

〈u′, v′〉 /∈ Z−1 ◦ RMb ◦ Z.

That is 〈u′, v′〉 /∈ RN ,Zb+ . Thus 〈u′, v′〉 ∈ RM+ZN
b by the

definition of RM+ZN .
Case 3 b = a2
Then we have v /∈ SN or v ∈ SN. If v /∈ SN then
v ∈ π1(Z) − SM ,Zb− . So, by the definition of SM ,Zb− , due

to uRMb v, we have 〈u, v〉 /∈ Z ◦ RNb ◦ Z−1. Next, from
uZu′, it follows that u′(RNb ◦ Z−1)v, which implies that
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FIGURE 7. The model M +Z N for the models M and N with the (a, b)-refinement relation Z between them in Figure 1.

u′RNb v
′ (also, u′RM+ZN

b v′) and vZv′ for some v′ ∈ SN

(⊆ SM+ZN ). If v ∈ SN then together with uZu′ and
uRMb v, we have u

′RM+ZN
b v by the definition of RM+ZN .

Moreover, 〈v, v〉 ∈ iSM ,SM+ZN as desired.

(back) Let u′RM+ZN
b v′. It is clear that u′ ∈ SN due to Z :

Mu �(a1,a2) Nu′ . Then (v′ ∈ SN and b = a2) or v′ ∈ SN by
the definition of RM+ZN .

If v′ ∈ SN and b = a2 then, due to u′RM+ZN
b v′ and

by the definition of RM+ZN , we have that u0Zu′ and
u0 RMb v

′ for some u0 ∈ SM . SinceZ is an injective partial
function from SM to SN , u = u0 immediately follows
from uZu′ and u0Zu′. Hence uRMb v′ as desired. Also we
have 〈v′, v′〉 ∈ iSM ,SM+ZN . Next we consider another case
where v′ ∈ SN . So u′RNb v

′ by the definition of RM+ZN .
Here we analyze two cases: b 6= a1 and b = a1.
If b 6= a1 then it follows from Z : Mu �(a1,a2) Nu′ and
u′RNb v

′ that uRMb v and vZv′ for some v ∈ SM , as desired.
If b = a1, 〈u′, v′〉 ∈ RNb − RN ,Zb+ by the definition of

RM+ZN , i.e., 〈u′, v′〉 /∈ Z−1 ◦ RMb ◦ Z by the definition
of RN ,Zb+ . Because of uZu′, u(RMb ◦ Z)v′ immediately.
Therefore, for some v ∈ SM , we get uRMb v and vZv′,
as desired.

Further, it is easy to see that

(M +Z N ) | R = N ]M

Then we get ((M +Z N ) | R)w = (N ] M )w ↔ Nw due to
w ∈ SN .

Now we have known that an (a1,a2)-refinement of a given
model may be obtained from one bisimulation of this model
by adding some a1-labelled transitions and removing some
a2-labelled transitions. Below, we use certain proposition
letter to witness these removed a2-labelled transitions.
Lemma 26: Let p ∈ Atom. If Ms �(a1,a2) Nw then, for some

N ′w′ and B,

Ms↔
p N ′w′ and ((N ′ + B) | p )w′↔

p Nw.

Proof: Let Z : Ms �(a1,a2) Nw. By Lemma 25,
we have Ms↔ (M +Z N )w. Here, we borrow the notations
in Definition 22. Let the model N ′ be obtained fromM+Z N
by setting VN ′ (p) = π2(RNa2 ). Clearly, Ms↔

p N ′w due to
Ms↔ (M +Z N )w. Put B , RN ,Za1+ . Then it is obvious that

B ⊆ SN
′

× SN
′

− RN
′

a1 . Let (N
′
+ B) | p = 〈SN

′

,R,VN ′
〉. By

Definition 22, it is not difficult to see that, if Ra2 = RNa2 then

(N ′ + B) | p = 〈SN]M ,RN]M ,VN ′
〉,

which implies that ((N ′ + B) | p)w↔p Nw as desired. Thus,
to complete the proof, it suffices to show Ra2 = RNa2 . Now we
verify this below.

Let uRNa2u
′. Then u′ ∈ π2(RNa2 ) = VN ′ (p). Next, due to

〈u, u′〉 ∈ RNa2 ⊆ RM+ZN
a2 = RN

′

a2 and u′ ∈ VN ′ (p), we have
uRa2u

′. Let uRa2u
′. Then u′ ∈ VN ′ (p) and uRM+ZN

a2 u′. Thus
u′ ∈ SN because of VN ′ (p) = π2(RNa2 ). Further, uR

N
a2u
′

follows from uRM+ZN
a2 u′ and u′ ∈ SN by the definition of

M +Z N .
In the above constructed model (N ′ + B) | p, it is easy to

observe that, only p-states are accessible for the contravari-
ant action a2, or, we say that p witnesses the contravariant
action a2, and the a1-labelled transitions in B are new for N ′.
The converse of Lemma 26 also holds.
Lemma 27: If Ms↔

p N ′w′ and ((N
′
+ B) | p )w′ |H ϕ with

p /∈ ϕ then Ms �(a1,a2) Nw |H ϕ for some Nw.
Proof: Let Z : Ms↔

p N ′w′ and ((N ′ + B) | p )w′ |H ϕ

with p /∈ ϕ. The model N is obtained from (N ′ + B) | p by
setting VN (p) = Z(VM (p)). Obviously

iSN ′ ,SN : ((N
′
+ B) | p )w′↔

pNw′ .

Then, Nw′ |H ϕ due to ((N ′ + B) | p )w′ |H ϕ and
p /∈ ϕ, by Proposition 6. Moreover, it is routine to check that
Z : Ms �(a1,a2) Nw′ .

Laura Bozzelli et al. have obtained the same conclusions
for a2-refinement [1] as Lemma 25 and Lemma 26, which
corresponds to the case where A1 = ∅ and A2 = {a2}.

V. RELATIVIZATION
In Section IV, we interpret semantically a CC-refinement
as one bisimulation followed by model restriction. In this
section, we intend to describe syntactically CC-refinement
quantification as the extended bisimulation quantification
plus relativization. Further we propose an equivalent trans-
lation from Lµ(A1,A2) with A1,A2 6= ∅ to Lebq�.

Similar as in [1], a relativization in Lebq�, to certain
proposition letters for contravariant actions, devotes to select
the desired transitions for these contravariant actions. Hence,
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TABLE 2. The translation t from Lµ

(A1,A2) with A1,A2 6= ∅ to Lebq�.

such a relativization semantically also corresponds to an
arrow-elimination relativization, but not a state-elimination
relativization. We may refer to [22] for arrow-eliminating
approach in the modal logic, [23] state-eliminating, and [24],
[25] their differences.
Definition 28 (Relativization): We say that a function
•
(a,p)
: Lebq� → Lebq� is a relativization to the proposition

letter p for the action a ∈ A2, whenever the following
conditions hold,

q(a,p) = q
(¬ϕ)(a,p) = ¬ϕ(a,p)

(ϕ ∧ ψ)(a,p) = ϕ(a,p) ∧ ψ (a,p)

(�aϕ)(a,p) = �a(p→ ϕ(a,p))
(�bϕ)(a,p) = �bϕ(a,p) if b 6= a
(�ϕ)(a,p) = �ϕ(a,p)

(̂∃qϕ)(a,p) = ∃̂qϕ
(a,p) if p 6= q

(̂∃pϕ)(a,p) = ∃̂r (ϕ[r\p])(a,p) where r /∈ ϕ
(̃∃(p1,p2)ϕ)

(a,p)
= ∃̃(p1,p2)ϕ

(a,p) if p 6= p2
(̃∃(p1,p)ϕ)

(a,p)
= ∃̃(p1,r)(ϕ[r\p])

(a,p) where r /∈ ϕ

Next, we translate Lµ(A1,A2)-formulas with A1,A2 6= ∅ into
equivalent Lebq�-formulas. In the remainder of this paper,
we will assume A = {a1, a2} with A1 = {a1} and A2 = {a2}
for the sake of simplicity.
Definition 29: A function t : Lµ(A1,A2) → Lebq� is said to

be a translation if the conditions in Table 2 hold.
In Table 2, p1 (p2) is used to witness the agent a1 (a2, resp.).

By employing the bisimulation quantification and universal
modality, t(νx.ϕ) (t(µx.ϕ)) equation captures the intuitive
meaning of a greatest (least, resp.) fixed-point as the least
upper (greatest lower, resp.) bound of the sets of states which
are postfixed (prefixed, resp.) points of ϕ [12]. Moreover,
since ϕ is finite, we easily observe that such a translation
exists necessarily.

Below, we give a crucial conclusion to prove the equiva-
lence between Lµ(A1,A2)-formulas and their translations.
Lemma 30: Let t : Lµ(A1,A2)→ Lebq� with A1,A2 6= ∅ be

a translation and n < ω. Then

(M ,∅)s |H (t(ψ))1n iff ((M ,∅) | pn)s |H (t(ψ))1n−1 ,

where •1n , (· · · (•(a2,p1)) · · · )(a2,pn), {pi}i<n are pairwise
different and pn /∈ t(ψ).

Proof: Proceed by the induction onψ . We check several
typical cases and the others are routine to prove. We assume
that M | pn = 〈SM ,R,VM

〉.
Case 1 ψ ≡ q where q ∈ Atom
(M ,∅)s |H (t(q))1n

iff (M ,∅)s |H q
iff s ∈ VM (q)
iff ((M ,∅) | pn)s |H q
iff ((M ,∅) | pn)s |H (t(q))1n−1

Case 2 ψ ≡ �bϕ where b 6= a2
(M ,∅)s |H (t(�bϕ))1n

iff (M ,∅)s |H (�bt(ϕ))1n

iff (M ,∅)s |H �b(t(ϕ))1n

iff (M ,∅)w |H (t(ϕ))1n for all w ∈ RMb (s)
iff ((M ,∅) | pn)w |H (t(ϕ))1n−1 for all w ∈ RMb (s)

(by I.H.)
iff ((M ,∅) | pn)w |H (t(ϕ))1n−1 for all w ∈ Rb(s)
iff ((M ,∅) | pn)s |H �b(t(ϕ))1n−1

iff ((M ,∅) | pn)s |H (t(�bϕ))1n−1

Case 3 ψ ≡ �a2ϕ
(M ,∅)s |H (t(�a2ϕ))

1n

iff (M ,∅)s |H (�a2 t(ϕ))
1n

iff (M ,∅)s |H �a2 (pn→ (· · · → (p1→ (t(ϕ))1n ) · · · ))
iff (M ,∅)w |H pn→ (· · · → (p1→ (t(ϕ))1n ) · · · )

for all w ∈ RMa2 (s)
iff (M ,∅)w |H pn ⇒ (· · · ⇒ ((M ,∅)w |H p1 ⇒

(M ,∅)w |H (t(ϕ))1n ) · · · ) for all w ∈ RMa2 (s)
iff (M ,∅)w |H pn ⇒ (· · · ⇒ ((M ,∅)w |H p1 ⇒

((M ,∅) | pn)w |H (t(ϕ))1n−1 ) · · · ) for all w ∈ RMa2 (s)
(by I.H.)

iff ((M ,∅) | pn)w |H pn−1→ (· · · → (p1→
(t(ϕ))1n−1 ) · · · ) for all w ∈ Ra2 (s)

iff ((M ,∅) | pn)s |H �a2 (pn−1→ (· · · → (p1→
(t(ϕ))1n−1 ) · · · ))

iff ((M ,∅) | pn)s |H (�a2 t(ϕ))
1n−1

iff ((M ,∅) | pn)s |H (t(�a2ϕ))
1n−1

Case 4 ψ ≡ ∃(a1,a2)ϕ

Let (M ,∅)s |H (t(∃(a1,a2)ϕ))
1n . Then, by Definition 29, for

some q ∈ Atom such that q /∈ t(ϕ),

(M ,∅)s |H (̂∃q(t(ϕ))(a2,q))1n .

By Definition 28, we may w.l.o.g. assume that q
and p1, · · · , pn are different proposition letters. Then
(M ,∅)s |H ∃̂q((t(ϕ))(a2,q))1n . Next, (M ,∅)s↔

q
∗(N ,∅)w and
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(N ,D1)w |H ((t(ϕ))(a2,q))1n for some Nw and D1. Further, by
Proposition 21, it follows from (M ,∅)s↔

q
∗(N ,∅)w that

((M ,∅) | pn)s↔
q
∗((N ,∅) | pn)w,

i.e.,

(M | pn,∅)s↔
q
∗(N | pn,∅)w.

Moreover, due to (N ,D1)w |H ((t(ϕ))(a2,q))1n and
Proposition 20, it holds that

(N + D1,∅)w |H ((t(ϕ))(a2,q))1n ,

and so, by the induction hypothesis,

((N + D1,∅) | pn)w |H ((t(ϕ))(a2,q))1n−1 ,

i.e.,

(N | pn + D1,∅)w |H ((t(ϕ))(a2,q))1n−1 .

Applying Proposition 20 again, we get

(N | pn,D1)w |H ((t(ϕ))(a2,q))1n−1 .

This, together with (M | pn,∅)s↔
q
∗(N | pn,∅)w, implies that

(M | pn,∅)s |H ∃̂q((t(ϕ))(a2,q))1n−1 ,

that is,

((M ,∅) | pn)s |H (t(∃(a1,a2)ϕ))
1n−1 .

Let ((M ,∅) | pn)s |H (t(∃(a1,a2)ϕ))
1n−1 . Then

((M ,∅) | pn)s |H (̂∃q(t(ϕ))(a2,q))1n−1

where q /∈ t(ϕ). Similarly, we may suppose that q and
p1, · · · , pn are different proposition letters, and then we get

((M ,∅) | pn)s |H ∃̂q((t(ϕ))(a2,q))1n−1 .

So, for some Nw and D1, we have ((M ,∅) | pn)s↔
q
∗(N ,∅)w

and (N ,D1)w |H ((t(ϕ))(a2,q))1n−1 . Further, because of
((M ,∅) | pn)s↔

q
∗(N ,∅)w, by Proposition 19 (1) and (3), there

exist N ′w′ and D
′

1 such that (M ,∅)s↔
q
∗(N ′,∅)w′ and

((N ′ + D′1) | pn,∅)w′↔
pn
∗ (N + D1,∅)w.

Next, it follows from (N ,D1)w |H ((t(ϕ))(a2,q))1n−1 that
(N + D1,∅)w |H ((t(ϕ))(a2,q))1n−1 by Proposition 20. Thus,
also as ((N ′+D′1) | pn,∅)w′↔

pn
∗ (N +D1,∅)w and pn /∈ t(ψ),

by Proposition 16,

((N ′ + D′1) | pn,∅)w′ |H ((t(ϕ))(a2,q))1n−1 .

Hence (N ′ + D′1,∅)w′ |H ((t(ϕ))(a2,q))1n by the induc-
tion hypothesis and then (N ′,D′1)w′ |H ((t(ϕ))(a2,q))1n

by Proposition 20. Finally, from (M ,∅)s↔
q
∗(N ′,∅)w′ and

(N ′,D′1)w′ |H ((t(ϕ))(a2,q))1n , it follows that

(M ,∅)s |H ∃̂q((t(ϕ))(a2,q))1n .

That is (M ,∅)s |H (t(∃(a1,a2)ϕ))
1n .

Case 5 ψ ≡ νx.ϕ
By the definition of t(νx.ϕ), we need to prove that

(M ,∅)s |H (̃∃(q1,q2)α)
1n

if and only if

((M ,∅) | pn)s |H (̃∃(q1,q2)α)
1n−1 ,

where q1, q2 /∈ ϕ and

α , (q1 ∨ q2) ∧�((q1 ∨ q2)→ t(ϕ[q1 ∨ q2\x])).

We apply the analysis similar as the one in Case 4. Here, note
that we will rely on Proposition 19 (1), (2) and (3).

Now we arrive at the equivalence between each Lµ(A1,A2)-
formula and its t-translation.
Proposition 31: Let ψ ∈ Lµ(A1,A2) with A1,A2 6= ∅. Then

Ms |H ψ iff (M ,∅)s |H t(ψ).

Proof: Proceed by the induction on ψ . We only deal
with the non-trivial clauses: ψ ≡ µx.ϕ and ψ ≡ ∃(a1,a2)ϕ.
(1) ψ ≡ µx.ϕ

Let Ms |H µx.ϕ. We prove by contradiction and assume
that (M ,∅)s /|H t(µx.ϕ). By the definition of t(µx.ϕ), there
exists Nw such that (M ,∅)s↔p1,p2 (N ,∅)w and (N ,∅)w /|H

�(t(ϕ[p1 ∨ p2\x]) → (p1 ∨ p2)) → (p1 ∨ p2) where
p1, p2 /∈ ϕ. So (N ,∅)w |H �(t(ϕ[p1 ∨ p2\x]) → (p1 ∨
p2)) ∧¬p1 ∧¬p2, which implies (N ,∅)w /|H p1, (N ,∅)w /|H p2
and (N ,∅)w |H �(t(ϕ[p1 ∨ p2\x]) → (p1 ∨ p2)). By the
semantic interpretation of � and the induction hypothesis,
for all u ∈ R∗N (w), Nu |H ϕ[p1 ∨ p2\x] → (p1 ∨ p2). Then
Nw |H ϕ[p1 ∨ p2\x] → (p1 ∨ p2). Further, since Nw /|H p1
and Nw /|H p2, Nw /|H ϕ[p1 ∨ p2\x] follows. By the semantics
definition of µx.ϕ, we get Nw /|H µx.ϕ. However, because
of Ms↔

p1,p2Nw due to (M ,∅)s↔p1,p2 (N ,∅)w, Nw |H µx.ϕ
follows from Ms |H µx.ϕ and p1, p2 /∈ ϕ, by Proposition 6.
Contradict.

Assume (M ,∅)s |H t(µx.ϕ). Then, we have (M ,∅)s |H
∀̃(p1,p2)(�(t(ϕ[p1 ∨ p2\x]) → (p1 ∨ p2)) → (p1 ∨ p2)). For
every T ⊆ SM , it is clear that

(M ,∅)s↔
p1,p2
∗ (M [(p1∨p2\x)7→T ],∅)s,

where the model M [(p1∨p2\x)7→T ] is obtained from M by
assigning pi to be true at the roots (the states with no entering
transitions) and the states in T entered by ai-labelled transi-
tions where i = 1, 2. So

(M [(p1∨p2\x)7→T ],∅)s
|H �(t(ϕ[p1 ∨ p2\x])→ (p1 ∨ p2))→ (p1 ∨ p2).

By the semantics of � and the induction hypothesis,
M [(p1∨p2\x) 7→T ]
u |H ϕ[p1 ∨ p2\x] → (p1 ∨ p2) for all

u ∈ R∗M (s) implies that M [(p1∨p2\x)7→T ]
s |H p1 ∨ p2. Thus,

for any T ⊆ SM , if

{u ∈ R∗M (s) : (M [(p1∨p2\x)7→T ])u |H ϕ[p1 ∨ p2\x]} ⊆ T
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then s ∈ T . Hence

s ∈
⋂
{T ⊆ SM : ‖ϕ‖M[x 7→T ] ⊆ T }.

That is Ms |H µx.ϕ by the semantics of µx.ϕ.
(2) ψ ≡ ∃(a1,a2)ϕ
(Assume p ∈ Atom and p /∈ t(ϕ), easily prove p /∈ ϕ)

Ms |H ∃(a1,a2)ϕ

iff Ms �(a1,a2) Nw and Nw |H ϕ for some Nw
iff Ms↔

pN ′w′ and ((N
′
+ D) | p )w′ |H ϕ for some N ′w′ and

D (by Lemma 26 and 27)
iff (M ,∅)s↔

p
∗(N ′,∅)w′ and ((N ′ + D) | p,∅)w′ |H t(ϕ) for

some N ′w′ and D (by I.H.)
iff (M ,∅)s↔

p
∗(N ′,∅)w′ and (N ′ + D,∅)w′ |H (t(ϕ))(a2,p)

for some N ′w′ and D (by Lemma 30)
iff (M ,∅)s↔

p
∗(N ′,∅)w′ and (N ′,D)w′ |H (t(ϕ))(a2,p) for

some N ′w′ and D (by Proposition 20)
iff (M ,∅)s |H ∃̂p(t(ϕ))(a2,p)

iff (M ,∅)s |H t(∃(a1,a2)ϕ)
Laura Bozzelli et al. have also obtained an equivalent

translation fromLµ(∅,A2) toLbq� by employing a relativization
defined in Lbq� [1].

VI. CONCLUSIONS AND DISCUSSION
The notion of CC-refinement generalizes the notions of
bisimulation and refinement. An (a1,a2)-refinement model of
a given model may be obtained from one bisimilar model
of this model by removing some a2-labelled transitions
and adding some a1-labelled transitions. This can be much
easier to realize by programming. Based on the notion of
CC-refinement, this paper considers the extended bisim-
ulation quantified modal logic with the universal modal-
ity, and gives an equivalent translation from Lµ(A1,A2) to
its language L(A1,A2)−ebq�, where A1,A2 6= ∅. The lan-
guage L(A1,A2)−ebq� captures perfectly the characterizations
of covariant and contravariant actions. Thus, L(A1,A2)−ebq�
may be considered as a specification language for describing
the properties of a system which refers to covariant and
contravariant actions and may formalize some interesting
problems in the field of formal method.

As BQML, in some applications, e.g., planning optimiza-
tion in artificial intelligence, a bisimulation of a given system,
except for some inessential propositional properties, may be
considered as its equivalent system. Furthermore, for exam-
ple, given a specification presented as a Kripke model M
which refers to the set A1 (A2) of passive (generative, resp.)
actions, the problem whether this specification has an special
implementation which satisfies a given property ψ may be
boiled down to the model checking problem:

M |H t(∃(a1,a2)ψ),

that is,

M |H ∃̂p(t(ψ))(a2,p)

where p /∈ t(ψ). Hence, based on the characterization of the
bisimulation quantifiers in L(A1,A2)−ebq�, which can be real-
ized easily by programming, the problemwhether there exists

a desired implementation of a given specification involving
passive and generative actions may be solved by using model
checking technique.

The languageLµ(∅,A2) is indeed the one of refinement modal
µ-calculus introduced in [1]. The language L(A1,∅)−ebq�
involves different bisimulation quantifiers: ∃̃p and ∃̂. The
clauses ∃̃pϕ and ∃̂ϕ are interpreted by:

(M , a,D)s |H ∃̃pϕ iff (M , a,D)s↔
p
∗(N , a,D′)w |H ϕ

for some (N , a,D′)w
(M , a,D)s |H ∃̂ϕ iff (M , a,D)s↔∗(N , a,D

′)w and
(N , a,D′ ∪ B)w |H ϕ for some
(N , a,D′)w and B ⊆ (SN )2−
(RNa ∪ D

′)

Also, we say that a function t : Lµ(A1,∅) → L(A1,∅)−ebq� is
a translation if the following conditions hold,

t(q) = q
t(¬ϕ) = ¬t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)
t(�bϕ) = �bt(ϕ)
t(∃(a1,∅)ϕ) = ∃̂ t(ϕ)
t(νx.ϕ) = ∃̃p(p ∧�(p→ t(ϕ[p\x]))) where p /∈ ϕ
t(µx.ϕ) = ∀̃p(�(t(ϕ[p\x])→ p)→ p) where p /∈ ϕ

Here, note that, we do not need a relativization because
of A2 = ∅. Moreover, similar as in this paper, the state-
ments and their proofs with minor changes can still work for
L(A1,∅)−ebq�. That is, we still can obtain the result that every
Lµ(A1,∅)-formula is equivalent to its t-translation. We leave it
to the reader to check this.

We have given the sound and complete axiomatization and
decidability of CCRMLµ in another paper, which is waiting
for the publication.Wewill further explore the axiomatization
and decidability of EBQML, also referring to the axiom-
atization and decidability of BQML [12], [14], [15]. This
investigation will be interesting and also complex.
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