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ABSTRACT The lifetime of underwater sensor networks (USNs) can be prolonged significantly thanks to
wireless power transfer technology. In this paper, we first proposed a Shortest Path Partial Charging based
on Charging Curve Scheme (SPBS) to increase the survival rate of nodes in 3D underwater networks, and
then we proposed a concept of secondary charging stations for mobile charging ships to reduce the traveling
cost and improve charging efficiency. We first use k-means clustering algorithm to divide our network with k
clusters, and then we place our secondary stations at k clustering centers, in this way, mobile charging ships
can be charged at secondary stations quickly. Based on secondary stations, we proposed Hamilton Charging
Scheme (HCS) using the Hamilton ring, and then we proposed a temporal and spatial collaborative charging
algorithm (mCS-TS) for USNs with multiple mobile charging ships and secondary charging stations, which
also takes the cluster factor and deadline time into consideration. Simulation results show the effectiveness
of our proposed algorithms.

INDEX TERMS Underwater sensor networks, survival rate, SPBS, secondary charging stations, mobile
charging ships, cluster factor.

I. INTRODUCTION
With the development of emerging information and
communication technologies, such as intelligent Internet
of things, 5G, cloud computing, artificial intelligence and
machine learning, great changes have taken place in people’s
lifestyles. In traditional networks, sensor nodes are powered
by batteries with limited capacity, which limits the working
hours of sensor nodes. Battery exhaustion means the end
of the sensor node lifetime. Therefore, the battery capacity
becomes a main factor that restricts the lifetime of the whole
sensor network. Fortunately, the advancement of wireless
communication and microelectronic technology furthermore
contributed to the emergence of wireless sensor networks and
bring a new choice for extending batteries lifetime.

Wireless SensorNetworks (WSNs) are composed of a large
number of sensors that are deployed in the monitoring area
in a self-organizing and multi-hop manner. Characterized by
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low cost, low power consumption and multiple functions [1].
WSNs are widely used in important fields such as envi-
ronmental detection, military, smart home and telemedicine
[2], [3]. In remote areas or areas where human intervention
is not suitable, replacing the battery for the sensor nodes are
troublesome and costly. Therefore, it is necessary to extend
the lifetime of WSNs, and the energy consumption of sensor
nodes in the area must be equalized and then study the energy
supply technology of sensor nodes.

Fortunately, recent breakthrough in wireless power transfer
(WPT) provides a new alternative for extending devices’
life. Yang and Wang [4] had applied this transfer tech-
nology in health care for energy replenishment. Moreover,
researchers has done many efforts to extend the lifetime
of WSNs by applying this technology. Xie et al. [5] pro-
posed the concept of a rechargeable wireless sensor networks
(WRSNs). In a rechargeable wireless sensor network, one
or more Mobile chargers (MCs) equipped with wireless
power transmission equipment periodically provide charging
services to sensor nodes in the network. Many algorithm,
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such as Pushwait, PSB, ηPushwait, clustercharging(β),
Hηclustercharging(β), DMC, C-MCC, MsMsEBP and so on.
are proposed by researchers to improve the performance of
the network and prolong the life of the WRSNs [6], [7].

Nowadays, Marine economy accounts for an increasing
proportion of the economy of all countries. Underwater sen-
sor networks (USNs) have become a research hotpot in many
countries. USNs [8] are a new type of sensor networks
applied to water environment. These are widely used in activ-
ities such as sea information collection [9], [10] and under-
water resource exploration [11], [12]. Unlike WRSNs, the
USNs [13] are more complex, which are composed of under-
water sensor nodes with short communication ranges, surface
buoy nodes and two-way underwater acoustic links between
nodes. The capabilities of these nodes include information
perception data processing and classification. The USNs can
be used to relay information back to ship-based relay stations
through the underwater nodes [14], and reach the ground base
stations (BSs) through satellites or the Internet.

Similar to WRSNs, sensor nodes used in traditional
USNs [15] are powered by batteries, and the lifetime of a
USN is seriously limited by the battery life of sensor nodes.
In addition, battery replacement is not only difficult but also
results in high maintenance costs especially underwater. The
emergence of wireless power transmission (WPT) technol-
ogy has enabled supplying power wirelessly to underwater
communication systems [16]. Batteries for wireless com-
munication equipment can be supplemented remotely using
microwave WPT devices.

After taking full investigation, we found that energy charg-
ing in USN is facing multiple challenges:
1. Underwater channel is characterized by high latency, mul-

tipath effect, severe drooler dispersion, low bandwidth and
dynamical channel conditions.

2. Underwater sensor nodes have high mobility due to water
flotage, wind and other factors. In addition, it is difficult
and costly to replace the energy batteries for sensors, so it
is wisely to charging them by WPT.

3. Proposed algorithms, charging models, charging schemes
based on WRSNs are not suitable for underwater sensor
networks. Therefore, new charging scheduling schemes
are imminent.
Therefore, it is important to study the charging and lifetime

extension of the USNs, improve survival rates, and improve
network throughput as well as reduce network operation and
maintenance costs. In this paper, we focus on extend the
lifetime ofUSNs by effective charging schemeswith effective
usage of energy and low dead rate of nodes. We proposed
a shortest path partial charging based on charging curve
scheme (SPBS) to reduce the dead nodes, and then we pro-
posed a concept of secondary charging stations for mobile
charging ships to reduce the traveling cost and improve charg-
ing efficiency. We also use k-means clustering algorithm to
divide our network with k clusters place our secondary sta-
tions at k clustering centers, in this way, MSs can be charged
at secondary stations quickly.

The main contributions of this study are as follows:
First, we partially charge nodes with charging curve, which

reduce the dead rate of nodes and improve the network’s life.
Second, our design decreases the distance that the MSs

need to travel with secondary charging stations, which reduce
any extra energy consumption in the USN.

Third, by considering the cluster factor and deadline time,
we hope that the cluster with shorter distance, lower energy
will have higher charging priority.

The rest of this paper is organized as follows: Section II
gives a brief overview of related works on underwater sensor
networks. Section III describes the USN charging model and
the concept of secondary charging stations. Section IV details
the proposed algorithms. Section V describes the simula-
tion environment and numerical evaluation. In Section VI,
we conclude the paper and present directions for future
research.

II. RELATED WORKS
Inmany recent works, significant efforts have been devoted to
enhancing the performance of USNs through optimal routing
protocols, or pay attention to the characteristics of water
devices or proposed new architectures. Optimal protocols
mainly based on divide the sensors into several clusters
to balance sensor node energy consumption and promote
USN energy consumption efficiency [17]–[19]. Clustering
can be carried out using the k-means algorithm, which can
efficiently process large data sets, and has close to lin-
ear time complexity. However, the final clustering result
is greatly affected by the selection of initial nodes. The
algorithm is also very sensitive to data with large devi-
ations [20]. Another well-known self-organizing, adaptive
clustering and scheduling algorithm known as low energy-
adaptive clustering hierarchy (LEACH), uses randomization
to evenly distribute the energy load among the network’s
sensor nodes. Alhazmi et al. [21] proposed a novel solution
named underwater modified LEACH (UMOD_LEACH) to
minimize energy consumption. Li et al. [22] proposed the
LEACH-L, which consists of two phases: an initialization
phase and an update phase. The former phase is similar
to that in the LEACH protocol. In the latter phase, unlike
the LEACH protocol, only a few nodes are updated locally
rather than the entire network’s nodes. This local update
helps in minimizing the energy consumption. Mansouri and
Loualalen [23] proposed the LEACH algorithm for routing
in Underwater Wireless Sensor Networks (UWSNs). They
used an adaptive approach for the LEACH protocol in which
the residual energy of clustering head (CH) is considered.
Hou et al. [24] proposed a new clustering model that con-
siders the required transmission power of sensor nodes, and
CH residual energy and loads to improve upon the poor
stability and unsatisfactory clustering results of the existing
USN clustering algorithms.

Wireless charging scheduling approaches have been
widely applied in WRSNs to prolong its lifetime [25], [26].
In general, the charging scheduling approaches used in
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WSRNs fall into two categosries: single mobile (SM) charger
and multiple mobile (MM) chargers. Research on the former
charging category aims to solve cycling task scheduling prob-
lem and improve charge service throughput in the WRSNs
[27]. Zhang et al. [28] proposed a novel chargingmode: coop-
erative mobile charging. In this mode, mobile chargers (MCs)
not only charge the nodes in the network, but also charge one
another. The multi-MCs collaborative charging strategy c-
mcc proposed in [30] considers the remaining electric charge
in each node and the distance between nodes and MCs to
make charging decisions, and then arranges charging paths to
improve charging efficiency. Lin et al. [31] proposed a new
real-time charging scheduling scheme. This scheme is based
on a joint metric of spatial and temporal requirements from
charging requests that takes advantage of the availability of
multiple MCs and allows them to make optimal decisions.

With the respect to the wireless charging in USN,
Lin et al. [32] first proposed underwater wireless sensor net-
work model, then they focused on how to effectively schedule
mules (underwater WCVs) by proposed SCS (Shortest-path
Charging Scheme) and HOCS (Hybrid optimal Charging
Scheme). Although few art of wireless charging underwa-
ter environment, issues of researching charging schemes for
USNs are still deserved to be mentioned.

Most of the methods reviewed in the previous paragraphs
use routing protocols to prolong the network lifetime
and reduce the network energy consumption. However,
these methods do not consider the charging scheduling
method [32]–[34]. Inspired by the charging scheduling of
MCs applied in theWRSNnetworks and underwater charging
model and charging schemes proposed in [32], we first pro-
posed an efficient algorithm based on charging curve named
SPBS for USNs and then proposed the concept of secondary
charging stations applied to USNs. We then proposed Hamil-
ton Charging Scheme (HCS) using the Hamilton ring and
a new algorithm that uses temporal and spatial collabora-
tive charging for underwater sensor networks with multiple
mobile charging ships (MSs) and secondary charging stations
(mCS-TS). The algorithms make full use of collaborative
charging characteristics and takes time/distance and cluster
density factor into consideration.

III. PROBLEM STATEMENT
A. NETWORK MODEL FOR THE USN
Underwater sensor networks mainly include underwater sen-
sor nodes, satellite, BSs, surface anchor nodes, water BS and
ship-based relays. Fig. 1 shows our USN charging model.

The main features of this model are as follows:

1) There areN underwater sensor nodes randomly dropped
by aircraft, denoted by S = {s1,s2,s3,. . . . . . ,sN}, and
then the anchors are used to determine the initial position
of the equipment after they are dropped, so that the sen-
sor equipment will not leave the monitoring area due to
fluctuations in the sea water. Both surface anchor nodes
and ship-based relays of underwater sensor nodes have

FIGURE 1. USN network model.

GPS mode or positioning algorithm, and have limited
energy supply. The underwater sensor nodes relay the
information back to the ship-based relays and then to the
ground BS by satellites or the Internet.

2) The BS is mainly responsible for information collection
and fusion and is the location of energy concentration.

3) The water base station (WBS), connected to the ground
BS by cables is a water energy station. There are K
mobile charging ship-based relays (MSs) on the surface,
denoted by MS={MS1,MS2,. . . . . .MSK}. The MSs start
from the WBS regularly and charge sensor nodes. They
can accurately locate a node and its information, and
charge it when needed. The WBS is connected to the
BSs and its energy is considered to be infinite.

B. ENERGY COUNSUMPTION MODEL
We model the distribution of underwater sensor nodes as
G(S, E). S = {s1,s2,s3,. . . ,sN} donates sensors’ labels and
locations and E denotes the set of edges. We donate Xij as
the distance between node i and j. Then the energy consump-
tion in the USN includes energy consumption of the nodes
forwarding and receiving data Enode, the total energy of MSs
EMS , energy consumption of the MSs for traveling Emove and
the energy that the MSs transfer to the sensor nodes Echarge.

With the complex of USN, we used traveling cost formula
in [32], the traveling costCij from node i to node j is computed
as (1), where α is the constant for total energy and distance,
γ is the constant for total energy and force, satisfying α/γ =
10, β is a proportional constant value for energy and distance
in USN, Xij is the distance between i and j, Qij is the relevant
energy cost of total force in the vertical direction.

Cij = α∗β∗Xij + γ ∗Qij (1)

Before the MSs charging the nodes, we should make sure
that MSs have sufficient energy return to the water station.
We define the battery capacity of a sensor node and MS as
ea and P, respectively. The energy consumption rate and the
speed of a MS, and the energy consumption rate of node si,
are denoted as c_s, v_s, and rei respectively. We define the
remaining energy of a node as er and the remaining energy
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of a MS as Pr , Cjw is the energy cost from node j to water
base station, then we have the following equation:

Pr − Cij − Cjw − (Pj − er ) ≥ 0 (2)

C. THE CONCEPT OF SECONDARY-CHARGING STATION
In WRSN,once the energy of MCs go below a certain thresh-
old, they directly return to BS to recharge themselves. and
the energy usage effectiveness (EUE) metric is defined as:
η = Enode/(Echarge + Emove + EMC ).
In USNs, a sensor usually has two states: alive and dead.

We define S(i) as the state of node i.

S(i) =

{
1, alive
0, dead

(3)

We aim to minimize the number of dead nodes Nd to
improve nodes survival rate.

Min Nd =

N∑
i=0

S(i) (4)

We also aim to charge more nodes to prolong the lifetime
of network with high energy usage, thus we need to maximize
this metric in the USNs,

Max EUE =
Enode

Enode + EMS
(5)

Subject to:

tj = ti + Xij/v_s (6)

T (j)deadline = er/re (7)

T (j)deadline > tj (8)

where Enode and EMS are the total energy of MSs used for
charging nodes and the energy used by MSs for traveling,
respectively, ti is the arrival time at node i and j is i’s next
node.

To reduce the energy consumption of MSs caused by
returning frequently to the WBS for charging, we introduce
a secondary charging station in the USNs. First, according to
the number of MSs, we use the k-means algorithm to cluster
the USN into K − 1 clusters. The set of these cluster is
denoted by C = {C1,C2,. . . . . . ,CK−1}. The cluster centers
of the K − 1 clusters are used as the secondary charging
stations in USN. These cluster centers are represented by
CS={CS1,CS2,. . . . . . ,CSK−1} and we set secondary charging
stations at CS for MSi energy replenishing, so that MSi only
charges the nodes of Ci, and only need be charged by special
MSK at CSi, where i ranges from 1 to K − 1.
Theorem 1:Given theWBS,CS={CS1,CS2,. . . . . . ,CSK−1},

and MS={MS1,MS2,. . . . . .MSK−1}. The total distance trav-
eled byMSs from CSi to WBS is denoted as dD. In the USNs,
we know that the MSi can be charged by the MSK at CSi,
where 1≤ i ≤ K − 1. The total distance travelled by the
MSK for charging is denoted as dcs. Therefore, we have the
theorem: dD > dcs.

Proof: Take K = 5 for example. As shown in Fig. 2,
we define the distance between the WBS and MSi as

FIGURE 2. Travel path.

d(WBS,MS1) = a = b = A, d(MS1,MS2) = B,
d(WBS,MS2) = c = d, d(MS2,MS3) = C, d(WBS,MS3) =
e = f, d(WBS,MS4) = g = h = E , and d(MS3,MS4) = D.
So dD = a+b+c+d+f+e+h+g, and dcs =

A+B+C+D+E.
Fig. 2 reveals that

b+ c > B,

d + f > C,

e+ h > D,

a = A,

g = E (9)

Since b+c+d+f+e+h+a+g>B+C+D+A+E, dD > dcs.
Inference: We can prove dD > dcs irrespective of the

location of the WBS and the value of K .

IV. PROPOSED SCHEME
In this paper, we aim to increase the survival rate of nodes
in 3D underwater networks and reduce the traveling cost
and improve charging efficiency, and three charging schemes
namely SPBS, HCS and mCS-TS are proposed.

A. SHORTEST PATH PARTICAL CHARGING BASED ON
CHARGING CURVE SCHEME (SPBS)
At present, most studies on battery charging are mainly based
on the optimal charging curve. Constant current and constant
voltage charging mode is usually adopted to charge lithium
batteries. In 1972, American scientist J.A. Mas [33] pro-
posed that the battery has the best charging curve during the
charging process,

I = I0eαt (10)

where I0 is the initial charging current of the battery, α is
charging acceptance rate; t is the charging time.
The charging process starts with the constant current

charging mode, in which the battery voltage is low and the
charging current is stable.With the charging process, the volt-
age gradually rises to 4.5V, and the charger immediately
switches to the constant voltage mode. The voltage fluctu-
ation is limited to be less than 1%, and the charging current
gradually decreases. When the current drops to certain range
and goes into the trickle charging phase, the charger continues
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FIGURE 3. Charging curve.

to charge the battery at a certain charging rate until the battery
is fully charged. Fig. 3(a) shows the charging curve of lithium
battery [34], [35].

Moreover, some studies have found that a full battery
charge at one time or a charge after battery exhaustion could
speed up the scrapping of the battery. Fig. 3(b) shows charg-
ing characteristic of a lithium battery. If the charging current
exceeds this optimal charging curve, the gas outflow of the
battery increases, instead of the charging rate. When the
charging current is less than this optimal charging curve,
it will not harm the battery but the charge time is long and
the charging rate is low [29].

Therefore, we improved the shortest-path schemes in [32]
and proposed our Shortest Path Partial Charging based
on charging curve scheme (SPBS). In SPBS, we set
the charging curve threshold is 0.8 which means MSs
always charge node to 80%, and then turn to charge next
nodes.

Firstly, as the large-scale of underwater environment [35]
and limited energy capacity of MS, it is unwise to arrange
only one MS to charge nodes, which with lead to high death
rate. Thus, we use the k-means algorithm first to cluster the
USN into K − 1 clusters, the set of these cluster is denoted
by C = {C1,C2,. . . . . . ,CK−1}, where we have K MSs in our
network, thenMSi only need to charge nodes in Ci.
As shown in Fig. 4, Fig. 4(a) shows the initial placement

of about eighty-eight nodes in UANS, then we use k-means
algorithm [32] to group our nodes with 4 categories, results
are shown in Fig. 4(b). In addition, in order to better display
the clustering result, TSNE was used for data dimension
reduction (see Fig .4(c)).

The we use our SPBS scheme to charge nodes, the SPBS
can be describe as Algorithm1. Originally, we have charging

FIGURE 4. USN sensor nodes.

candidate list L, null charging list Q and null dead list D.
We define the latest charging node as p, WBS as w, SPBS
always choose the node with minimum Cpj in L as the next
charging node j,when aMS satisfies (2),MSwill go to charge
node j. After charging finished, we need to update the nodes
not inQ andD first, if there are some nodes’ energy below 0J,
we need to change their state to dead (S = 0), then we need to
update the remaining energy of MS. Repeat these processes
until L is none and we export our charging list Q and dead
list D.
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Algorithm 1 Shortest Path Partial Charging Based on Charg-
ing Curve Scheme (SPBS)

1: Input: Charging candidate list L
2: Initial: p← w

3:Outpu t: Charging list Q, Dead list D,
4: For all i← {0 ,. . . . . . ,n}
5: Find a node j with minimum Cpj in L do
6 : If Eq. (2) and Eq. (5) are satisfied then
7: Q← Q U {j}, charge nodes with charging curve
8: L ← L \ {j}
9: Update all non-charging nodes ksk not in Q and D
10: If sk’s energy <0 then
11: S(k) = 0, D← D+{k}
12: Update MS remaining energy
13: else:
14: Find the next node with minimum CPj in L
15: end if
16: end for
17:Return Q, D

FIGURE 5. USN Charging process of SPBS.

To better understand of our SPBS, we present an example
for illustrating the charging process in Fig. 5.

There are 16 nodes are given in a USN. Initially, MS stays
at (500, 500, 1000) and we always choose the node j with
minimum Cpj as the next object. Obviously, CP,40 is the
smallest through computing. Hence, node 40 will be charged
first, then we will choose the next node with minimum cost.
Repeat process above, we have the charging list: [13], [40],
[49], [66], [68], [79], and the table 1 lists the nodes’ latest
charging time, dead Time T_S and remaining_energy after
charged.

B. THE PROPOSED SCHEMES BASED ON
SECONDARY CHARGING STATIONS
In this section, we will address how to decide to recharge
a MSi through the MSK based on the secondary charg-
ing stations. We define the total initial energy of the

TABLE 1. Information of charging nodes.

cluster Ci . . . as ECSi. At time t , the energy consumed by Ci
is denoted as ECOCS (i,t). The expressions for these energies
are given as follows:

ECSi = N ∗CSiea (11)

ECOCS (i, t) =
Ncsi∑
k=1

reiid(k)
∗t (12)

where NCSi stands for the number of the sensors in Ci. The
energy consumption rate of a node whose id is id(k) in cluster
Ci is given by reiid(k), where id(k) is used to get the index of
the kth node.

The residual energy and the time needed for charging of
Ci at time t , which are denoted as ErCS (i, t) and TrCS (i, t),
respectively, can be calculated as follows:

ErCS (i, t) = ECSi − ECOCS(i, t) (13)

TrCS (i, t) = ECOCS (i, t)/q_s (14)

The energy consumed in the network also includes the
energy consumed by the movement of the MSs, which is
denoted as EMS . The distance ofMSs traveling is d, therefore,
we obtain

EMS = d∗c_s (15)

Based on (9) - (12), we have

Max EUE =
Enode

Enode + EMS

=

K−1∑
i=1

ECOCS (i, t)

K−1∑
i=1

ECOCS (i, t)+ EMS

(16)
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Algorithm 2 Directly Charging Scheme (DCS)
Input: Cluster setC , Cluster center setCS,Mobile charging
ships setMS,
Initial t: the time of applying for charging

Output: The energy achieved by nodes Enode, Total con-
sumed time T_total,EUE

1. Calculate Di, the distance between CSi and WBS,.
2. Sort Di and put the index to list Minj from min(Di)→

max(Di).
3. Calculate the time of first coming MSi, t_arrival =

D(Minj[0]) / v_s + t , t_total = t + t_arrival.
4. Enode = ECOCS(i, t_total)
5. Calculate the charging time for the first coming MSi,

t_charging = TrCS (i, t_arrival) using (14).
6. Update the current total time: t_total = t_arrival +

t_charging.
7. for number in range(1,len[Minj]):
8. Recalculate the arriving time of the next MSnext ,

update t_arrival
9. if (t_arrival <= t_total):
10. Enode1 = ECOCS (i, t_total)
11. else:
12. Enode1 = ECOCS (i, t_arrival)
13. Update t_charging1, t_total, Enode + = Enode1
14. Calculate the return time of the last charging cluster,

update t_total, and T_total = t_total
15. Calculate the energy used byMSi: total energy is EMS1
16. Calculate the energy usage effectiveness using (16)

and we should make sure not all nodes are dying after time t ,
then we have ECSi − ECOCS (i, t) ≥ 0.

In many proposed algorithms [31], [37],MSi only charges
the nodes of Ci, and stays at CSi initially, MSi goes to WBS
to recharge when charging tasks are finished, we rename this
charging scheme as directly charging scheme (DCS). In DCS,
we first need to calculate the distance between CSi and WBS
by euclidean distance algorithm, and the first coming MSi
is chose to be the first charging object. The distance and
the charging time are used to update the total using time
(t_total). Then, we compare the time t_arrival needed by
the next MS (MSnext ) traveling from the next nearest cluster
center CSnext , to the WBS with the t_total calculated earlier.
If the time to arrive at WBS is less than t_total, MSnext
needs to wait at WBS . . . until the previous task is finished;
otherwise, we need to wait the coming MSnext and t_total is
updated to t_arrival. Afterwards, we calculate the charging
energy needed by MSnext based on Ecocs(i,t_total) defined
in (12). After all the MSs are charged, the MSi goes back.
The pseudo-code of this algorithm is shown below.

1) THE PROPOSED HAMILTON CHARGING SCHEME (HCS)
Hamilton path refers to a path that passes through each node
just once in a graph G. Finding a Hamilton path has been

proved to be a typical NP-complete problem [38]. Based on
the idea of the shortest Hamiltonian ring, we propose an
Hamilton charging scheme (HCS) for USN.

In our HCS, the MSi can only be charged by the MSK at
CSi, (1≤ i ≤ K − 1). MSK starts from WBS, we choose the
nearest cluster Ci’s MSi as the first charging object, and the
next nearest cluster Cnearest ’s MSnearest which is the nearest
to the current cluster as the next object. After all the MSs are
charged at CSi, the MSK returns to the WBS for recharging.
The pseudo-code of this algorithm is shown as follows:

Algorithm 3 Hamilton Charging Scheme (HCS)
Input: Cluster setC , Cluster center setCS,Mobile charging
ships setMS, Initial t: the time of applying for charging

Output: The energy achieved by nodes Enode2, Total con-
sumed time T_total2, EUE2

1. Calculate Di, the distance between CSi and WBS.
2. Choose the nearest cluster Cnearest ’s MSnearest as the

first charging object.
3. Calculate the time needed by the MSK to arrive at

CSnearest, t_arrival2 = d (MSk , CSnearest )/ v_s + t
4. Enode2 = ECOCS (i, t_arrival2)
5. Calculate t_charging2: the charging time needed by the

current Ci, using (14) with TrCS (i, t_arrival)
6. Then the current total time is updated as t_total2,

t_total2 = t_arrival2 + t_charging2.
7. for i in range(1,K ):
8. Choose the nearest cluster Cnearest ’sMSnearest to the

current cluster as the next object:
9. Calculate t_arrival2 =

d(CScurrent,CSnearest)/v_s
10. Calculate the energy needed for the next cluster:

Enode2 = ECOCS (i,t_arrival2+ t_total2)
11. Recalculate t_charging2 using (14)
12. Update t_total2, Enode2
13. Calculate the travel time of theMSK from the last charg-

ing cluster to the WBS, update t_total2, and T_total2
= t_total2

14. Calculate the energy used byMSK : total energy is EMS2
15. Calculate the energy usage effectiveness using (16)

2) THE PROPOSED MCS-TS SCHEME (MCS-TS)
To improve the charging efficiency and extend the life cycle
of the USNs, we also propose a temporal and spatial collabo-
rative charging algorithm. This algorithm uses temporal and
spatial collaborative charging for underwater sensor networks
with MSs. We call it the mCS-TS scheme and it is based
on the HCS. It takes the cluster factor and deadline time
into consideration to improve the energy usage effectiveness.
We define the cluster factor as C f

i

C f
i =

NCSi
|N |

(17)
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where |N | is the total nodes number of USN and NCSi
represents the number of sensor nodes in the cluster Ci.
A higher C f

i means more energy is needed for charging.
We define the charging deadline and the travel time to the
next object as t_deadline and t_arrival3, respectively.We also
define urgent charging factor t_cf, where t1 = t_total3+
t_arrival3, t_total3 is the total time needed to finish the cur-
rent task. In (18), dcurrent,next represents the distance between
the current charging and next charging objects.

t_arrival3 = dcurrent,next/v_s (18)

t_deadline =
ECSi − ECOCS (ik, t_total3)

q_s
(19)

t_cf =
C f
i /t1

t_deadline
(20)

We aim to charge the cluster having the maximum t_cf, as a
lower value of t∗1 t_deadlinemeans that the cluster has nearly
run out of energy and has a lower t_arrival3.

Algorithm 4 The Proposed mCS-TS Scheme
Input: Cluster set C , Mobile charging ships setMS, Time t

Output: The energy achieved by nodes Enode3, Total con-
sumed time T_total3, EUE3, variable k .

1. Calculate Di., the distance between CSi and WBS.
2. Initialize lists×3 and yy_select , Enode3 = 0, t_total3 =

t, t_min_l, tt_min_l, k = K − 1.
3. for mm in range k:
4. max = 0
5. for ik in range(k):
6. t_min_l is the index of the location of the previous

task
7. if the nextMSi have not been charged:
8. Calculate C f

i , t_arrival3, t_deadline, t , and t_cf
using (17)-(20)

if t_cf > max:
tt_min_l = ik
Max = t_cf

9. Enode3 = ECOCS (i, t)
10. Put tt_min_l into yy_select; Put the index of this cluster

into x3.
11. Calculate Enode3+ = Enode3
12. Update t_charging3, t_total3
13. Calculate the return time of the last charging cluster,

update t_total, T_total3 = t_total3
14. Calculate the energy used by MSK : EMS3
15. Calculate the energy usage effectiveness using (16)

Similar to the HCS, the MSi can only be charged by the
MSK at CSi, (1≤ i ≤ K − 1). In our method, MSK starts
from the WBS, we choose the MS having the maximum t_cf
as the next charging object, and the MSK returns to the WBS
to recharge after all MSi are charged. The proposed algorithm
is given as follows:

FIGURE 6. Survival rate of SPBS and SCS.

FIGURE 7. Influence of charging speed.

V. PERFORMANCE EVALUATION
To verify the performance of the proposed SPBS, HCS,
mCS-TS algorithms, simulation experiments are conducted.

A. SIMULATION SETUP
The target USN has 120 nodes, which are uniformly ran-
domly deployed in a 1km×1km×1km field. The WBS
is located at a horizontal and vertical location of (500m,
500m,1000m) from the origin. We follow the settings as in
[29], [32] and [39], and assume that the low energy threshold
is 0.4, the battery capacity (ea) of each node is 13669J. The
battery capacity of a MS is 2000 kJ, and the battery energy
of the special MSK is about 2×105 kJ. The speed of each MS
(v_s) is 5 m/s and the energy consumption of MS traveling
(c_s) is 8 J/m. The wireless charging efficiency (q_s) is by
default 2 %.

B. RESULTS
In the following experiments, we vary only one parameter at
a time, keeping most of the settings unchanged.

1) SURVIVAL RATE OF NODES
As shown in Fig. 6, we note that the survival rates of SPBS is
10.71 percent larger than those of SCS. The reason is that with
the charging curve, we can charge the nodes to 80% energy
fast and then charge more nodes.

In Fig. 7, with the increasing number of nodes, the ratio of
survival nodes are increasing. The reason with that with the
charging speed getting larger, we charge a node with lower
time and then we will quickly move to another nodes and
charge them in time. In Fig. 8 with the increasing of our
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FIGURE 8. Influence of energy capacity of sensor nodes.

FIGURE 9. Maximum EUE with diving network into k=4 clusters.(a) vs.
numbers of sensor nodes (b) vs. energy consumption of traveling MS.

nodes’ initial energy, our nodes’ survival rates will be longer,
which gives more times for our MSs charging, and our SPBS
algorithm only need to charge nodes to 80% which will save
more nodes with low energy in time.

Obviously, our SPBS has greater performance than SCS in
the aspect of improving the survival rate of nodes.

2) ENERGY USAGE OF EFFICIENCY
In USNs, we also aim to maximum energy usage of effective.
The corresponding results of maximum EUE are shown
in Fig. 9. There are five MSs in the network. First, we vary
the numbers of sensors from 80 to 160 where we divide our
network into 4 (k = 4) clusters, and the resulting EUE versus
the varying number of sensor nodes is shown in Fig. 9(a).
We also vary the c_s and display the resulting EUE versus
the varying c_s in Fig. 9(b).

From Fig. 9, we can conclude that our proposed mCS-TS
algorithm has better performance than the DCS in terms of
EUE. Fig. 9(a) shows that our mCS-TS and HCS have similar
EUE and both of them perform better than DCS when nodes
become larger. Fig. 9(b) shows that the EUE decreases when
the c_s increases, as the traveling cost is higher.

VI. CONCLUSION
In this paper, we focus on extending the lifetime of USNs
by effective charging schemes with effective usage of energy
and low dead rate of nodes. After study the basic charging
algorithm SCS in [32] and the characteristic of charging curve
on lithium battery, we first proposed a shortest path partial
charging based on charging curve scheme (SPBS) to reduce
the dead nodes.

Thenwe proposed a concept of secondary charging stations
for mobile charging ships to reduce the traveling cost
and improve charging efficiency. Before charging, we use
k-means clustering algorithm first to divide our network with
k clusters, and then we place our secondary stations at k clus-
tering centers, in this way, MSs can be charged at secondary
stations quickly.

We proposed HCS and a new temporal and spatial collab-
orative charging algorithm for underwater sensor networks
with multiple mobile charging ships and charging stations
(mCS-TS) for USNs under considering of the cluster factor
and deadline time. Extensive simulations have been per-
formed to evaluate the mCS-TS and HCS and SPBS compare
with the existing DCS and SCS. The simulations showed
that the our algorithms have higher survival rates and higher
energy usage effectiveness. In future, we will merge SPBS
and mCS-TS, and then focus on the sleep mechanism of the
nodes in the clusters based on secondary charging stations,
focus on the computational complexity as well as how to
charging nodes more with remaining energy when MSs back.
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