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ABSTRACT Existing diagnosis of the autism spectrum disorder (ASD) heavily depends on the informant’s
evaluation of the patient’s behavior, which is both time consuming and labor demanding. In order to develop
a rapid diagnostic tool with high accuracy, machine learning (ML) approaches have been proposed to explore
the feasibility of identifying ASD with a limited number of features extracted from behavioral evaluation,
neuroimaging and kinematic data. Though restricted and repetitive behavior (RRB) is one of the cardinal
symptoms of ASD, no study has been conducted to investigate whether restricted kinematic features (RKF)
could be used to identify ASD. The present study aimed to address this question. Twenty children with high
functioning autism and twenty-three children with typical development (TD) were recruited. They were
instructed to perform a motor task that required the execution of the utmost variant movement. Entropy and
95% range of the movement amplitude, velocity and acceleration were computed as indices of RKF. FiveML
classifiers were trained and tested including support vector machine (SVM), Linear Discriminant Analysis
(LDA), Decision tree (DT), Random forest (RF), and K nearest neighbor (KNN). Results showed that the
KNN algorithm (k = 1) yielded the highest classification accuracy with four kinematic features (accuracy:
88.37%, specificity: 91.3%, sensitivity: 85%, AUC: 0.8815). Our study demonstrated that RKF could help
robustly identify ASD. It is inferred that the application of ML on genetic, neuroimaging, psychological and
kinematic features might pose a considerable challenge to the current diagnostic criteria of ASD, and might
potentially lead to an automated and objective diagnosis of ASD.

INDEX TERMS Autism, entropy, kinematic feature, machine learning, restricted and repetitive behavior.

I. INTRODUCTION
The current diagnosis of the autism spectrum disorder (ASD)
heavily relies on the informant’s evaluation of the patient’s
behavioral presentation, which has been notoriously criti-
cized as labor-demanding [1]. For example, the Autism Diag-
nostic Observation Schedule (ADOS) is widely considered
as a gold-standard diagnostic instrument that requires signif-
icant clinical expertise. The length of the ADOS exam and
the shortage in trained clinicians significantly contribute to
the delayed diagnosis [2]. A study examining data from a
large metropolitan area in the US reported that more than
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a year on average was required between the initial evalua-
tion and the confirmation of the diagnosis [3]. The delayed
diagnosis directly postpones the delivery of intervention pro-
grams, which negatively impacts the child’s developmental
outcomes [4]. Therefore, a diagnostic tool that is both human
labor-saving and accurate is urgently called upon.

Given the advantage machine learning (ML) exhibits in
pattern recognition and in solving classification problems,
recent years have witnessed an increasing interest in applying
ML for the purpose of ASD diagnosis. Driven by the need
for rapid detection of ASD with high accuracy, a variety of
studies implemented ML to remove redundant items from
the diagnostic instruments such as ADOS and the Autism
Diagnostic Interview-Revised (ADI-R) [5]. Some of them
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reported promising results on discriminating cases of ASD
from non-ASD cases by using only a few items extracted from
the original instruments [5]–[7]. For instance, Wall et al. [7]
reported that a shortened screening tool with 8 items extracted
from ADOS was able to classify ASD with 100% accuracy.
The validity of this tool was tested with a larger sample and
the classification accuracy remained greater than 95% [6].
All these studies suggest that ML could be an efficient tool
to shorten the lengthy observation-based instruments while
preserving high diagnostic accuracy.

On the other hand, ML was also applied to classify
ASD by extracting features from neuroimaging [8], [9], eye
gaze [10], [11], and kinematic data [12]–[14]. Despite the
fact that the current diagnosis of ASD primarily depends
on the patient’s behavior, only a handful of studies have
been conducted to explore the feasibility of using kinematic
features to predict ASD. For example, a recent study adopted
a goal-directed movement to explore the possibility of dis-
criminating patients with ASD from individuals with typical
development (TD) by means of kinematic data [12]. Their
results showed that the ML model was able to discriminate
ASD with the highest accuracy of 96.7%. In another study,
it was found that kinematic features extracted from the imi-
tation movement could be used to robustly discriminate ASD
from TD [13].

Restricted and repetitive behavior (RRB) was originally
noted by Kanner [15] as a hallmark symptom in patients
with autism. Previous studies implementing factor analysis
showed that RRBs could be loosely classified into lower
level of stereotyped movements such as hand flapping and
repetitive use of objects [16], [17], and higher level of repet-
itive behaviors such as ritualistic behavior and restricted
interest [16]. It is noticeable that both low and high lev-
els of RRB are characterized by features of restrictedness,
rigidity, invariance and inappropriateness [18]. Recent find-
ings reporting a close relation between the frontal lobe
and RRB [19], [20], and between cognitive flexibility and
RRB [21], [22] suggested that RRB could be the result of
executive dysfunction [18], [21], [23]. Specifically, RRB
may be derived from the inability to shift from preferred
behaviors to new adaptive ones [21], [24]. Patients with ASD
might be ‘‘locked into’’ a specific thought or behavior [18].
Thus, when performing a behavioral task that requires variant
responses or flexibility, the restricted feature of being unable
to shift from one set to another might be manifested at the
behavioral level that could be captured by kinematic analysis,
and it would be feasible to identify ASD with the restricted
kinematic features (RKF).

In order to obtain the RKF, the present study employed a
motor task developed by Słowiński et al. [25], in which par-
ticipants were required to perform one dimensional, left-right
oscillatorymovement as complex (with variant amplitude and
frequency) as possible. Since the requirement of the motor
task was to perform the utmost variant movement and lack
of invariance is the hallmark symptom of ASD, we hypoth-
esized that the restricted feature of being unable to perform

variant movement would be manifested in the execution of
this specific motor task. As the objective of the present study,
we investigated the feasibility of predicting ASD with RKF
by implementing the ML approach.

Two contributions have been noted for the present study.
First, objective assessment of RRB in ASD patients has
always been a challenge for clinical practitioners. In the
present study, a novel approach was proposed to objectively
assess RRB in patients with ASD by adopting a motor task
that requires flexible motor behavior. Second, among all the
existing studies which applied the ML approach to predict
ASD, only a few utilized kinematic features [12]–[14], which
were extracted from the reach-to-drop movement [12], hand
imitation [13], and gesture patterns [14]. However, none of
these studies examined the kinematic parameters that are
related to RRB. Since RRB is recognized as one of the two
indispensable symptoms of ASD [26], all patients with ASD
should exhibit RRB to some extent. Our research expanded
the state-of-the-art findings by illustrating that kinematic
features derived from RRB could also be used to robustly
identify ASD.

The remainder of this paper is organized as follows:
Section II introduces the experimental design, the calculation
of kinematic features and the ML procedure. Results on the
comparison between ASD and TD with respect to RKF and
on the performance of different classifiers are illustrated in
Section III. The significance of applying ML in ASD iden-
tification is discussed in Section IV, and the limitations as
well as the inspiration of the present study are described in
Section V.

II. METHODS
Section II introduces the methodology of the present study.
Specifically, it presents information on participants, motor
task, kinematic data analysis, and the ML procedure.

A. PARTICIPANTS
Twenty children with high functioning autism and twenty-
three age-matched TD children participated in the study.
Children with ASD were recruited from the Department of
Child Psychiatry at Shenzhen Kangning Hospital, China, and
only children with high functioning autism were included to
ensure the patient’s compliance with the experimental proto-
col. The inclusion criteria were: a) between 6 and 13 years
old; b) confirmed diagnosis of high functioning autism
by a licensed psychiatrist with the DSM-IV criteria [27];
c) average non-verbal intellectual ability (the Raven’s
Advanced Progressive Matrices [28] was administered to
evaluate the IQ level); d) absence of other clinical conditions
such as ADHD, mental retardation, or schizophrenia. The TD
participants reported no physical or mental disorders. Written
informed consent was signed by the participant’s caregivers.
The study conformed to the principles of the Declaration of
Helsinki, and followed the ethical guidelines of Shenzhen
University. Subject’s demographic information is presented
in Table 1.
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TABLE 1. Comparison between ASD and TD on the demographics and the kinematic complexity.

B. EXPERIMENTAL APPARATUS
We used a computer (Lenovo Legion R720-15IKBN),
a LeapMotion device (Leap Motion Inc.), two sticks and a
string as the experimental apparatus (Fig. 1). The LeapMotion
was utilized to register the participants’ hand movement. The
string was tied between two sticks for the participants to
perform hand movements above it. The distance between the
two sticks was 60cm. A solid mat was provided to the needed
participants to make sure that the dominant hand could move
naturally and comfortably above the string.

C. MOTOR TASK
Participants were encouraged to perform one dimensional
movement as complex as possible. In order to ensure that all
participants understood the requirement correctly, the experi-
menter behaviorally demonstrated that simple movement was
periodic oscillations with mono amplitude and frequency,
and complex movement referred to unpredictable oscillations

with variant amplitude and frequency. Participants had prac-
tice trials before they fully understood the requirement of
the experiment. To avoid falsely registering the movement
of the subdominant hand, participants were required to keep
their subdominant hand behind the back. All participants
performed three trials of movement, each of which lasted
60 seconds. Participants were not allowed to withdraw the
dominant hand out of the recording zone or to put the sub-
dominant hand in it. The trial would be reinitiated if any
experimental rule was violated (e.g., hand withdraws from
the recording zone, stop hand moving voluntarily). The end
of a trial was followed by a break of 2 - 5 minutes to avoid
fatigue.

D. DATA ANALYSIS
We obtained the time series of the palm position as the
raw data, which was interpolated with the piecewise cubic
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FIGURE 1. Schematic illustration of the experimental setup.

FIGURE 2. Exemplary time series of position (top panel), velocity (middle
panel) and acceleration (bottom panel).

Hermite interpolating polynomial method and filtered with a
second-order low-pass Butterworth filter (5 Hz cut-off). The
first and the last 3 seconds of the position time series were cut
from data analysis. Since participants performed oscillatory
movements in each trial, we calculated the amplitude of each
single oscillation from the processed position time series.
The amplitude was computed as the distance between two
endpoints (where velocity equaled 0). Thus, a set of amplitude
values was obtained by including the amplitude values of all
oscillations. In terms of the velocity and acceleration time
series, they were calculated as the first and second order dif-
ferentials of the position time series respectively. Exemplary
time series of position, velocity and acceleration are plotted
in Fig. 2.

We calculated the Shannon entropy (abbreviated as entropy
in the following text) and the central 95% range (abbrevi-
ated as range in the following text) as indices of the kine-
matic complexity (the antonym of restricted kinematics).
To compute these two variables, we first deleted the noise
for amplitude, velocity and acceleration by setting thresholds.

FIGURE 3. Illustration of the velocity distribution and the 95% range. The
blue area represents the central 95% area of the velocity distribution.

Specifically, the threshold for amplitude was set as 0 – 60 cm,
velocity −3 and 3 m/s, and acceleration −130 and 130 m/s2.
These threshold values were selected empirically based on
the limits of the movement (e.g., amplitude would not exceed
60cm since the maximum distance of the moving area was
60cm). Values out of these thresholds were deleted from
further analysis. As a further step, we used a normalized
histogram with 101 equally distant bins [25] to compute the
probability of each bin (Fig. 3). The Shannon entropy was
calculated as:

Entropy = −
∑n

i=1
p (xi) ∗ log2p(xi) (1)

In equation (1), n was assigned to 101, and p(xi) denoted
the probability of the ith bin.
To calculate range, we first obtained the minimal and the

maximal value that defined the central 95% area (Fig. 3).
The range was computed as the distance between these two
values:

Range = Maximum−Minimum (2)

Entropy and range captured the restricted kinematics
owing to the following reasons. Entropy quantifies the level
of variance or complexity of a system. The higher the entropy
value, the more variant (less restricted) the system. The range
was computed as the width of the distribution of the central
95% area, thus reflecting the variability of the kinematic
feature. For example, when performing rhythmic oscillations
with mono-amplitude, the 95% range of the amplitude dis-
tribution would be much narrower than the execution of
complex oscillations with variant amplitude.

To be noted was that each participant’s movement was
recorded three times. After obtaining the entropy and range
for the movement amplitude, velocity and acceleration,
we computed the minimal, median and maximal values
of these features across the three recorded trials. Finally,
18 kinematic features were obtained altogether (Table 1).
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E. MACHINE LEARNING PROCEDURE
1) DESCRIPTION OF DATASET
The participant sample consisted of 20 ASD and 23 TD
participants. A total number of 18 kinematic features were
computed for all participants. The original dataset used for the
ML procedure was a 43 (participants) ∗ 18 (features) matrix.
The dataset is not made publicly available.

2) CLASSIFIERS
Five commonly used ML classifiers were applied to
perform the prediction task: support vector machine (SVM),
Linear Discriminant Analysis (LDA), Decision tree (DT),
Random forest (RF), and K nearest neighbor (KNN) to
examinewhich classifier would achieve the best classification
result.

SVM is a supervised learning model that outputs an opti-
mal hyperplane in the n-dimensional space with a set of
labelled training examples. Testing samples are assigned to
one of the labeled categories based on the sign of the dis-
tance vector to the hyperplane. A positive correlation exists
between its distance to the hyperplane and the probability it
belongs to a certain category.

LDAworks as a dimensionality reduction technique which
builds a linear combination of features as a model to classify
two or more classes of objects. In the case of binary clas-
sification (ASD and TD), LDA projects all the data points
scattered in the high-dimensional space onto one dimension -
a straight line, making it straightforward to obtain a threshold
to differentiate the two groups.

DT classifier trains a tree-like model to predict which
category a testing sample belongs to. The decision tree
extends its nodes by maximizing the information gain on
every step it takes. Despite its strong interpretability, a single
tree is prone to overfitting.

In order to address the overfitting problem of the decision
tree algorithm, RF created a series of simple trees trained
with a dataset of random features on a random portion of
observations. A test sample will be classified by the majority
of votes from these trees.

KNN classifier uses the training set as a model and
requires no explicit training phase. A testing sample is
classified by the plurality vote of its k nearest neighbors.
An odd k values needs to be chosen for a binary classifi-
cation problem, and the present study tested the conditions
when k = 1, 3, 5, 7.

3) FEATURE SELECTION
The procedure of feature selection involved two steps. In the
first step, we selected discriminative features out of the total
18 features and fed these features into the classifiers in
order to minimize the number of features for computation
efficiency. In consistency with Frazier et al.’s work [29],
independent t-tests were performed to evaluate the dis-
criminative capacity of each feature. Discriminative features
were defined as p-values lower than 0.1 (at least marginally

significant [30]). Features with p-values greater than 0.1 were
considered as less discriminant features that were lack of
the power to discriminate the two groups of participants,
and they were discarded from further ML process. Only
features with p-values lower than 0.1 were preserved for the
ML process.

In the second step, the forward feature selection (FFS) [31]
was used to train the ML models. Specifically, it began with
the evaluation of each individual discriminative feature to
perform the classification task. The one-feature model with
the highest prediction accuracy was obtained by incorporat-
ing the feature that yielded the optimal classification per-
formance. Afterwards, all possible combinations of the first
selected feature and one of the rest features were evaluated.
The combination that fulfilled the optimal classification per-
formance was obtained as the two-feature model with the
highest prediction accuracy. By following the same proce-
dure, subsequent iterations involved retaining the feature that
produced the highest classification accuracy together with
the previously selected features. The iteration stopped when
the model incorporating all the discriminative features was
evaluated.

4) CLASSIFICATION
By implementing FFS, selected features were fed into the
five classifiers to evaluate the accuracy, sensitivity, and speci-
ficity. Accuracy was calculated as the percentage of the
correctly categorized samples in both groups. Specificity
represented the model’s ability to correctly detect the TD
samples, and sensitivity the ASD samples. Leave-one-out
cross-validation (LOOCV) was used in all the five classifiers.
Specifically, LOOCV involved using one participant sample
as a test set and the remaining participant samples as the
training set. The same procedure was repeated until each
sample was used once as the test set. ML was performed with
Matlab (R 2017b), and the whole ML process is illustrated
in Fig. 4.

III. RESULTS
Section III exhibits the results on the comparison between
ASD and TD with respect to the RKF, and on the classifi-
cation performance of the ML classifiers.

A. COMPARISON BETWEEN ASD AND TD
Comparisons between ASD and TD with respect to
the demographic information and the kinematic features
were listed in Table 1. Results showed that ASD chil-
dren were either significantly (p <.05) or marginally
(.05 < p <.1) different from the TD group on 9 kine-
matic features: Vel_Entropy_Mdn, Accel_Entropy_Mdn,
Vel_Entropy_Max, Amp_Entropy_Min, Vel_Entropy_Min,
Accel_Entropy_Min, Amp_Range_Mdn, Amp_Range_Max,
and Vel_Range_Min. These 9 features were considered as
discriminative features, and were further fed into the clas-
sifiers with the FFS procedure. All statistical analysis was
conducted with the aid of SPSS (version 17.0).
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FIGURE 4. Illustration of the ML procedure.

B. ML CLASSIFICATION PERFORMANCE
The classification performance of the five classifiers is plot-
ted in Fig. 5. It shows that the model with the highest
classification accuracy (88.37%) was achieved by the KNN
classifier (k = 1) with four features: maximal amplitude
range, minimal velocity range, median velocity entropy, and
minimal velocity entropy. The sensitivity and specificity of
the model were 91.3% and 85% respectively, and the area
under curve (AUC) was 0.8815. Table 2 summarizes the
confusion matrix of the KNN classifier.

The highest prediction accuracy, specificity, sensitivity,
and the AUC of all ML classifiers, together with the number
of features in the best model were listed in Table 3. Our results
showed that all ML models except one (the DT classifier)
yielded the highest accuracy over 75% with no more than
5 features.

IV. DISCUSSION
Only a handful of studies have so far implemented ML
to identify ASD with kinematic features [12]–[14]. As a
major innovation, the present study investigated the feasibil-
ity of predicting ASD by using kinematic features derived
from RRB, which is one of the two indispensable symp-
toms of ASD. The high classification accuracy of our

FIGURE 5. Variation of the classification accuracy of the classifiers with
the number of features. The Figure shows that KNN classifier
outperformed the other four classifiers with 4 features when k = 1.

TABLE 2. Confusion matrix of the KNN classifiers (k = 1).

study demonstrated that ML is an efficient approach to
discriminating ASD from TD by utilizing RKF.

By implementing a motor task that required the execution
of the utmost variant movement, the present study calculated
the entropy and 95% range of the movement amplitude,
velocity and acceleration as the indices of kinematic com-
plexity. Our results showed that the KNN algorithm (k = 1)
outperformed the other four classifiers to yield the most
accurate classification performance (88.37%, sensitivity 85%
and specificity 91.3%, AUC 0.8815) with four features: the
maximal amplitude range, minimal velocity range, median
velocity entropy, and minimal velocity entropy. To be noticed
was that one of these four features was related to amplitude
range, and the other three features pertained to velocity. The
group comparison (Table 1) showed that the ASD children
had significantly greater maximal amplitude range than the
TD participants, indicating that patients with ASD tended
to perform oscillations with greater amplitude. This result
was consistent with previous studies which found that macro-
graphia was higher prevalent in patients with ASD [32],
indicating deficits in fine motor control [33].
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TABLE 3. The classification performance of different classifiers.

Surprisingly, three features in the KNN algorithm (k = 1)
were related to the velocity entropy or range. Since entropy
and range were derived from the velocity distribution, it was
indicated that information residing in the velocity distribution
could be used to identify patients with ASD. The finding
echoed the study of Słowiński et al. [25], which illustrated
that the pattern of velocity distribution characterized the sub-
tle difference in motor activities between individuals. In addi-
tion, the ML model of Crippa et al.’s study [12] also included
velocity related features in the classifier that achieved the
highest accuracy by showing that children with ASD dis-
played slower and fragmented movements. All these results
evidenced that kinematic features in the velocity profile could
be leveraged to identify ASD. Specifically, our study showed
that the restrictedness in the velocity profile was a robust
feature that could be used to classify ASD from TD.

The application of ML might pose a great challenge to
the current diagnostic criteria of ASD. Two indispensable
cardinal symptoms are required to confirm the diagnosis of
ASD according to the DSM-V criteria: social communica-
tion impairment and RRB [26]. Indeed, features extracted
from the social gaze behavior (a prominent social deficit in
ASD) were found able to discriminate children with ASD
from the non-ASD individuals [10], [11]. However, both
the neuroimaging studies [8] and Crippa et al.’s study [12]
showed that features not related to either social deficits or
RRB could also be successfully utilized to identify ASD.
In the era of ‘‘big data’’, a question was raised as to whether
a new diagnostic method could be established by integrating
genetic, neurological, psychological and kinematic features.
We reckon that integrating features from all these respects
might considerably challenge the current diagnostic criteria
of ASD. However, another question arises regarding how to
create an effective algorithm by selecting relevant features out
of a huge number of features at disposal. The high classifi-
cation accuracy obtained in the present study suggests that
our feature selection approach might be widely applied in

the autism prediction. Specifically, when dealing with a great
deal of attributes, we propose that discriminative features
could be screened out as the first step by implementing statis-
tical analysis. Afterwards, FFS could be applied to determine
the optimal combination of discriminative features for model
training.

V. LIMITATIONS AND FUTURE WORK
The present study only recruited children with high function-
ing autism to ensure that they could be able to perform the
motor task. Whether low functioning patients are also capa-
ble of performing the motor task remains an open question.
Obviously, this motor task would not work for children less
than 2 years old, which suggests that this motor task would
not function for the early screening of ASD.

Alternatively, recent studies showed that motion capture
techniques could help quantify RRB in ASD. A couple of
recent scientific attempts were made to automatically detect
repeated behaviors with the aid of motion capture techniques
[34], [35]. In general, these studies utilized accelerometers
[35], [36] or Microsoft sensor Kinect [37] for motion capture
purposes as the first step. Afterwards, motion pattern recogni-
tion algorithms were developed to detect repetitive behavior
out of a series of other patterns of movement [38], [39]. For
instance, Goodwin et al. [35] attached accelerometers to the
body of 6 ASD patients to record movement data, and then
a ML classifier was developed to identify repetitive behav-
iors such hand flapping or body rocking. These researchers
demonstrated that their algorithm could accurately detect
repetitive behaviors (accuracy = 88.6%). Indeed, motion
capture offers a promising method in quantifying RRB, par-
ticularly in early screening since it enables data collection in
natural settings without demanding participants to execute
a specific movement. However, this technique might only
be used in detecting low level of repetitive motor activities,
but not higher level of RRB such as circumscribed interest.
Therefore, how to quantify the higher level of RRB remains
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a challenge for motion capture techniques. Based on the idea
that both low and high levels of RRB share the same feature
of restrictedness, we reckoned that the higher level of RRB
could be assessed in a situation demanding variant behavioral
response.

VI. CONCLUSION
By using ML, findings from the present study showed that
the RKF could be used to efficiently classify ASD from
TD. Given the fact that most studies utilized ML to dif-
ferentiate ASD from TD, future investigation could also be
dedicated to the classification of ASD from other groups of
individuals, such as between ASD and ADHD [40], [41].
In addition, ML could also be implemented in other aspects
such as engagement evaluation [42]. With the increasing
accumulation of data from genetic, neurological, psycholog-
ical and kinematic fields, ML will be a promising tool that
will eventually lead to the objective and automated diagnosis
of ASD.
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