IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON SCALABLE DEEP LEARNING FOR BIG DATA

Received October 5, 2019, accepted October 21, 2019, date of publication October 29, 2019, date of current version November 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950171

Scalable Mutation Testing Using Predictive
Analysis of Deep Learning Model

MUHAMMAD RASHID NAEEM 1, TAO LIN', HAMAD NAEEM’,

FARHAN ULLAH !, AND SAQIB SAEED?

lCollege of Computer Science, Sichuan University, Chengdu 610065, China

2Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University,

Dammam 34212, Saudi Arabia

Corresponding author: Tao Lin (lintao@scu.edu.cn)

This work was supported in part by the Science and Technology Planning Program of Sichuan University and Luzhou under
Grant 2017CDLZG30, in part by the Postdoctoral Science Fund of Sichuan University under Grant 2019SCU12058, and in part by
the 2018-2020 Higher Education Talent Training Quality and Teaching Reform Project of Sichuan Province under Grant JG2018-46.

ABSTRACT Software testing plays a crucial role in ensuring the quality of software systems. Mutation
testing is designed to measure the adequacy of test suites by detecting artificially induced software faults.
Despite their potential, the expensive cost and the scalability of mutation testing with large programs is a
big obstacle in its practical use. The selective mutation has been widely investigated and considered to be an
effective approach to reduce the cost of mutation testing. In the case of large programs where source code has
hundreds of classes and more than 10 KLOC lines of code, the selective mutation can still generate thousands
of mutants. Executing each mutant against the test suite is cost-intensive in terms of robustness, resource
usage, and computational cost. In this paper, we introduce a new approach to extract features from mutant
programs based on mutant killing conditions, i.e. reachability, necessity and sufficiency along with mutant
significance and test suite metrics to extract features from mutant programs. A deep learning Keras model
is proposed to predict killed and alive mutants from each program. First, the features are extracted using the
Eclipse JDT library and program dependency analysis. Second, preprocessing techniques such as Principal
Component Analysis and Synthetic Minority Oversampling are used to reduce the high dimensionality
of data and to overcome the imbalanced class problem respectively. Lastly, the deep learning model is
optimized using fine-tune parameters such as dropout and dense layers, activation function, error and loss rate
respectively. The proposed work is analyzed on five opensource programs from GitHub repository consisting
of thousands of classes and LOC. The experimental results are appreciable in terms of effectiveness and

scalable mutation testing with a slight loss of accuracy.

INDEX TERMS Scalable mutation testing, static analysis, deep learning, binary classification.

I. INTRODUCTION

Software testing plays a key role in ensuring the quality of
a software system or program under test. Software testers
use test suites to discover software faults when unexpected
behavior is detected. Therefore, the ability of software testing
to detect faults is highly correlated to the quality of test suites.
To measure a test suite quality, the mutation testing identifies
whether a test suite is good enough to detect those faults by
making syntactic changes in a source code [1]. Alternatively,

The associate editor coordinating the review of this manuscript and

approving it for publication was Moayad Aloqaily

158264

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

the code coverage is also considered to be an effective
approach by measuring the proportion of source code exe-
cuted by the test suite inputs. However, the code coverage
alone does not reflect effectiveness in the test suites [2].
Mutation testing is the only promising approach to address
the shortcomings of coverage-based testing [3]. In mutation
testing, a significant number of faulty programs i.e. mutants
are generated from the original program using mutant oper-
ators. These faulty programs are then executed against the
test suites. If a test suite detects those faults, then mutants
are classified as killed. If the test suite output is same as
original program, then the mutants are classified as alive.
The adequacy of test suites is measured using Mutation Score

VOLUME 7, 2019

https://orcid.org/0000-0003-2341-0443
https://orcid.org/0000-0003-2422-575X
https://orcid.org/0000-0003-2443-7234

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

Indicator (MSI) which is a percentage of killed mutants in
proportion to total number of mutants.

The scores generated by mutation testing can facilitate
the software testers to locate the weaknesses in their test
suites and to design new test cases accordingly. Except
the assessment of a test suite quality, the mutation test-
ing has also proven its significance in simulating realistic
faults [4], localization of faults [5], and testing of the model
transformations [6].

However, the cost of mutation testing is extremely high as
it requires the creation and execution of each mutant with
the test suite. For instance, in the study of Zhang et al. [7],
the Proteum mutation testing tool for C programming lan-
guage generates 23,847 mutants for a small program consist-
ing of 512 lines of code. The running cost of a test suite along
with 23,847 mutants can be extremely expensive. Therefore,
various techniques such as weak mutation, high order muta-
tion and selective mutation are introduced by the researchers
to reduce the cost of mutation testing. The first cost reduction
technique is weak mutation which identifies whether a mutant
causes a state change in a program without any need to
execute full program from up to the output statement [8].
The second technique is HOM testing which is generalization
of at least two faults within a single mutant. The search
space of HOM testing is wider compared to the traditional
mutation testing and the possibility of finding interesting
HOMs could reduce the proportion of generated mutants and
test effort. HOM testing has been applied to model-based
testing, concurrency testing as well in code-level testing [9].
The third approach is selective mutation which selects a
subset of mutants to achieve a similar effect as of the whole
set of mutants. In other words, if a subset of mutants is
adequate to the test suite, then the effectiveness of test suite
will be the same for the whole mutant set. The selective
mutation has been previously studied by many researchers
to find an efficient subset that represents the whole mutant
set. However, the empirical study of Zhang et al. on selective
mutation suggested that the existing researches are evaluated
on small programs [10]. Therefore, the applicability of selec-
tive mutation is still questionable which may have scalability
concerns for larger programs [7]. Even if selective mutation
produces good scalability for larger programs, the efficient
mutant subset still requires thousands of mutants for a pro-
gram having hundreds of classes.

To address the scalability problem, we propose a new
approach for mutation testing which uses a TensorFlow
based deep learning Keras model to predict mutants,
i.e. killed or alive without any need for test suite exe-
cution. Predictive analysis is applied by extracting fea-
tures using program dependency graphs and Eclipse JDT
library from each mutant. The features are extracted based
on mutant killing conditions of the RIP model which
states the circumstances under which a mutant should be
killed.

1. Reachability: The location of the mutant is reachable

by the test input. Branch or Graph coverage techniques

VOLUME 7, 2019

are widely considered by researchers to detect the
reachability of a mutant statement [11].

2. Infection: During test suite execution, the state of the
original program is different from the mutant program
which means the fault must put the mutant program into
an error state [1].

3. Propagation: The infected state is propagated at some
point in the mutant program after test execution such as
assertions used in JUnit. [1], [12].

Other features such significance of mutant nodes are
extracted based on Hyperlink Induced Topic Search (HITS)
and PageRank algorithm. The distance feature is calculated
by comparing the sequence of edges and nodes in depen-
dency graphs of original and mutant programs using cosine
similarity. The test suite feature numMutantAssertions is also
extracted to measure the number of assertions covered by
each mutant statement. Furthermore, the TensorFlow deep
learning framework using Keras API is designed to predict
the accuracy of classification results. The main contributions
of this paper are summarized as follows:

1. Introducing feature extraction approaches to extract
mutant features. The degree of significance, distance
and test suite (coverage) features are also extracted to
generate mutant datasets.

2. Mutant datasets are used to generate a binary classifi-
cation model. The PCA reduction and SMOTE over-
sampling is used to deal with the high dimensionality
of data and imbalance class problem respectively.

3. A TensorFlow based deep learning model is designed
and optimized for scalable mutation testing using fine-
tune parameters to predict mutations.

4. The experimental study is conducted on five open-
source projects having greater than 10 KLOC from
the GitHub repository to measure the scalability of the
mutant classification approaches on larger programs.

The rest of the paper is organized as follows: -

Section II introduces the related work specifically on cost
reduction techniques in mutation testing. Section III presents
the proposed techniques for the extraction of mutant fea-
tures to generate mutant datasets. The empirical study of
programs, test suite details, training of models and analysis
of classification results is given in Section IV. Section V
introduces the possible threats to the validity experimental
studies. Section VI concludes this paper and introduces the
future work.

Il. RELATED WORK

Mutation testing is a powerful approach to evaluate the effec-
tiveness of test suites. The mutation testing was originally
proposed by DeMillo et al. [3] in 1978 and since then it has
increasingly gained popularity in the research community.
Despite effectiveness, the mutation testing has one significant
limitation which is the high cost. Since each mutant program
is required to execute with the test suite to measure the testing
quality. Therefore, most researches conducted in this field

158265

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

are mainly focused on reducing the cost of mutation testing.
The cost reduction techniques are further classified into two
categories, i.e. reducing the number of mutants and reducing
execution time of mutants.

A. MUTANT REDUCTION TECHNIQUES

To reduce the size of generated mutants, the selective muta-
tion carefully selects a subset of mutants which represent the
whole mutant set. Two types of selective mutation approaches
are used in mutation testing, i.e. mutant operator selection and
random mutant selection.

Wang and Mathor studied 22 Mothra operators and sug-
gested that some mutant operators contribute the same as
most of the mutants generated by all mutant operators [13].
An empirical study of “sufficient mutant operators” sug-
gested that the mutants generated by five operators can
achieve the same effectiveness as mutants generated by all
mutant operators [14]. Barbosa et al. studied and proposed six
guidelines for the identification of “‘sufficient mutant oper-
ators”. Their study identified ten “‘sufficient mutant oper-
ators” for C language written programs [15]. Namin et al.
suggested 28 “‘sufficient mutant operators” by combining
execution information of a selected subset of mutants [16].
Gligoric et al. also studied operators and proposed “‘sufficient
mutant operators” for concurrent programs [17].

Another common mutant reduction approach is random
selection which randomly selects a subset of mutants from
the set of all generated mutants. Wang and Mathur studied
the effectiveness of the random selection technique by ran-
domly selecting “x%” of mutants generated from 22 mutant
operators of Mothra [18]. A study made by Zhang et al.
suggested that the mutant operator selection has the same
effectiveness as a random mutant selection [7]. Although the
selective mutation testing has good scalability in reducing the
cost of mutation testing. However, the execution of selected
mutants with test suites is still cost-intensive for the larger
programs.

B. TIME REDUCTION TECHNIQUES
The second category of mutation testing approaches are
mainly focused on reducing the time of mutant execution.
Howden proposed the concept of weak mutation to reduce
the cost of mutation testing by dividing a mutant into several
components. If a state change is observed in any mutant
component then the mutant is classified as killed [19]. Weak
mutation partially executes a mutant which speeds up the
mutant execution process. The weak mutation is quite faster
compared to strong mutation; however, the strong mutation
has more test effectiveness over weak mutation because each
component produces different outputs from the original pro-
gram. To overcome this issue, Woodward and Halewood
proposed a compromise of weak and strong mutation known
as firm mutation [20]. Firm mutation works as both weak and
strong mutations by stopping program after the execution of
mutant statement as well at the end of the program to save
time and cost in an efficient manner [21].

158266

Few researchers proposed parallel execution techniques to
optimize the execution time of mutants. Untch et al. applied
compiler manipulation to execute all mutants at once [22].
Offutt et al. applied parallel execution on several mutants
to speed up the mutant execution process [23]. Zhang et al.
suggested to prioritize test cases and reduce the number of
test suites which could lead to the faster execution process of
mutants [24]. Zhang et al. also suggested another approach
that reuses the execution results of some mutants to reduce
the overall execution time [25].

A recent study made by Zhang et al. [26] opens a new
dimension in the mutation testing field. They used the ability
of machine intelligence to predict mutation testing results
without any need for test suite execution. Their technique is
quite novel and scalable, but their feature extraction approach
is highly dependent on the coverage of test suites. The cov-
erage may cause vulnerability in the prediction of mutants if
there are too many equivalent mutants. An equivalent mutant
has the same semantics as the original program and produces
the same behavior regardless of test suite coverage and the
number of assertions used. Our feature extraction approach
uses program dependence analysis of mutants to measure the
RIP conditions, i.e. necessity, reachability and effective paths
(paths other than the original program). Our feature extraction
approach can efficiently handle this vulnerability by compar-
ing the effective mutant paths with original program paths.
If all paths are the same, then the mutant is considered as
alive mutant regardless of the number of assertions covered
the mutant statements. The detailed comparison of existing
related work on cost reduction for the scalable mutation
testing is shown in Table 1. Machine learning is the most
promising solution to reduce the cost of mutation testing.
However, machine learning may cause poor performance
when used on large datasets. For instance, in the experimental
study, we choose five opensource programs where train sets
require thousands of mutants to train each model. Therefore,
we choose the deep learning approach to make efficient pre-
dictions on large mutant datasets.

Deep learning has provided solutions to many software
domains such as cybersecurity [27], [28] and the Internet of
things (IOT) [29], [30]. The recent studies of Otoum et al.
suggested the reinforcement and feasibility of deep learning
models to make predictions on intrusion detection in software
systems [31], [32]. In this paper, we designed a TensorFlow
based Keras deep learning model to measure the scalability
of the proposed approach on large programs. The TensorFlow
is an opensource library which efficiently performs on large
data in complex and heterogeneous environment. The details
on feature extraction approaches and deep learning models
will be explained in Section III.

Ill. PROPOSED APPROACH FOR FEATURE EXTRACTION
USING DEEP LEARNING CLASSIFICATION

Mutation testing is rarely used in the software industry due to
expensive costs. A mutant program has two alternatives, i.e.
killed or alive. If a test suite detects a fault by distinguishing

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

TABLE 1. Comparison of existing related work on cost reduction of
mutation testing.

Authors Application Programs Impact on Mutant
[Reference] Techniques Studies Cost Reduction
Wang et al. [13] Operator Benchmark Selection of mutant
Selection operators for Mothra
Offutt etal. [l Operator Benchmark Five sufficient mutant
Selection operators
Barbosa etal '] Operator Benchmark Six guidelines on 10
Selection sufficient mutant
operators for C
Namin etal. (19 Operator Benchmark 28 Sufficient mutant
Selection operators for C
Gligoric et al. Operator Benchmark Selection of mutant
1 Selection Opensource operators for
concurrent programs
Wang etal. '8! Random Benchmark Effectiveness on
Selection random selection of N
(%) mutants
Zhang et al. ["] Random Benchmark Effectiveness on cost
Selection, reduction of both
Operator random and operator
Selection selection techniques
Howden ['*] Optimizing ~ Theoretical ~Weak mutation for
Compilation Study early stopping of
execution
Woodward et Optimizing Theoretical ~ Firm mutation for both
al. [20] Compilation ~ Benchmark early stopping and full
test suite execution
Mayank et al. Optimizing Theoretical ~ Extended firm
21 Compilation ~ Opensource mutation testing
Untchetal. 22l Parallel Benchmark Executing all mutants
Execution at the same time
Zhang etal. Y1 Test Suite Opensource Prioritize and select a
Selection subset of test cases
Zhangetal. 1 Reuse Opensource Reuse the execution
Execution results of mutants
Results
Zhang et al. 2! Machine Opensource Use machine learning
Intelligence to predict mutants

the mutant behavior, then the mutant is classified as killed,
otherwise mutant is classified as alive. Therefore, we con-
vert the fault detection problem into a binary classification
problem to use the ability of machine intelligence to predict
mutants into their respective classes.

In this section, we explain how to extract features from
mutant programs and how to use the deep learning models
to predict mutants without any need for test suite execution.
The proposed approach is divided into five steps, i.e. Mutant
Generation, PDG Construction, Feature Extraction, Feature
Engineering, and Deep Learning Classification. To Further
demonstrate, Figure 1 is presented with the workflow of
the scalable mutation testing framework using deep learning
classification.

Mutant Generation: The mutation testing process starts
by generating mutants from the source program. We select
Mujava a mutation testing tool for Java to generate mutants.
The Mujava does not support maven, gradle and ant build
tools which are the requirement in modern java projects to
build and execute program dependencies along test suites.
We create a small program in Python to overcome this issue

VOLUME 7, 2019

Program (P)

Tools and Libraries

PDG Original
Effective

Path
Analysis

&

)
S—

i

\

eclipse

Java

Ju..{)

®
0@&@"@
s

Mutant Dataset

Distance and Test Suite
Features

Reachability, Necessity
Sufficiency Features

Significance of Mutant
Nodes Features

Data Dimensionality Reduction & Class Balancing
2

[Principal Component Analysis] [SMOTE Upsampling]

|

Scalable Deep learning Model

Mutation Classification Reports

IO il 11,
.. O ...

FIGURE 1. General workflow of scalable mutation testing framework.

Hidden layers
Qutput layer

by using shell terminal commands to run mutant programs
against test classes.

PDG Construction: In the second step, we use the Eclipse
JDT library to generate Program Dependency Graphs from
mutant programs. Eclipse JDT library provides an imple-
mentation of Abstract Syntax Trees (AST) which allows the
mapping of Java source code into tree representations. The
object mapping of AST is used to generate PDG for mutant
programs. We compared the PDG of each mutant with the
original program to identify effective paths in mutants other
than original program. The detailed analysis on PDG con-
struction is explained in Program Dependence Analysis for
Extraction of Features section.

Feature Extraction In the third step, the comparison of the
PDGs is used to extract four types of features from mutant
programs. The reachability, necessity and sufficiency are
extracted based on Constraint-Based Testing (CBT) Theory.
Hub, Authority and PageRank features are extracted based on
the significance of mutants. The distance feature is extracted
based on semantic similarity in two programs. The test suite
features are extracted based on coverage of programs by the
test suites.

Feature Engineering The feature engineering is an impor-
tant step of deep learning for efficient classification of results.
Features are significant for predictive models and they can
highly influence the prediction of results. In this paper, we use

158267

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

PCA reduction to generate features with high variance from
mutant programs. The total cumulative variance of 0.85 is
used to select high quality features from feature sets. The
SMOTE oversampling is then used to overcome imbalance
class problem before the training of deep learning classifiers.

Deep Learning Classification: Deep learning has been
widely studied to solve the problems of software testing.
Considering the output, this paper uses a classification strat-
egy that learns a model from some instances and then clas-
sifies new instances into different categories such as killed
and alive. In this paper, the TensorFlow based Keras deep
learning model is selected for scalable mutation testing and
deep learning classification. We also investigate the choices
of other deep learning models such as RNN and MLP to
analyze their scalability with proposed features extraction
approaches.

A. PROGRAM DEPENDENCE ANALYSIS FOR

EXTRACTION OF FEATURES

Program Dependency Graph (PDG) is a graphical representa-
tion of program source code to visualize inner dependencies.
There are two types of dependencies exist in any program
such as data and control dependency. In object-oriented pro-
gramming languages such as Java, C++ and C#, the pro-
gram syntax consists of variables, conditions, expressions and
methods calls which can be represented as nodes and edges
of PDG graph. In PDG, the edges represent the call sequence
and control dependencies among different statements in a
program method. A PDG graph G can be characterized using
four elements for each method M in Program P such that the
G=(N,E,u,5d).

« Nis a set of nodes in Method M

o E C N x N is aset of edges consist of data and control
dependences among two nodes N.

e 1 : E — § defines the Node N type, i.e. variable,
statement or a condition.

e § : E — T defines type dependency type, i.e. con-
trol or data dependency of mutant statement.

To illustrate the effects of data and control dependencies
on program mutations, we use the example of a “isTriangle”
program as shown in Figure 2.

The dependencies given in Figure 2 are represented as
nodes and edges where the entry node is denoted by E and exit
node is denoted by X. The solid lines indicate the presence of
control dependent edge among different statements whereas
the dotted lines indicate data dependent edges. The program
source code shows that the Statement S1, S2, S4 and S6
are bound to be executed when the method is called by
program whereas these statements only dependent on entry
node E. The execution of Statement S3 is dependent on the
execution outcome of S2. Therefore, S3 can only be executed
if $2 is true. In PDG of “isTriangle” example, the control
dependent edge S2 is a starting point and S3 is the ending
point. Similarly, Statement S5 relies on S4 representing a
control dependent edge among two statements. The statement

158268

E.public bool isTriangle (float a,float b, float c)
{

S bool result = true;
s2. if(a <=0 ||l b<=0]] c<=0)
{
S3i. result = false;
}
s4. if(a+b<=c |l a+c<=b || b+ cc<=a)
{
S5. result = false;
}
S6. return result;

rgsult

/

i
!
'

'

:

5 !
/
/

Data
-~/ Dependency
A result
L .
e - Conrol
result Dependency

FIGURE 2. Visualization of data and control dependencies in “isTriangle”
program using program dependency graph.

S2 and S§4 uses the values of variable a, b and ¢ passed by the
program entry node. Their values are not reassigned before
being referenced. In PDG of “isTriangle’ program, there is a
data dependent edge on variable a, b and ¢ which is passed by
the entry node E starting point and passes to Statement $2 and
S4 as ending points. Similarly, Statement S6 is dependent on
the value of variable result in Statement S1, S3 and S5. Using
PDG analysis, the data and control dependencies can be used
to identify propagation paths of mutant programs to measure
the sufficiency value of mutant programs. The propagation
paths are defined using three definitions given below:

Propagation Variable: A variable in a mutant statement
that changes the state of PDG node.

Data Propagation Path: A starting path of a mutant node
which ends at the output node, the first edge of the mutant
node is data dependent on the propagation variable.

Control Propagation Path: A starting path of a mutant node
which ends at the output node, the first edge of the mutant
node is control dependent edge.

Abstract Syntax Tree (AST) is a powerful tool which
maps the Java source code into tree representations.
We used AST mapping to generate dependency graphs
of the mutant programs. Three features, i.e. reachability,

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

necessity and effectPathNum are extracted based on propa-
gation path analysis in mutants. We compared the propaga-
tion paths of mutant and original program to generate these
features.

Since the value of each variable continuously changes
during the execution of a program and the variables in
each statement are used to indicate markings. Therefore,
the quantitative relationship of variables and markings can
be used to express the satisfiability problem. Satisfiability
checks whether the reachability meets the necessity or not.
We used the Microsoft Z3 SMT solver tool to measure the
satisfiability problem of mutant statements. The Z3 SMT
Solver is mainly composed of input statements, assertions
and commands to find the satisfiability value of various log-
ical expressions [33]. If a set of variables and their values
simultaneously satisfies all assertions, then the satisfiability
command returns “sat” otherwise Z3 SMT Solver returns
“unsat”.

B. SEMANTIC DISTANCE FEATURE EXTRACTION

A killed mutant is not only syntactically but also semantically
different from the original program. More the difference in
semantics of a mutant from its original program, more the
possibility that mutant can be killed by a test suite. Taking
this theory into consideration, we extract the distance feature
for all mutant programs. First, we use the PDG to generate
edges and nodes for both mutant and original program as
explained in the PDG Analysis section. Second, the depen-
dency call sequence of nodes and edges are used to generate
token strings for both original and mutant programs. Finally,
the token strings or vectors are compared to measure the
distance of each mutant from the original program based on
cosine similarity. The detailed workflow on distance feature
extraction model is given in Figure 3.

The algorithmic process for distance feature extraction
starts by generating PDG graphs of both original and mutant
programs where each statement S1, S2, ..., Snis represented
as an edge of PDG such that E = EI1,E2,...,X. For
instance, if Statement S3 is removed by Statement Deletion
(SDL) operator, then it will automatically remove its cor-
responding Edge E3 from the mutant program which will
also affect the call sequence of its child edges such as E4,
E5, and E6 up to the final edge represented by the X. The
call sequence of nodes starting from E3 towards other edges
will be removed automatically from mutants during PDG
construction suchas N3 — N4,then N4 — N6 || X as shown
in Figure 3.

Cosine similarity measures the cosine of an angle between
two vectors pointing at the same direction. In our case,
we used nodes and edges of PDG to measure the distinction
in program before and after mutation. Therefore, the cosine
similarity can efficiently measure the semantic similarity
between the original and mutant program. To measure the
cosine distance, let a and b are two vectors for comparison
generated from PDGs where vector a = [aq, a3, .. ., a,] and
vector b = [by, by, ..., b,]. The cosine similarity between

VOLUME 7, 2019

Original Program Mutant Program

s ~ s

PDG Original

©

PDG Mutant

EERFEE EEREE,
[ee] [x] Ik
@
&
RGO

!

Cosine Similarity Based Distance]—»@

FIGURE 3. Distance feature extraction model based on program
dependency analysis and cosine similarity.

a and b is calculated using Equation 1.
(-l)z N Z:-;] a,-bi
L NG RPN Y™

N n
where a.b = > ab; =aib; +axby+ ...+ ayb, is dot

ey

cosine (a, b) =

i=1
product of two given vectors. Both vectors a and b are
divided by their length to normalize them as shown in Equa-
tion 2.1 and 2.2.

a a a
Anorm = _1,_27”"_n 2.1
len, len, len,
b1 by b
bm)rm = Ty T s - (22)
leny, leny, leny,

From Equation 2.1 and 2.2, the normalized cosine similar-
ity between the two vectors is measured using Equation 3.

n
cosine(a, b) = Z anorm,-bnurmi (3)
i=1

158269

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

The cosine similarity calculates results ranging between -
1 to +1. If two vectors are exactly the same then the cosine
similarity is 1, and if they are exactly opposite then the
cosine similarity is -1. During PDG construction, there is
a possibility that the similarity of two vectors is negative.
For instance, if mutant statement is the first statement and
the majority of its corresponding statements are dependent
on that statement, then most of the edges and nodes in the
mutant vector will be affected by the mutation. Therefore,
Equation 4 is used to calculate distance feature of each mutant
also known as cosine distance.

cos ™! cosine similiarity

cos Odistance = @
g

C. FEATURE EXTRACTION USING DEGREE

OF SIGNIFICANCE

In dependence subgraph of a mutant program, each node
of PDG corresponds to a statement. The control dependent
edge and data dependent edge determine interrelationships
between different statements from starting node E up to the
ending node X. The measure of importance for a statement
in program method can be transformed into the degree of
significance for its corresponding nodes. It is very common
to use interlinked nodes to determine the significance of a
single node. However, such methods do not consider the
significance of its adjacent nodes. The Hubs and Authori-
ties also known as Hyperlink-Induced Topic Search (HITS)
algorithm identifies the authoritative sources in a hyperlinked
environment. The algorithm measures two scores per entity
such as the hub value and the authority value of hyperlinked
webpages [34]. In this study, the HITS algorithm is used to
calculate the hub and the authority values of corresponding
nodes for mutant statement as a measure to determine the
degree of significance. Each node controls only one corre-
sponding node and the data dependency of that node is used
to determine its authority value. If more data dependent edges
are pointing towards a node then more complexity it has to
calculate its node expression. The hub value is determined by
the data dependent edge from a node to the control depen-
dency edge. The more edges indicate the higher influence of
the current node on the other nodes. Better adequacy of a node
has a higher corresponding hub value. The Algorithm 1 is
presented below to measure the hub and authority value of
each mutant program.

1) HITS ALGORITHM
Input: The algorithmic process starts by selecting nodes and
edges of PDG as 2-tuple, i.e. {Nodes, Edges} in a 2D matrix.

» Initialize the hub and authority value of each node in
PDG with 1.

» For each edge in a node, compute authority value as the
sum of scaled hub values that pointed towards nodes
(Equation 5).

158270

Algorithm 1 Check Hub and Auth value of Mutants
Input : Let N is set of nodes with sizen x m
Output : Authority and Hub vector
Foreach (node in N)

Let x = Hub[node]
Let y = Auth[node]

Initialize x = (1,1,...,1) € R
Initializey = (1,1,...,1) e R"
End Foreach
While (N has nodes)

For (i=1,2,...,m)

5= Y)
End For

For (j=1,2,...,N)

yi= Z X (6)

ajj=

End For

Normalize (x)

Normalize (y)
End While
Return x, y

» For each edge in a node, compute hub value as the sum
of scaled authority values of a node (Equation 6).

» Each iteration consists of two steps, i.e. update authority
value and update hub value.

s Finally, the algorithm returns the normalized hub and
authority value as an algorithm output.

The PageRank is another popular ranking algorithm used
by the Google search engine to estimate the significance
of webpages [35]. In PDG, the number of nodes and
edges pointed towards a single node indicate its signifi-
cance on the other nodes. More influence a node has on
the other significant nodes indicates its higher PageRank
value on corresponding nodes. The Algorithm 2 is pre-
sented below to calculate the PageRank value of each mutant
program.

2) PAGERANK ALGORITHM
Input: The algorithmic process starts by selecting nodes and
edges of PDG as 2-tuple, i.e. {Nodes, Edges} in a 2D matrix

» Initialize the PageRank value of each PDG node with le

» Initialize the damping factor value with 0.85 (likelihood
of a random node visiting an edge)

» For each edge in a Node, identify nodes with links and
without links.

s If a node has links, identify inbound and outbound
links.

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

Algorithm 2 Check PageRank Value of Mutants
Input : Let N is set of nodes with sizen x m
Output : PageRank vector
Foreach (node in N)

Let PR = PageRank[node]
Initialize PR = zlv
Initialize dampingFactor = 0.85
End Foreach
While (N has nodes)
If (node; linked to node;)

. PR(nodej)
hasLink = SRR
asLin m%ej L (node))

End If
If (node; has no Links)

. PR(node;
noLink =) w
node;

End If

1—-d
PR (node;) = N + d (hasLink + nolink) @)

End While
Return PR

» Finally, compute the PageRank for all nodes using
Equation 7 and return the cumulative PageRank value
of each mutant as an algorithm output.

D. FEATURE EXTRACTION FROM TEST SUITE

The reachability, necessity and propagation features are
resolved to examine the effects of machine intelligence in
the prediction of mutants. At the same time, some additional
features such as cosine distance and degree of significance
features are also extracted to increase the efficiency of deep
learning models. Besides these, some features are selected
from previous studies such as [26] and [36] in which the
most significant feature is numMutantAssertion. This feature
observes the coverage of a mutant statement by the number
of assertions used in the test suite. If a mutant statement is
covered by at least one assertion, then there is a possibility
that a mutant is killed by the test suite unless that mutant
is equivalent. More the assertions have mutant coverage,
more the possibility that the mutant is killed by the test
suite. After the extraction of features from mutant programs,
the preprocessing of data using PCA analysis and SMOTE
oversampling is applied before the prediction of mutants. The
detailed list of extracted features is given in Table 2.

E. SIGNIFICANCE OF EXTRACTED FEATURES
The efficient prediction of mutants into their classes, i.e.
killed or alive is dependent on the significance of proposed
features. In this section, we briefly explain the significance
of some of these features in mutant classification.

First, we proposed three features of constraint-based test-
ing theory, i.e. reachability, necessity and effectPathNum. The

VOLUME 7, 2019

TABLE 2. List of features extracted from mutant source codes to build
classification models for scalable mutation testing.

No. Name Explanation

FOl1 sat Satisfiability value of a mutant
program

F02 effectPathNum The number of propagation paths
other than original program

F03 reachC Reachability of propagation paths to
the mutant statement

F04 necceC Necessity of mutant fault to change
propagation path in original program

FO5 distance Distance between semantics of
mutant and original program

F06 authority Authority value of the mutant nodes

F07 hub Hub value of mutant nodes

FO08 pagerank Significance of mutant node on
other nodes in a method

F09 numMutantAssertion Number of assertions in a test suite
cover the mutant statement

F10 typeOperator The mutant operator used to insert
sytactic fault

F11 typeStatement The type statement of mutated
method

F12 typeReturn The type return of mutated method

FI13 PAR The number of parameters used in
mutated method

F14 LOC Number of valid lines in mutated
method

F15 depNestBlock Basic block nesting level in mutated
method

F16 class The target class for prediction i.e.

killed or alive

reachability refers to the ability of a program to be reachable
by the test input. The necessity refers to the ability of mutant
statements to propagate error state which should be reachable
up to the output statement. Using both reachability and neces-
sity constraints, we can calculate the effectPathNum value
which identifies the number of paths affected by the muta-
tions. More paths indicate more possibility of that mutant to
be killed by the test suite.

Second, we proposed distance feature which measures
the similarity between the semantics of the mutant and the
original program. The greater distance between mutant and
original program indicates a high possibility of mutant to be
killed by the test suite.

Third, we proposed the significance features to generate
hub, authority and PageRank values which indicate the inter-
relationship of a mutant statement to other statements within
a class method. More interrelationships indicate the higher
significance of a mutant statement on other statements.

Last, we proposed the coverage feature which indicates the
coverage of statements in a program method. If a mutant is
non-equivalent and has test suite coverage, then there is high
possibility that mutant can be killed by the test suite.

158271

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

Moreover, we also selected some other state of the art
features from literature study shown in Table 2 to facilitate
the deep learning models for prediction of mutants into killed
and alive classes without any need of real time execution of
test suites on mutant programs.

F. PREPROCESSING OF DATASETS

The feature extraction from mutant programs is a key step
to generate mutant datasets for prediction. However, datasets
alone do not have enough potential to produce scalable results
from deep learning models. For instance, each opensource
program used in this study has more than 10,000 mutants
where each mutant consists of 15 features and collectively
one mutant dataset has more than 1,50,000 features. In muta-
tion testing, the independent dataset has more effectiveness
compared to the data split ratios. Therefore, during the train-
ing of deep learning classifiers all programs except one are
used to train models. The remaining program is used as a test
set for prediction. Currently, we are confronting four chal-
lenges in our datasets needed to be resolved before training
of deep learning classifiers.

1. Data dimensionality: In the feature extraction model,
we extract both nominal and categorical features from
mutant programs. At the same time, each training
model consists of more than 40,000 mutants. The high
dimensionality of data makes it difficult for training
models to predict certain quantities.

2. Multicollinearity: 1f a dataset has a perfectly posi-
tive or negative correlation between its attributes, then
there is a high possibility that classification models
are affected by multicollinearity. A multicollinear data
may produce skewed or misleading results during clas-
sification. In the feature extraction model, the effec-
tivePathNum feature has a positive correlation with
the reachability and necessity features. If reachability
and necessity value increases, then the value of effec-
tivePathNum will also increase. The reachability and
the necessity feature have a moderate correlation. For
instance, a necessity of mutant can only be measured
if the mutant statement is reachable. If reachability is
zero or negative, then the necessity of mutant may also
be zero or negative too. Similarly, the authority and hub
values are extracted based on correlation to each other.

3. Train and Test Set Compatibility: The splitting meth-
ods provided by weka or sklearn, etc. splits data ratios
into compatible train and test sets. However, in case
of independent test set, features are independently
extracted from each opensource program. Therefore,
using one program as test set and other programs as
train set may cause compatibility problem during clas-
sification. For instance, depNestBlock, rypeStatement
and typeReturn features can be different in each pro-
gram. If a typeReturn of a method is a class name, then
mutants generated on that method cannot be predicted
by the independent train set.

158272

4. Imbalance Classes: In mutation testing, the number
of killed and alive mutants is highly dependent on the
quality of the test suites. For instance, if a test suite is
adequate, then the majority of mutants will be killed
by the test suite. Similarity, if a test suite has weak
adequacy or low coverage, then only a few mutants can
be killed by the test suite.

1) PRINCIPAL COMPONENT ANALYSIS (PCA)

To resolve the challenges of the high dimensionality of data
and multicollinearity, we performed the principal component
analysis on mutant datasets. The PCA is a statistical approach
which converts the highly correlated features of data into
uncorrelated variables known as Principal components i.e.
PCy,PC,,...,PC,. The PCA uses orthogonal transforma-
tion on high dimensional data by reducing it into low dimen-
sional space without any loss of actual information [37]. The
PCs generated by the PCA algorithm maps the high variance
of all datasets into eigenvalues. Several PCs can be generated
from data; however, the PCs are generated in such a way
that the first PC contains the highest variance than second
and so on. This approach automatically removes the noisy
data and chooses uncorrelated and complex data to generate
PCs which simplifies prediction analysis for deep learning
classifiers. The new features generated by PCs reflect all
the information contained in the original datasets [38]. After
extraction of PCs from each dataset, those PCs which collec-
tively contain more than 80% up to 90% variance are selected
for further analysis. The covariance among two variables
shows the importance of specific PC in deep learning pre-
diction whereas each PC value ranges between +1 to -1. The
covariance between two random dimensions A and B from n
number of dimensions are calculated using Equation 8.

Y=l (A; —A) (B: — B)

cov(A,B) = I
n—

®)

Mathematically, the p dimensional vector with individual
coefficient weights are expressed using Equation 9.

W ©)

The wy is a unit vector with k linear number. Each feature
in vector is transformed into linear form to capture vari-
ance ¢ and use variance to compute the weight as shown in
Equation 10 and 11.

wr = (Wi, wa, ..

tl = (t17t27-"7tﬂ)[(10)
Ty = Xi-Wk (11D

The x represents the maximum possible variance along
with coefficient vector w for each variance. The first PC
with highest variance is calculated using Equation 12. Fur-
ther, each successive PC is used to captures the next highest
variance.

1

W1 = arg,|=1max {Z(X X w)z} (12)

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

Preprocessing

(]

|
| Test Data

PCA Reduction SMOTE Class
Balancing

queue

Mutation Testing
Results

[Params [}
N T
/ —~ /W’\\\
@)—J Fwd
O T Y.

raining

FIGURE 4. TensorFlow dataflow graph for preprocessing, training pipeline and mutation testing classification.

The w is weight for the first principal component and X is a
data matrix. To find the k" PC, we subtract the first principal
component k — 1 from X.

k-1
)szX—ZXstwaT

s=1

13)

To calculate the weight vector to extract the < maximum
variance of next PC, the Equation 14 is presented.

~ 2
X XWH }

The high dimensionality of data and multicollinearity
issues are resolved using PCA reduction and PCs selection
techniques. To make train and test data compatible with
each other, we independently perform PCA on each train
and test set. The PCs generated from PCA usually have
a positive or negative numeric value. We choose an equal
number of PCs in both train (PCy, PC,, ..., PC},) and test
(PCy, PCy, ..., PC,) sets to make them compatible before
making predictions.

(14)

Wi = arg||w”:1max {

2) IMBALANCE DATA ISSUE
In mutation testing, the proportion of killed and alive mutants
may vary greatly depending on the quality of test suites.
In such scenarios, the overfitting or imbalanced class prob-
lem arises which may affect the classification of mutants.
Various approaches have been proposed by the researchers to
overcome imbalance data problems. In this study, we select
Synthetic Minority Oversampling (SMOTE) approach which
has been previously used by many researchers because it sig-
nificantly improves the accuracy of minor classes [39]. The
SMOTE performs a k-nearest neighbor approach to generate
syntactic samples of minor classes using the following steps.
» Calculate k-nearest neighbor for each entity of minor
class using Euclidean distance such that x; € Sp.
» Select a random nearest neighbor x; from the group of
k-nearest neighbor x;.
= The new sample will be generated based on 3 or 5 near-

est neighbors using Equation 15.
15)

Xnew = Xi + |x,~ +xj| X 8

where § € [0, 1] is a random number between 0 and 1 which
is used for the placement of newly generated samples. Deep

VOLUME 7, 2019

learning models usually encounter this problem during the
training of classifiers when one class dominates the other.
The SMOTE oversampling on classification models is used
to overcome this problem.

G. DEEP LEARNING WITH TENSORFLOW FRAMEWORK
We design our main deep learning model using the Tensor-
Flow library based on Keras API to predict mutants from
unseen test data.

TensorFlow Keras Significance: We choose TensorFlow
because it efficiently works on any data in complex and
heterogeneous environments. TensorFlow allows high level
computation, training of models, tracking and sharing of
operations to mutate dataflow graphs. It provides a flexible
environment for an application developer to design and opti-
mize deep learning models using hyperparameters. Tensor-
Flow uses multi-dimensional arrays to perform operations
known as tensors. The queue feature in the TensorFlow per-
forms parallel execution similar to the multi-threading to
speed up operations used for classification [40]. Keras is a
user-friendly API that enables fast prototyping and provides
configurability for new modular extensions [41]. Keras runs
smoothly on both CPU and GPU. Keras supports almost all
neural network models such as fully connected, sequential,
convolutional, recurrent and embedding, etc. Furthermore,
the flexible and modular nature of Keras model enables users
to combine multiple models to build more complex deep
learning models.

The proposed feature extraction and dimension reduction
techniques are designed to work on the proposed deep learn-
ing model. However, their application is not limited to the
TensorFlow but can also work on other types of deep learning
models. Therefore, in this study, we also select some other
models such as RNN and MLP to measure the flexibility
and scalability of mutation testing prediction. The detailed
workflow of the TensorFlow based Keras model and the steps
used in the preprocessing of data are shown in Figure 4.

1) MODEL DESIGN

The backward and forward process with fine-tuned param-
eters is used to train deep learning models. The fine-tune
procedure is optimized with different parameters such as
activation and loss functions, dropout layers, optimizer and

158273

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

learning rate. We configured seven layers to train features
where the first six layers’ neuron sizes are 120, 100, 80, 60,
6 and 40 respectively. The first layer in the deep learning
model is used as an input layer whereas the last layer is an
output layer. In the middle, five hidden layers are assigned
where artificial neurons use a set of weighted inputs to learn
the model and produce output using an activation function.
The activation function sigmoid is used with the output layer
which represents the nonlinear form of neural network. The
main advantage of the sigmoid is that the output values exist
between 0 and 1 only. Therefore, in those models where
the prediction is dependent on the probability of occurrence,
the sigmoid performs better. For instance, we extract features
based on mutant killing conditions. If a mutant satisfies these
conditions, then the probability of mutant is killed higher
than the probability of mutant is alive. The neural network
measures the linear arrangement of input signals and uses
sigmoid function to deliver the outcome in the fixed output
range. Sigmoid is a standard logistic function which can
mathematically be defined using Equation 16.

S(x) =

I+e~ (16)
where S is sigmoid function and e is an exponential function
of variable x. In deep learning classification models, the com-
bining predictions from multiple neural networks can overfit
the model whereas the dropout layer randomly drops some
units during the training of neural networks to prevent too
much co-adoption [42]. To overcome the overfitting problem,
adropout layer with the dropout ratio of 0.20 is used with each
hidden layer in the deep learning model.

2) MODEL TRAINING AND EVALUATION

The main goal of training a model is to learn from the struc-
ture of data and make predictions on the unknown test set.
The optimizer and loss functions can contribute to improve
the training of the designed model. In this study, we use
Adam optimizer which is the combination of adaptive gra-
dient and root mean square propagation algorithm making
it a computationally efficient optimizer. Adam performs an
iterative approach to update neural network weight for each
parameter in the deep learning network [43]. Adam stores the
exponential decaying average of the past square gradient v;
and the decaying average of the past gradient m; in simi-
lar momentum. We compute both gradients using Equation
17 and 18 respectively.

m = B x m_1 4+ (1= B1) X g (17)
v = Ba xm_1 + (1 — Br)xg,’ (18)

The g identifies the particular gradient for every moment,
i.e. the mean or the uncentered variance of a gradient.
To counteract biases, the corrected first 7, and second v;
moment is estimated using Equation 19 and 20.

A my
m; —=
t l—ﬂi

(19)

158274

A Vi
V= ———
t 1—ﬂ£

Lastly, we select the binary cross entropy loss func-
tion to measure the loss in classification results. The pro-
posed mutant classification model consists of only two target
classes, i.e. killed or alive. Therefore, binary cross entropy is
more appropriate for our datasets which efficiently calculates
the difference between two distributions. Mathematically,
the binary cross entropy is defined using Equation 21.

(20)

BCE (t,0) = — (t xlog(0) + (1 — 1) x log(1 —0)) (21)

where ¢ is the target and o is an output of the symbolic
TensorFlow.

H. CLASSIFICATION WITH RNN AND MLP

The second and third deep learning model selected for the
evaluation of proposed approaches is the Recurrent Neural
Network (RNN) and Multi-Layer Perceptron (MLP) model
respectively.

RNN is a form of artificial neural network in which previ-
ous states are used as input for the current states. The structure
of RNN is similar to the Feedforward Neural Network with
one distinction in the usage of network states. To implement
the RNN model, we use the same configuration of hyperpa-
rameters used in the TensorFlow Keras Deep learning model.
However, the activation function ReLU is considered instead
of sigmoid for better performance.

MLP is a simple form of Feedforward Neural Network
which consists of three layers, i.e. input, hidden and output
layer. MLP uses nonlinear activation function by default.
We selected the AutoMLP classifier which automatically
configures hyperparameters whereas the size of training
cycles 20 and the size of ensembled MLPs 5 is used to design
the deep learning model.

I. ADEQUACY METRICS FOR MODEL EVALUATION

We assessed the prediction of deep learning classification
results using True Positive (TS), True Negative (TN), False
Positive (FP) and False Negative (FN) variables respectively.
The evaluation metrics used for analysis are presented in
Equation 22, 23, 24 and 25 respectively.

- TP
Precision = —— (22)
TP + FP
FP
Recall = ——— (23)
FP+ TN
TP + TN
Accuracy = + (24)

TP+ 1N + FP + FN

Precision x Recall

. . 25
measure Precision + Recall)

IV. EXPERIMENTAL STUDY AND ANALYSIS

Experiments are designed to test the effectiveness and scal-
ability of proposed techniques under different application
scenarios such as program size, accuracy and loss. We select
five programs for experimental study. Firstly, the test suites

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

TABLE 3. Information of five opensource Java programs selected for
experimental study.

Subject Method Test suite #Classes Program
Programs LOC LoC and Coverage
#Test Cases
mixprojs 10,432 07,371 152/664 85.17
comcodec 12,153 15,819 179/490 96.80
ling4j 13,767 08,542 218/632 71.20
comtext 21,817 11,994 240/1031 87.80
Jfreechart 36,141 10,858 653/2355 73.50
Total 94,310 54,584 1,498/5,172 82.89

NOTE: The details of programs are disclosed in the following GitHub
repository link: https://qithub.com/deepmut/programs

are executed against mutants to establish the ground truth of
killed and alive mutants. Secondly, the predictions are utilized
on test data to answer the following questions.

RQ1: How does the proposed approach perform in terms
of predicting mutants on unseen data?

RQ2: How do different factors, i.e. size, accuracy and loss
etc. influence the scalability of deep learning models?

A. SUBJECT PROGRAMS

We choose five subject programs from the GitHub repository
to evaluate our proposed techniques on opensource projects.
MulJava mutation testing tool is used to generate mutant
versions of original programs. Researchers have widely used
MulJava for mutation testing of Java programs. MuJava gen-
erates both source and compiled files of each mutant which
makes it easier to perform static analysis on mutant pro-
grams’ source code for feature extraction. The compiled files
optimize the test suite execution without any need for pre-
compilation especially in large programs. The detailed infor-
mation about subject programs such as name, method lines
of code (LOC), test suite LOC, number of classes, number
of test cases and test suite coverage for each program is
given in Table 3. The size each program ranges between
10,432 t0 36,141 LOC whereas the LOC of test suites is rang-
ing between 7,371 to 15,819 respectively. It should be noted
that the information detail of each program is extracted using
eclipse metric tool. The test suite detail in some programs also
includes test suites generated using Evosuite test generation
tool. Evosuite uses mutation testing to generate test oracles to
ensure higher structural coverage with a minimal number of
test cases [44].

B. MUTANT OPERATORS AND MUTANT GENERATION

In mutation testing, the artificial syntactic changes are seeded
in original program to generated its mutant versions. These
syntactic changes are induced by manipulating an arithmetic
operator or conditional operator, etc. in a program source
code. In this study, we selected eight traditional operators
of Mujava to generate mutants from subject programs. The

VOLUME 7, 2019

TABLE 4. Mutant operators used in experimental study.

Mutant

Operator Description

AOR Arithmetic Operator Replacement
Example: [a + b = a — b]

AOI Arithmetic Operator Insertion
Example:[a+b=c=>a+b——=]

COR Conditional Operator Replacement
Example: [if (a + b && true) = if (a +
b || true)]

col Conditional Operator Insertion
Example: [if (a > b) = if (! (a > b)]

LOR Logical Operator Replacement
Example: [a =b&c=>a=Db|c]

LOI Logical Operator Insertion
Example: [a = b = a = ~b]

ROR Relational Operator Replacement
Example: [if (a == 0= if (a < 0)]

SDL Statement Deletion

Example: [if (true){a = b; } = if (true){}]

mutant operators of Mujava are selected based on ““Suffi-
cient Mutant Operators™ criteria studied in the Related Work
section and Table 1.

We select five types of sufficient mutant operators, i.e.
Arithmetic Operator, Conditional Operator, Logical Opera-
tor, Relational Operator and Statement Deletion.

« An arithmetic mutation is inserted by replacing the ““+4”

with “~" or *“/” with “x” etc. in a source code state-
ment or expression.

« A conditional mutation is inserted by replacing *“||”” with
“&&” etc. in a source code statement or expression.
o A logical mutation is inserted by replacing *“|” with

“&” or adding “~”" before the variable in a source code
statement or expression.

« A relational mutation is inserted by replacing “==
to “<=", “>=" or “I =" in a program state-
ment or expression.

« A statement deletion mutation is inserted by removing a
statement or an expression in a source code of program

method.

The detailed list of mutant operators and examples is given
in Table 4. After mutant generation, each mutant is executed
against test suites to identify killed and alive mutants. The
detailed information on test cases and programs is given
in Table 3. In Java, the test oracles use JUnit assertions
to identify program failures. A failure is an inconsistency
between expected and delivered the output of a program
under test. The execution results of test suites are used to
calculate MSI scores for each program. In this paper, we use
original test suites written by the software developers and

2

158275

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

TABLE 5. The detailed information on total number of mutants and MSI
scores based on outcomes of test suite execution.

Subject Total Killed Alive Mutation Score

Programs Mutants Mutants Mutants Index (MSI)
mixprojs 10,431 6,634 3,797 63.59
comcodec 10,297 8,590 1,707 83.42
ling4j 10,891 4,753 6,138 43.64
comtext 11,750 9,175 2,575 78.08
Jfreechart 13,354 6,042 7,312 45.24
Total 56,723 35,194 21,529 62.02

TABLE 6. Train and test set distribution for all project based on number
of mutants and number of training features.

Sr. Train Mutants Train Features Test Set
1. 46,292 740,672 mixprojs
2. 46,426 742,816 comcodec
3. 45,832 733,312 ling4j
4. 44,973 719,568 comtext
5. 43,369 693,904 Jfreechart

the contributors of the subject programs. In two programs,
i.e. mixprojs and ling4j, the coverage of source code by the
original test suites was less than 50%. Therefore, we use
Evosuite tool to generate more test cases for some classes
to further improve the quality of test suites. The detailed
list on total number of mutants and MSI for all programs
is given in Table 5. The total number of mutants generated
from selected classes is 56,723. The total number of mutants
killed by the test suites are 35,194 whereas the total number of
alive mutants are 21,529 respectively. The highest MSI score
is achieved by the comcodec program which is 83.42 whereas
the lowest MSI score is 43.64 achieved by the ling4j program.

C. TRAIN AND TEST SETS DISTRIBUTION FOR
CLASSIFICATION OF MUTANTS

In this paper, we choose the cross-project scenario for classi-
fication of mutant programs into their alive and killed classes
respectively. In the cross-project, the train and the test models
are selected independently without any split ratio criterion.
Each independent train set consists of mutants from four sub-
ject programs whereas the mutants in the remaining program
are used as a test set to make predictions. Train sets used in
this study consist of more than 40,000 mutants whereas total
features in each train model are ranging between 693,904 and
742,816 respectively. The details on number of mutants in
training models, total features in each train set and programs
used as test set are shown in Table 6. In some programs
where MSI scores are too high or too low, the imbalance data
strategy explained in section III is used to prevent deep learn-
ing models from overfitting. Lastly, we used the adequacy

158276

metrics such as precision, recall and f-measure to evaluate
the performance of deep learning models.

D. PCA REDUCTION ON TRAIN AND TEST MODELS

The PCA reduction is used on both train and test models
to reduce the number of features and to select features with
high variance. This will not only reduce the dimensionality of
data but also improve the ability of deep learning models to
classify mutants into killed and alive classes. Firstly, we used
NominalToNumeric conversion on data to convert categorical
variables into numeric data. The resultant datasets are used
to check correlation among different features. The correla-
tion analysis of the combined dataset is shown in Figure 5.
It can be seen that the majority of variables are nonlinear and
highly correlated to each other. This highest positive corre-
lation lies between reachability and LOC features whereas
the highest negative correlation lies between necessity and
PAR features which is 0.72 and -0.59 respectively. In the next
step, we applied principal component analysis on a combined
dataset to visualize the correlation of principal components
generated from mutant features as shown in Figure 6. The
visualization of resultant dataset shows only numeric values
of data whereas the Principal Components (PCs) generated
from PCA shows high variance and zero correlation among
the different combination of principal components.

Cumulative Variance: The cumulative variance gives the
percentage of variance covered from the first to the n number
of principal components. The recommended and widely used
selection criteria for cumulative variance is 0.85. The total
cumulative variance of 0.85 means that up to that ratio the
85% variability of data is already covered by 1 to the n num-
ber of principal components. Therefore, the remaining prin-
cipal components are considered noisy and can be removed
from data without any loss of useful information.

After generating principal components for each program,
the noisy data is removed based on total cumulative variance.
The principal components capturing high quality features into
lower dimensional space are selected. The total number of
fifteen PCs are generated per mutant for all subject programs.
The standard deviation, proportion of variance and cumu-
lative variance of each PC in each program is presented in
Table 7. In three programs mixprojs, comtext and jfreechart,
the 85% cumulative variance is covered by the first nine PCs.
The 0.85 cumulative variance of comcodec is covered by the
first ten and the cumulative variance of ling4j is covered by
the first eight PCs respectively. However, during the training
of deep learning models, we require an equal number of PCs
for all programs. Therefore, we select the average cumula-
tive variance of five programs which is covered by the first
nine PCs. The proportion of variance from PC10 to PC15 is
very small whereas the 85% cumulative variance is already
covered in PC1 to PC9. Consequently, PC10, PC11, PC12,
PC13, PC14 and PC15 are considered noisy and removed
from datasets.

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

0 300 o 4 00 06 02 08 o0& 12 0 3 6 5 20
1 11| L1011 11111 L 111 NN NN La111 -
sal - g
004 | 003 | -008 | 001 | -0.01 | -014 | <008 | 005 | 002 | 011 | 2009 | 012 | 006 | 002
- =
o : eflectPall =
& 016 | 002 | <002 | -0.20 | -0071 | -043 | -0.08 | 020 | 0.28 | -012 | 0.068 | 044 | 0.09
= - m
raachC -
l % 028 (-001 | 008 | -026 | -048 | 011 | 0.35 | 051 | =007 | 002 | O.72 | 027 [%
= =
n neeeal
= :I—_ - 0.06 | 0.37 015 | -028 | 008 | <017 | -0.23 | 047 | -0.68 | 0.05 | -0.20
= o
dis I~
o o 0.00 | -0.06 | 0.07 0.08 0.11 0.08 0.00 0.05 | -0.09 | -004
= &
E B — T_- aulh 3
:I 'i_ s .I.l" -0.24 | 0.2 007 | -02% | 022 | 019 | -0.36 | -0.29 | -0.42
o . 2
= b] ‘. b - 2
% 5 008 | 001 | 014 | -025 | 020 | <035 | <016 | 005
—— =
o ’ . pagerank =
= = g 0.20 | -0.27 | -0.37 [07 | -0.03 | -0.67 | -0.22
o
g
o ™ (18 MEEEE w
@ 0.05 | 000 | 004 | -0.05 | =009 | 070 | =
[=
- 5 > | — lypedp =
I a - 054 | -015 | 023 | 0.39 | 014
= _. — bypaSlal | =
8 -0.18 | 0.28 0.58 032 | ™~
" | @ oo I~
= E * ® . ° : IypeRaturr
= i 054 | 027 | -0.14
o 3 B @ o
PAR - &
] oo n an oo] Q L T o~
b }‘H 013 | 022 | ™
- ", - - =
o]] a LoC =
= - o 0.59
- oo
EphlesBloc= o
] 0000 o o L] Qo 4 oo = -
— o =
- =
0.0 0.6 0 4 & 0.0000 00 06 0o 06 o 2 4 0.0 20 10 3.0

FIGURE 5. Non-linear and highly correlated values in datasets.

E. PERFORMANCE OF DEEP LEARNING MODELS IN
CLASSIFICATION OF MUTANTS

1) PERFORMANCE ON ADEQUACY OF MODELS

The performance analysis of deep learning models in clas-
sification of mutants is shown in Figure 7, 8 and Table 8.
We also select the choice of other deep learning classifiers
such as Recurrent Neural network (RNN) and Multi-Layer
Perception (MLP) to analyze the efficiency and scalability
of proposed approaches with other deep learning models.
Figure 7 shows the accuracy comparison of five subject
programs based on three deep learning models. From the
comparison of results, we can conclude that the deep learning
Keras model outperforms other classifiers in all programs.
The lowest accuracy of the proposed model is 0.87 whereas

VOLUME 7, 2019

the highest accuracy is 0.93 which shows good effectiveness
of mutant classification techniques. The RNN model also
shows good classification results by achieving classification
accuracy between 0.77 and 0.90 respectively. MLP model
achieves the lowest accuracy of 0.73 in comcodec program
which is still effective in terms of reducing mutation testing
cost especially for large programs used in this study.

We also select other adequacy metrics such as precision,
recall and f-measure to measure the performance of pro-
posed techniques on deep learning models. The comparison
of precision and recall is shown in Figure 8. It should be
noted that in mutation testing, the imbalanced class problem
is a common issue. Therefore, we analyze the precision and
recall of alive and killed mutants separately. For instance,

158277

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

2 2 15 -5 4 2 8 10 0 21 2 0 2 2 0
I | | L1111l | - 11111 L1 11 11|
PCA =
0.00 | 0.00 | 000 | 000 | 000 | 000 | 0.00 | 000 | 000 | 000 | 000 | 000 | oo | coo F
L @
7 PC2
] 0.00 | 0.00 | 0.00 | 0.00 [0.00 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Ehl 2
3 PC3 -
000 | 0.00 | 0.00 | 0.00 [000 | 000 | 000 | 000 | 000 | 000 | 000 | coo F e
~
o - &% PC
. - 0.00 | 000 | 0.00 | 000 | 000 | 0.00 | 000 | 000 | 000 | 000 | 0.00
"] C5 @
X o |e o 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 000 | 0.00 | 000 | 000 [
! . - o
= ; [] [] — [P p 6
= { g 0.00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000
' s i
i, P |TT -
d .J. 000 | 000 | 0.00 | 000 | 000 | 000 | 000 [000 [
o . . & PC '
o1 \ a9 000 | 000 | 000 | 000 | oo | 000 | 0.00
‘ C9 .
o . 000 | 000 | 000 | 000 | 000 | 000
- -
T o
$e N JPCT0
-1 P — 0.00 | 000 | 000 | coo | 000
E\vl =
_ PC11 -
- s - 000 | 000 | 0oo | coo E
s 2 9 = 7
~ > PC12
o %I o 0.00 | 000 | 0.00
R ‘ N PC13 -
- A - | - =
d N . . | 000 | 000 [°
. PC14 '
o { _|
1 e op” b 0.00
Lo | w
) : J’ op. b P 15: -
a = =
LILIL [l LI TTTT | 1
& 0 6 0 & 0o 10 10 0 2 2 6 i 02 2 0 2 1.0 1.0

FIGURE 6. Linear and non-correlated Principal components (PCs).

using TensorFlow based Keras deep learning model, the
average precision and recall of alive mutants for all pro-
grams is 0.91 whereas the average precision and recall of
killed mutants is 0.86 and 0.85 respectively. The lowest
precision and recall using this model is achieved by ling4j
which is 0.88 and 0.89 respectively. One possible reason
for that is the mutation score of ling4j is low which means
the majority of mutants in this program are alive. However,
the precision and recall of ling4j is still greater than 0.86 for
both alive and killed mutant classes. The performance on
deep learning classification showed good tradeoff between
efficiency and effectiveness even for the highly imbalanced
programs.

2) PERFORMANCE ON SCALABILITY OF MUTATION TESTING

The deep learning models are tended to overfit which means
a training model is too well that it can negatively impact the

158278

performance on test models regardless of good classification
results. To overcome this bias, the regularization or dropout
layers are used to design deep learning models as explained
in Deep Learning with TensorFlow section. To measure the
scalability of mutation testing on a large test sets, a new exper-
iment is designed to visualize accuracy and loss of both train
and test models on multiple epochs. In this experiment, three
programs comcodec, ling4j and jfreechart are used as train
set whereas mixprojs and comtext are used as test set. The
train model consists of 34,542 mutants or 518,130 features
whereas the test model consists of 22,181 mutants or 332,715
features respectively. After training of the deep learning
model with train data, the predictions are performed on the
test data. The precision and recall of alive classes are 0.96 and
0.97 whereas the precision and recall of killed classes are
0.95 and 0.93 respectively. The overall accuracy of test model
is 0.96 which shows good scalability of training models not

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

TABLE 7. The standard deviation, proportion of variance in each PC and cumulative variance for five subject programs.

mixprojs PCl1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCY9 PCIO PCl1 PCI2 PCI3 PCl4 PCI5
Std. Dev. 2,042 1501 1.157 1.072 1.012 0998 0.964 0.845 0.835 0.709 0.666 0.573 0.503 0.344 0.264
Prop. Ver. 0.278 0.150 0.089 0.076 0.068 0.066 0.061 0.047 0.046 0.033 0.029 0.021 0.016 0.007 0.004
Cum. Ver. 0.278 0.428 0.517 0.594 0.662 0.729 0.791 0.838 0.885 0918 0948 0970 0987 0995 1.000
comcodec PClI PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCIO PCl1 PCI2 PCI3 PCl4 PCI5
Std. Dev. 1.627 1.431 1.277 1.091 1.011 1.003 0.962 0.933 0909 0866 0803 0.730 0.639 0.561 0.410
Prop. Ver. 0.176 0.136 0.108 0.079 0.068 0.067 0.061 0.058 0.055 0.050 0.043 0.035 0.027 0.021 0.011
Cum. Ver. 0.176 0.313 0422 0.501 0.569 0.636 0.698 0.756 0.811 0.861 0.904 0.940 0967 0988 1.000
lingdj PClI PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCY9 PCIO PCl1 PCI2 PCI3 PCl4 PCI5
Std. Dev. 1.746 1.622 1.458 1.210 1.010 0.999 0.944 0919 0.690 0.627 0.614 0.520 0.478 0.384 0.266
Prop. Ver. 0.203 0.175 0.141 0.097 0.068 0.066 0.059 0.056 0.031 0.026 0.025 0.018 0.015 0.009 0.004
Cum. Ver. 0.203 0.378 0.520 0.618 0.686 0.753 0.812 0.868 0.900 0926 0952 0970 0985 0995 1.000
comtext PCI pPc2 PC3 pPc4 PC5 PC6 PC7 PC8 PCY9 PCIO PCII PCI2 PCI3 PCl4 PCI5
Std. Dev. 1.723 1.533 1.212 1.096 1.026 1.000 0971 0932 0878 0861 0.759 0.676 0.591 0.433 0.232
Prop. Ver. 0.197 0.156 0.098 0.080 0.070 0.066 0.062 0.058 0.051 0.049 0.038 0.030 0.023 0.012 0.003
Cum. Ver. 0.197 0.354 0.452 0.532 0.603 0.669 0.732 0.790 0.842 0.891 0930 0960 0983 0996 1.000
Jjfreechart PCI pPCc2 PC3 pPc4 PC5 PC6 PC7 PC8 PCY9 PCIO PCII PCI2 PCI3 PCl4 PCI5
Std. Dev. 1.762 1.437 1318 1.135 1.089 0999 0971 0922 089 0.782 0.712 0.655 0.600 0.258 0.207
Prop. Ver. 0.207 0.137 0.115 0.085 0.079 0.066 0.062 0.056 0.053 0.040 0.033 0.028 0.024 0.004 0.002
Cum. Ver. 0.207 0.344 0.460 0.546 0.625 0.692 0.754 0811 0.865 0906 0939 0968 0992 0997 1.000

ACCURACY COMPARISION

TABLE 8. The performance analysis of mutant classification into alive
and killed classes based on three deep learning models i.e. proposed
TensorFlow Keras model, RNN and MLP.

0.84
0.82
0.79 == ==Keras
l077] 077 0.77 — —RNN
— —Mmrp
0.73
1 2 3 4 5

FIGURE 7. Accuracy comparison of TensorFlow Keras, RNN and MLP
models on five subject programs.

only with fixed size test models but it can also perform
efficiently on increasing size of test models.

We perform model accuracy and validation loss on
100 epochs as shown in Figure 9 and Figure 10. In Figure 9,
the accuracy of train and test models start at 0.75 and
0.80 which gradually increases when epoch size increases.
The accuracy of both models becomes stable after 60 epochs
where train model accuracy is 0.97 and test model accuracy
is 0.95 respectively. Figure 10 shows the validation loss on

VOLUME 7, 2019

Classifier # Subject __ Alive Mut’s Killed Mut’s F
assyte Programs _ Prec. Reca. Prec. Reca. measure
Proposed yixprojs 091 095 091 084 0.90
Keras
Deep comcodec 0.94 097 0.89 0.80 0.90
Learning ling4j 0.88 089 087 086 0.87
Model comtext 0.94 092 081 086 0.88
Jfreechart 0.90 085 085 0.90 0.86
Average 091 091 086 0.85 0.88
Recurrent jxprojs 0.83 076 087 091 0.79
Neural
Network comcodec 0.71 0.88 0.86 0.67 0.78
Model ling4j 0.86 082 088 092 0.88
comtext 0.72 0.91 0.90 0.70 0.80
Jfreechart 0.85 0.75 0.80 0.88 0.83
Average 079 082 086 0.8] 0.81
Multi- mixprojs ~ 0.92 0.76 0.79 093 0.83
Layer
Perception comcodec 0.70 0.76 0.75 0.69 0.73
Model ling4j 0.90 078 087 0.94 0.90
comtext 0.71 0.85 085 0.71 0.77
Jfreechart 0.75 0.78 0.79 0.77 0.78
Average 0.79 0.78 081 0.80 0.80

train and test models where validation loss starts at 0.50 and
0.45 which gradually reduces when epoch size increases.
The validation loss becomes stable after 80 epochs where

158279

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

D Precision . Recall
1.0-
0.8-
0.7-
0.6-
Ke‘ras MLP RNN

FIGURE 8. Comparison of performance on precision and recall values
based on deep learning models.

Model Accuracy

—— ftrain

test
0.95

-

-

0.90 4
0.85

0.80

40 60 80 100
Epoch

o
[
=3

FIGURE 9. The train and the test model accuracy with respect to
increasing size of epochs.

Model Loss

— ftrain
test
0.5+

0.4+
0.3+
0.2+ By,

Epoch

FIGURE 10. The train and the test model loss with respect to increasing
size of epochs.

validation loss of the train model is up to 0.10 whereas the
validation loss of the test model is up to 0.20 respectively.
The analysis on epoch sizes shows that the proposed deep

158280

learning model is efficiently fine-tuned on dense and dropout
layers along with activation methods and size of neurons.

3) EVALUATION ON TWO TAILED Z-TEST

In the final experiment, we measure the significance of each
principal component from PC1 to PC9 using the two tailed
Z-test. The two tailed Z-test is a statistical hypothesis to
estimate the region of rejection on both sides of the sam-
ple distribution [45]. For instance, during the prediction of
mutants into alive and killed classes, the probability of rejec-
tion lies on both sides. A killed mutant can be incorrectly
classified as alive, and an alive mutant can also be incorrectly
classified as killed other than the correct classification of
killed and alive mutants. The two tailed Z-test assessment
uses the mean and the variance of sample distribution by
estimating the deep learning model to calculate the signifi-
cance of each PC. The probabilities of two tailed Z-test on
five programs along with the combined train set is shown
in Table 9. The confidence level of each PC is measured
by subtracting the probability value from 1. For instance,
the highest probability is achieved by the comcodec program
which is 0.9259859 in PC4. It means the confidence level of
PC4 for the comcodec program is 7.41% only. The highest
confidence level is achieved by the mixprojs which is closer to
0 for all PCs. In the comcodec program, PC2, PC3, PC5, PC6,
PC8 and PC9 have highest confidence level. In the ling4j,
PC1, PC2 and PCS8 achieve the highest confidence level. The
comtext, jfreechart and combined programs achieved high
confidence level in 3, 7 and 6 PCs respectively. From the
observations of two tailed Z-test, we can conclude that all the
selected PCs have high confidence in sampling distribution
and they have effectively contributed in the prediction of
mutant into their respective classes.

V. THREAT TO THE VALIDITY
The threat to internal and external validity may suffer the
validly of experimental study, findings and claims.

During program dependence analysis, we found two lim-
itations that may affect the construction of PDGs. Firstly,
in opensource programs, unknown method calls are com-
monly used. The unknown method call further deepens the
complexity of PDG which may require more computation
cost for feature extraction. To overcome this threat, we used
parallel processing on multiple mutants using pool instance a
multi-threading feature provided in Python. Secondly, com-
plex data structures are widely used in opensource projects.
If a data structure has more than one member variable assign-
ments, then it may become difficult for PDG to determine
which variables are directly affected by mutations. To over-
come this threat, we use the Eclipse JDT toolkit to implement
the feature extraction model. Eclipse JDT can perfectly han-
dle the complexity of Java source codes which may reduce
this threat.

Many researchers use different types of mutant generation
tools and mutant operators in mutation testing studies. In this
paper, we selected Mujava to generate mutants. The selection

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

TABLE 9. The predictor variables (PC probabilities) are generated using Two Tailed Z-Test. The lower value indicates the higher confidence level and
greater significance of principal components for prediction of mutant classes (killed or alive).

PC\Prog. mixprojs comcodec ling4j comtext Jfreechart combined

(Intercept) 0.0000000000 0.000000e+00 1.643130e-14 0.000000e+00 1.365505e-02 0.000000e+00
PCI 0.0004835669 3.252702e-01 0.000000e+00 3.263960e-03 0.000000e+00 0.000000e+00
pPC2? 0.0000000000 3.841696e-05 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
PC3 0.0000000000 0.000000e+00 2.169528e-01 0.000000e+00 5.144990e-05 0.000000e+00
PC4 0.0000000000 9.259859e-01 3.014757e-01 1.613339e-04 0.000000e+00 0.000000e+00
PC5 0.0000000000 0.000000e+00 5.087951e-01 1.776357e-15 0.000000e+00 0.000000e+00
PC6 0.0000000000 0.000000e+00 7.674962e-02 9.917422e-11 0.000000e+00 1.536905¢-03
pPC7 0.0000000000 3.542635e-06 1.084427e-01 0.000000e+00 0.000000e+00 4.138420e-09
PC8 0.0000000000 0.000000e+00 0.000000e+00 3.009080e-03 5.691170e-07 2.220446e-16
PCY 0.0000000000 0.000000e+00 9.120736e-02 4.177401e-01 0.000000e+00 0.000000e+00

of mutant operators can constitute another possible threat as a
reliable mutation testing system requires good understanding
of mutation operators. However, the mutant operators used
in this study are widely studied in related work such as
“Sufficient Mutant Operators” .

The test suites used in this study may also cause threat to
the validly of prediction results. Different test suites produce
different results whereas the quality of test suites can affect
the classification and model accuracy. To reduce this threat,
we used original test suites written by developers of subject
programs. Many test suites have imbalance portion of killed
and alive mutants. However, experimental study shows that
the proposed approaches can efficiently handle this threat by
producing good classification results even for highly imbal-
anced programs.

VI. CONCLUSION

Machine intelligence has provided solutions in many domains
to solve the cost related problems. In mutation testing,
the execution of mutants on test suites is also one of those
problems which makes its use rare in the software industry.
In this paper, we propose and extensively evaluate muta-
tion testing using the prediction of deep learning models
on five Java programs selected from the GitHub repository.
Firstly, the feature extraction approach is proposed to exact
the features from the mutant programs. Secondly, a deep
learning model is designed using the implementation of the
TensorFlow framework with Keras API. PCA reduction is
applied and principal components are selected to remove
noisy data to reduce the high dimensionality. The main idea
of this paper is to make mutation testing scalable for big
programs without any need for test suite execution or loss
of test effectiveness. Therefore, predictions are performed on
independent test sets. The comparison of the proposed deep
learning model with other deep learning classifiers such as
RNN and MLP also showed good effectiveness of scalable
mutation testing in the prediction of mutants.

VOLUME 7, 2019

In extended experiments, we evaluated the accuracy and
validation loss of both train and test models on 100 epochs.
This evaluation also showed that the proposed approach not
only works efficiently on fixed size test models but also
scalable to the increasing size of mutants. Lastly, a two
tailed Z-test is performed on selected principal components
to measure the confidence level of each component in the
classification of mutants for individual mutant program.

In the future, we will extend our techniques to solve
the problems in other domains of mutation testing such as
mutant selection and dominator mutant factor using machine
intelligence.

ACKNOWLEDGMENT
M. R. Naeem would like to thank his colleague Mr. H. Liu
for useful discussion and technical assistance for this paper.

REFERENCES

[1] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649-678,
Sep./Oct. 2010.

[2] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with
test suite effectiveness,” in Proc. ICSE, Jun. 2014, pp. 435-445.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34-41, Apr. 1978.

[4] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization in
software evolution,” in Proc. ISSRE, Nov. 2015, pp. 46-57.

[5] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in Proc. ICST, Mar./Apr. 2014,
pp. 153-162.

[6] V. Aranega, J.-M. Mottu, A. Etien, and J.-L. Dekeyser, “Traceability
for mutation analysis in model transformation,” in Models in Software
Engineering (Lecture Notes in Computer Science), vol. 6626. 2010,
pp. 259-273.

[7]1 L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-based
mutant selection superior to random mutant selection?” in Proc. ICSE,
May 2010, pp. 435-444.

[8] A.J. Offutt and S. D. Lee, “An empirical evaluation of weak mutation,”
IEEE Trans. Softw. Eng., vol. 20, no. 5, pp. 337-344, May 1994.

[9] M. Papadakis and N. Malevris, “An empirical evaluation of the first and
second order mutation testing strategies,” in Proc. ICSTW, Apr. 2010,
pp. 90-99.

158281

IEEE Access

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. Zhang, M. Zhu, D. Hao, and L. Zhang, “An empirical study on the
scalability of selective mutation testing,” in Proc. ISSRE, Nov. 2014,
pp. 277-287.

L. Madeyski, ““The impact of Test-First programming on branch coverage
and mutation score indicator of unit tests: An experiment,” Inf. Softw.
Technol., vol. 52, no. 2, pp. 169-184, Feb. 2010.

P. K. Singh, O. P. Sangwan, and A. Sharma, ““A systematic review on fault
based mutation testing techniques and tools for Aspect-J programs,” in
Proc. IACC, Feb. 2013, pp. 1455-1461.

W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing: An
empirical study,” J. Syst. Softw., vol. 31, no. 3, pp. 185-196, Dec. 1995.
A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
experimental determination of sufficient m utant operators a. Jefferson
Offutt Ammei lee George mason University,” ACM Trans. Softw. Eng.
Methodol., vol. 5, no. 2, pp. 99-118, Apr. 1996.

E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, “Toward the deter-
mination of sufficient mutant operators for C,” Softw., Test., Verification
Rel., vol. 11, no. 2, pp. 113-136, Jun. 2001.

A. S. Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient mutation
operators for measuring test effectiveness,” in Proc. ICSE, May 2008,
pp- 351-360.

M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, “Selective mutation
testing for concurrent code,” in Proc. ISSTA, Jul. 2013, pp. 224-234.

W. E. Wong, A. P. Mathur, and J. C. Maldonado, “Mutation versus all-
uses: An empirical evaluation of cost, strength and effectiveness,” in Proc.
Softw. Qual. Productiv., 1995, pp. 258-265.

W. E. Howden, ‘“Weak mutation testing and completeness of test sets,”
IEEE Trans. Softw. Eng., vol. SE-8, no. 4, pp. 371-379, Jul. 1982.

M. Woodward and K. Halewood, “From weak to strong, dead or alive?
an analysis of some mutation testing issues,” in Proc. STVA, Jul. 1988,
pp. 152-158.

M. Singh and V. M. Srivastava, “Extended firm mutation testing: A cost
reduction technique for mutation testing,” in Proc. ICIIP, Dec. 2017,
pp. 604-609.

R. H. Untch, A. J. Offutt, and M. J. Harrold, ‘“Mutation analysis using
mutant schemata,” in Proc. ISSTA, Jun. 1993, pp. 139-148.

A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K. Khambekar, “Mutation
testing of software using a mimd computer,” in Proc. ICPP, Aug. 1992,
pp. 257-266.

L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing
inspired by test prioritization and reduction,” in Proc. ISSTA, Jul. 2013,
pp. 235-245.

L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, ‘‘Regression mutation
testing,” in Proc. ISSTA, Jul. 2012, pp. 331-341.

J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang, “Predictive
mutation testing,” IEEE Trans. Softw. Eng., vol. 45, no. 9, pp. 898-918,
Sep. 2018.

F. Ullah, H. Naeem, and S. Jabbar, “Cyber security threats detection in
Internet of Things using deep learning approach,” IEEE Access, vol. 7,
pp. 124379-124389, 2019.

S. Zafar, S. Jangsher, O. Bouachir, M. Aloqaily, and J. B. Othman, “QoS
enhancement with deep learning-based interference prediction in mobile
10T,” Comput. Commun., vol. 148, no. 15, pp. 86-97, Dec. 2019.

K. Z. Haider, K. R, Malik, S. Khalid, T. Nawaz, and S. Jabbar, “Deepgen-
der: Real-time gender classification using deep learning for smartphones,”
J. Real Time Image Process., vol. 16, no. 1, pp. 15-29, Feb. 2019.

M. Aloqaily, I. A. Ridhawi, H. B. Salameh, and Y. Jararweh, ‘“Data
and service management in densely crowded environments: Challenges,
opportunities, and recent developments,” IEEE Commun. Mag., vol. 57,
no. 7, pp. 81-87, Apr. 2019.

S. Otoum, B. Kantarci, and H. T. Mouftah, “Empowering reinforcement
learning on big sensed data for intrusion detection,” in Proc. IEEE Int.
Conf. Commun. (ICC), May 2019, pp. 1-7.

S. Otoum, B. Kantarci, and H. T. Mouftah, “On the feasibility of deep
learning in sensor network intrusion detection,” IEEE Netw. Lett., vol. 1,
no. 2, pp. 6871, Jun. 2019.

L. de Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems
(Lecture Notes in Computer Science), vol. 4963, C. R. Ramakrishnan
and J. Rehof, Eds. Springer, 2008, pp. 337-340. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-540-78800-3_24

F. Perin, L. Renggli, and J. Ressia, “Ranking software artifacts,” in Proc.
FAMOOSR, vol. 120, 2010, pp. 1-4.

158282

(35]

(36]

(37]

(38]

(391

(40]
(41]

[42]

(43]

(44]

(45]

T. H. Haveliwala, “Topic-sensitive PageRank: A context-sensitive ranking
algorithm for Web search,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 4,
pp. 784-796, Jul./Aug. 2003.

K. Jalbert, “Predicting mutation score using source code and test suite
metrics,” in Proc. Ist Int. Workshop Realizing Al Synergies Softw. Eng.
(RAISE), Jun. 2012, pp. 42-46.

1. T. Jolliffe and J. Cadima, “‘Principal component analysis: A review and
recent developments,” Philos. Trans. Roy. Soc. A, vol. 374, Apr. 2016,
Art. no. 20150202.

K. K. Bharti and P. K. Singh, ““Hybrid dimension reduction by integrating
feature selection with feature extraction method for text clustering,” Expert
Syst. Appl., vol. 42, no. 6, pp. 3105-3114, Apr. 2015.

J. Hernandez, J. A. C-. Ochoa, and J. F. M-. Trinidad, “An empirical study
of oversampling and undersampling for instance selection methods on
imbalance datasets,” in Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications (Lecture Notes in Computer Science)
vol. 8258. 2013, pp. 262-269.

M. Abadi et al., “Tensorflow: A system for large-scale machine learning,”
in Proc. OSDI, 2016, pp. 265-283.

A. Gulli and S. Pal, Deep Learning With Keras. Birmingham, U.K.: Packt,
2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

A. Tato and R. Nkambou, “Improving ADAM optimizer,” in Proc. ICLR,
2018, pp. 1-4.

G. Fraser, M. Staats, and P. McMinn, “Does automated white-box test
generation really help software testers?” in Proc. ISSTA, Jul. 2013,
pp. 291-301.

M. Adam and S. J. Miller, “Tests of hypotheses using statistics,” in
Mathematics Department, vol. 2912. Providence, RI, USA: Brown Univ.,
2006, pp. 1-32.

MUHAMMAD RASHID NAEEM received the
bachelor’s degree from International Islamic Uni-
versity, Pakistan, in 2012, and the master’s degree
from Chongqing University, China, in 2015, all in
software engineering. He is currently pursuing the
Ph.D. degree with Sichuan University, China. He
is also the author of various research articles pub-
lished in reputed journals and conferences from
Elsevier, Springer, Wiley, and the IEEE publish-
A ers. His current research interests include soft-

ware mutation testing, static analysis, and software testing using machine
intelligence.

TAO LIN received the master’s degree, in 2003,
and the Ph.D. degree from Japan, in 2007. He was a
Postdoctoral Researcher and a Guest Lecturer with
Waseda University, Japan. He joined the School
of Computer Science, Sichuan University, as a
Talented Person and established human—computer
interaction and the Digital Media Laboratory. So
far, he has published more than 30 research arti-
cles in reputed journals and conferences at home
and abroad. He has Hosted and Participated in a

Number of the Ministry of Education, Sichuan Science and Technology
Support, and the Japan Society for the Promotion of Science programs. He
is currently a full-time Professor with Sichuan University, China. His main
research interests include software testing, HCI, automatic usability testing,
game intelligence, and so on.

VOLUME 7, 2019

M. R. Naeem et al.: Scalable Mutation Testing Using Predictive Analysis of Deep Learning Model

IEEE Access

HAMAD NAEEM received the B.E. degree in
computer systems engineering from Bahauddin
Zakariya University, Pakistan, in 2012, the M.E.
degree in software engineering from Chongqing
University, Chongging, China, in 2016, and
the Ph.D. degree in software engineering from
Sichuan University, Sichuan, China, in 2019. He
is currently serving as an Associate Professor with
the Department of Computer Science, Neijiang
‘ Normal University, Neijiang, China. His research
work is published in various renowned journals of Elsevier, Springer, Wiley,
MDPI, and the IEEE. His research interests include cybersecurity, malware
analysis, code clone, and program analysis. He received the Outstanding
Master Student Award from Chongqing University, Chongqing, in 2016.

FARHAN ULLAH received the B.S. degree in
computer science from the University of Peshawar,
Pakistan, in 2008, and the M.S. degree in computer
science from CECOS University Peshawar, Pak-
istan, in 2012. He is currently pursuing the Ph.D.
degree in computer science from the School of
Computer Science, Sichuan University, Chengdu,
China. His research work is published in various
renowned journals of Springer, Elsevier, Wiley,
MDPI, and Hindawi. His research interests include
software similarity, information security, and data science. He received the
Research Productivity Award from the COMSATS Institute of Information
Technology (CIIT), Sahiwal, Pakistan, in 2016.

VOLUME 7, 2019

SAQIB SAEED received the B.Sc. degree (Hons.)
in computer science from the International Islamic
University Islamabad, Pakistan, in 2001, the M.Sc.
degree in software technology from the Stuttgart
University of Applied Sciences, Germany, in 2003,
and the Ph.D. degree in information systems from
the University of Siegen, Germany, in 2012. He is
currently an Assistant Professor with the Depart-
o ment of Computer Information Systems, Imam
[J Abdulrahman Bin Faisal University, Dammam,
Saudi Arabia. His research interests include human-centered computing,
computer-supported cooperative work, empirical software engineering, and
ICT4D. He is a member of the advisory boards of several international
journals and a Guest Editor of several special issues. He is a Certified
Software Quality Engineer from the American Society of Quality.

158283

