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ABSTRACT There is a prominent contradiction between the existing resolution requirements of marine
monitoring data (MMD) and the cost of sensor network deployment. This article proposes an MMD
acquisition and reconstruction scheme based on compressed sensing theory (CS-MMD). Firstly, the sparse
characteristics of the measured MMD are analyzed and modeled as a multi-measurement vector (MMV)
compressed sensing reconstruction problem. Furthermore, the operating state of the sensor is adjusted by a
random sparse polynomial distribution matrix. The sensors corresponding to the non-zero elements in the
matrix work with a probability of p (small value), and the rest of the sensors sleep. In the reconstruction,
the energy prior of the data is fully used to obtain the support set, and the MMV is randomly reduced to
the SVM to simplify the support set reconstruction process. The theoretical analysis gives the conditions for
accurate reconstruction. The simulation results show that CS-MMD can save a lot of acquisition resources
and accurately reconstruct data, and the accuracy rate reaches 99% under the premise of saving up to 99%
of sampling resources.

INDEX TERMS Compressed sensing, sparse data recovery, multiple measurement vector, orthogonal
matching pursuit, marine monitoring data.

I. INTRODUCTION
The ocean is an important base for human survival, repro-
duction and socially sustainable development. With the sub-
stantial increase in the economic, military, and technological
strengths of the world and the growing demand for resources,
mankind has begun to shift its line of sight from land to a
wider ocean. In recent years, countries have paid more and
more attention to maritime rights, and the enthusiasm for
the development and utilization of the ocean is emerging
globally. In this context, the issue of marine environmental
monitoring has begun to receive more and more attention.
In order to make up for the shortcomings of large-scale
monitoring methods such as satellite remote sensing and
radar, the use of sensor networks to acquire various marine
environmental factors [1]–[4] (such as temperature, salinity,
current, etc.) has become a new research hotspot in the field
of marine information.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ligang He.

A large number of marine sensor nodes in the sensor
network [5] are deployed to designated sea areas, collect
various environmental elements in the network distribution
area, and then transmit the collected data to the monitor-
ing center through various communication means. Due to
the vast ocean area, complex underwater level, and varied
environment, marine sensor networks have higher require-
ments in terms of coverage area breadth and depth compared
to traditional terrestrial wireless sensor networks. However,
high-resolution monitoring of large-scale sea areas through
the intensive and regular deployment of a large number of
marine sensor nodes is difficult to achieve. On the one hand,
the network construction costs are so many due to the large
number of nodes. On the other hand, how to efficiently
transmit and process data collected by these sensor nodes is
also limited by constraints such as node energy consumption
and network bandwidth. In practical applications, from the
perspective of system implementation complexity, network
energy consumption, bandwidth overhead, and economic
cost, it is often necessary to use as few nodes as possible
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to achieve information collection in a specified area. In the
traditional sensor network information acquisition method,
there is an intractable contradiction between the number of
nodes required to monitor the specified area and the spatial
resolution, which becomes a bottleneck restricting the devel-
opment of the marine sensor network.

Recently, the theory of compressed sensing (CS) provides
a new idea for data acquisition in sensor networks. CS the-
ory points out that people can directly collect the really
useful sparse information in redundant data without having
to go through the process of high-speed sampling (Nyquist
sampling) and then mass dropping (compression). After all,
we have witnessed the widespread success of lossy compres-
sion formats for sound, imagery, etc. Now we know that most
of the data we get is ‘‘can be discarded’’ and almost no loss.
In other words, we can get sparse and useful information in
the data at a much lower sampling rate than the traditional
mode.

In order to accurately reconstruct the data, the sparsity
of the original data is a necessary condition for compressed
sensing, and the sparsity of the data directly determines the
number of samples required. However, most of the existing
literature directly assumes or acts as an axiom that ‘‘most
natural phenomena are sparse or compressible’’ [6], but the
sparseness of MMD is rarely analyzed. In addition, existing
compression sensing schemes often assume that the sparse-
ness of the data is known and fixed. Unfortunately, due to the
dynamic nature of the environment, this assumption may not
be true for real environmental data.

This paper first analyzes the real marine monitoring data
(MMD), revealing the hidden sparse nature of the data. Fully
using the sparsity, data acquisition and reconstruction scheme
based on compressed sensing theory is proposed, named
CS-MMD. The sensor can be intermittently operated without
changing the existing sensor network layout, thereby reduc-
ing the sampling rate to 1%∼1� of the traditional mode
and reconstructing useful information by using an optimiza-
tion algorithm. Due to intermittent sampling, our CS-MMD
solution greatly reduces the amount of communication and
computational costs. Our contributions are summarized as
follows:
• We analyzed many real MMD. The results show that the
data have the characteristics of sparsity, time stability
and sparsity stability.

• Using the data sparsity stability, a time-space three-
dimensional compressed sensing scheme is proposed
and modeled as an MMV problem. According to the
random sparse matrix control sensor operation or dor-
mancy, the spatiotemporal sampling scale is adjusted by
controlling the probability of non-zero value, and the
accuracy rate reaches 99% under the premise of saving
99% sampling resources.

• In order to meet the requirements of systems with lim-
ited traffic, computing power and power consumption,
we make full use of the sparse support set prior to
the data and propose a minimally simple reconstruction

algorithm to greatly reduce the consumption of the entire
system.

• Through the simulation of actual data acquisition and
reconstruction, it is proved that our CS-MMD scheme
can accurately acquire data at a very low cost. Compared
with similar algorithms, the time complexity is the low-
est while ensuring the reconstruction accuracy.

II. RELATED WORK
Compressed Sensing focuses on how to accurately recover
signals with sparse structures in the case of severe under-
sampling. The solution is based on a probabilistic model,
usually with a series of optimization algorithms to achieve
signal recovery. In recent years, CS has become one of
the research hotspots in the field of signal processing and
has achieved success in different application directions.
In CS theory, the Multiple Measurement Vector (MMV)
problem is to identify multiple columns of unknown sig-
nals with the same sparse support, which has attracted the
attention of many scholars. Therefore, in supraharmonics
measurement [7], typhoon derivation [8], communication
signal processing [9], [10], image processing [11], matrix
completion [5], angle of arrival estimation and biometrics,
many scholars have found and constructed MMVmodel with
shared support set, and achieved better sparse reconstruction
effects and anti-noise performances than single measurement
vector (SMV) model. Before the establishment of the MMV
model, the idea of solving this kind of problem is to convert
the data into one or more SMV problems, and then use the
corresponding sparse reconstruction algorithm to perform
single vector reconstruction and then combine to get the final
solution. Although this processing mode can also obtain good
reconstruction results, since each SMV needs to perform one
reconstruction, a large number of redundant calculations will
be generated, which increases the unnecessary computational
burden. In order to solve the problem of high computational
complexity in solving MMV, Cotter et al. [12] first proposed
the sparse reconstruction idea based on MMV and applied it
to magnetoencephalography imaging processing.

In recent years, many MMV data recovery algo-
rithms have been proposed. These include a variety
of minimization optimization algorithms [13] (`2,1 min-
imization [14], M-FOCUSS [12], etc.), greedy algo-
rithms [15], [16] (SA-MUSIC [17], CS-MUSIC [18],
SOMP [19] and M-OMP [7], [12], [20], etc.) and Bayesian
algorithms (such as MSBL and T-MSBL [21]). However, the
performance of many algorithms depends on the measure-
ment matrix [22], [23], data dimension and sparsity, statistical
distribution of non-zero elements of the signal, measurement
noise power and other parameters [24]. But, when the actual
data are collected, these parameters are often unknown and
time varying. If there is no prior knowledge of these parame-
ters, the performance of the algorithm will be greatly limited.
In addition, some algorithms are not optimized for power
consumption and traffic limited systems, and the complexity
is large, which is difficult to apply to actual data acquisition.
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FIGURE 1. Schematic diagram of MMV observation of MMD.

III. SPATIO-TEMPORAL SAMPLING MODEL
A. MMV MODEL
The MMV problem solves the joint reconstruction problem
of multiple sparse signals with the same support set. Let the
sparse signals of the n shared support sets form the signal
set X =

[
x:,1, x:,2, · · · , x:,n

]
∈ RN×n and the sensing

matrix A ∈ RM×N . Multiple observation vectors Y =[
y:,1, y:,2, · · · , y:,n

]
∈ RM×n can be expressed as

Y = AX (1)

where x:,i and y:,i represent the i th (i = 1, 2, . . . , n) column
of X and Y, respectively, N andM represent the dimension of
each signal x:,i and the dimension of each observation vector
y:,i, respectively.

AnyMMV problem can be converted to a standard form of
MMV problem by singular value decomposition and dimen-
sionality reduction operations [18].

min
X
‖X‖0 , s.t. Y = AX (2)

where, ‖X‖0 = |supp X| = k , supp X=
{
1≤ i≤n : xi,: 6=0

}
,

xi,: is the ith row of X.

B. MARINE MONITORING DATA OBSERVATION MODEL
Large-scale buoys at sea, such as the Tropical Atmosphere
Ocean project (TAO) and the Argo plan, can collect temper-
ature, pressure, humidity and other data all day. In the nat-
ural environment, these data are continuous, slowly varying
three-dimensional variables, i.e. sparse (further analysis in
Section 4). A novel oceanmonitoring data acquisition scheme
is proposed, which uses compressed sensing technology for
efficient acquisition. Our goal is to effectively schedule the
data collection process to significantly reduce the required
sensing resources while maintaining acquisition quality.

Fig. 1(a) shows the distribution of a certain data over a
period of time. AmatrixDN×n is defined to represent real data

within a time measurement window T . In current data acqui-
sition systems, the data sampling interval should at least sat-
isfy Shannon’s sampling law. In the data matrix, the columns
correspond to the sensed locations and the rows correspond
to the moments. Each entry represents monitoring data for
a particular location and time. For n sensors randomly dis-
tributed in a given area, it is no longer that each sensor collects
data periodically and reports it to the receiver. At each time,
only some sensors perform sensing and reporting functions
according to the requirements of the measurement matrix
8M×N (8M×N ·DN×n). The elements in8M×N are bounded,
independently and identically distributed and the mean zero.
Let the column of themeasurementmatrix have a unit norm in
the expectation sense. Let φij (i ∈ [1,M ] , j ∈ [1,N ]) be the
(i, j) element of 8, then the distribution of each element is

φij
i.i.d
∼


1/
√
Mp with prob.p/2

0 w.p.1− p
−1/
√
Mp w.p.p/2

, p ∈ (0, 1) (3)

The probability of a non-zero element is p, expressed by a
black block, that is, a data collection point. The probability
of 0 is 1 − p represented by a white block, that is, a non-
acquisition point, as shown in Fig. 1 (b). From a spatial point
of view, only part of the data are collected at a certain time.
From the time point of view, the data collection at a certain
position in the space is not continuous, and only the time cor-
responding to the black block is collected. If the buoy system
is taken as an example, only the buoy corresponding to the
black block works and the remaining buoys are in a dormant
state. Finally, aM × n dimensional observation matrix YM×n
is obtained, where M is the number of observations. Thus,
the sampling rate is actually determined byM and p, and the
ratio of the method in this paper to the number of samples in
the traditional method is actually r = Mp.
At this point, the observation of YM×n = 8M×N · DN×n

seems to dissatisfy the MMV definition of the (1). Con-
sidering the data sparsity that will be further analyzed in
Section IV, the data matrix DN×n is sparse under some trans-
formation, the base is 9N×N and D = 9X is satisfied.
Where each column ofX is equivalent to the sparse coefficient
of the column corresponding to the original data, then the
observation equation is

Y = 8 · D = 8 ·9X = AX (4)

Let A be the new sensing matrix, then (4) is consistent
with (1).

Before the Minimalist reconstruction (MR) algorithm is
proposed in Section V, we will first analyze a set of measured
MMD to better illustrate the sparse characteristics of the data.

IV. MEASURED DATA ANALYSIS
The simulation experiment of CS-MMD high-efficiency
acquisition was carried out using the measured data of the
Tropical Atmosphere Ocean (TAO) project.

The measured data parameters used are as follows:
Time range: April 01, 2011 - May 01, 2011

VOLUME 7, 2019 159799



W. Tian et al.: Efficient Acquisition Method for MMD Based on CS

FIGURE 2. Percentage of energy captured by the top K term sparse
coefficients.

Time resolution: 10 mins
Spatial range: 165◦E ∼ 95◦W; 8◦S ∼ 8◦N
Spatial resolution: Irregular (refer to the data website)
TAO / TRITON and PIRATA buoys measure more than

20 kinds of meteorological parameters on the ocean and sea
surface. This article is limited to the length of only a few typi-
cal data analysis, such as Air temperature (AirT) measured at
3 meters above the sea surface, Relative Humidity (Rhum)
measured at 3 meters above the sea surface, Sea surface
temperature (SST) measured at 1 meter below the sea surface,
the speed of winds (WS) at 4 meters above the sea surface.

A. SPARSITY
Few documents specifically analyze MMD sparsity and dis-
cuss under what transform domain they are sparsest. There-
fore, three kinds of sparse analysis methods, such as discrete
cosine transform (DCT), fast Fourier transform (FFT) and
wavelet decomposition (DWT), which are commonly used
in signal processing, are introduced to analyze the mea-
sured data. Among DWT, five different bases were selected,
including Haar, Daubechies-2 (db2), Coiflet-1 (Coif1), Fejér-
Korovkin-4 (FK4), and Symlet-4 (Sym4).

The measured data are decomposed on the above sparse
basis, and the percentage of energy captured by the top K
term sparse coefficients is analyzed. The average results of
all sensors are shown in Fig. 2. The abscissa is K , and the
ordinate is the percentage of energy captured by the previous
K coefficients with the largest amplitude. Note that the raw
data time resolution is 10 mins, then each sensor will produce
4464 sample points over the time range of interest. From
the overall view of Fig. 2, the top 10 coefficients of the
four marine data capture more than 90% of the energy. For
AirT, Rhum and SST, the energy captured by the top 10
coefficients even reached more than 99%. This shows that the
decomposition coefficients are sparse or compressible, i.e.
most energy (>90%) or useful information is concentrated

FIGURE 3. Time stability of MMD.

on a very small number (<2.2�) of coefficients. The spar-
sity of wavelet decomposition coefficients is generally better
than DCT and FFT. For example, under Haar decomposition,
the first two coefficients (0.448�) can capture more than
92% of the data energy, and even capture more than 99.9%
for AirT, Rhum and SST. They carry most of the useful
information. These results show that the data matrix has good
sparsity or compressibility in the studied scene, which lays
the foundation for subsequently compressed sensing.

B. TIME STABILITY
MMD typically change over time continually. This section
studies the instantaneous stability of MMD by calculating
the relative difference between adjacent time data at each
location, as defined by (5)

1(i, t) =
1
n

n∑
j=1

∣∣di,j − di−t,j∣∣
max
i,j

∣∣di,j∣∣ (5)

Among them, di,j is the element of the ith row and the jth col-
umn inD, that is, the value acquired by the jth sensor at time i.
The numerator

∣∣di,j − di−t,j∣∣ is the data difference between t
sampling intervals. Here, t can be taken 1, 6, 24, 144, that is,
the difference of data at 10 minutes, 1 hour, 4 hours and 1 day
is compared. All sensors are averaged and the cumulative
distribution is statistically as shown in Fig. 3.

It can be seen from Fig. 3 that the relative change of the
MMD over time is less than 10%, especially when the time
interval is short (such as 10 minutes), the probability that the
SST relative change is less than 10−3 is greater than 98%.
The wind speed varies greatly with respect to the other three
quantities, but the probability of a change of less than 3% in
10 minutes is greater than 90%. This shows the time stability
of real data and partly explains why the MMD are sparse or
compressible.
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FIGURE 4. Sparse stability of MMD.

C. SPARSE STABILITY
It is known from the above analysis that MMD are sparse.
Definition 1 (Energy Sparsity): If the largest pre-K term

coefficients of the sparseness coefficients x:,i occupies more
than q% of the total energy, the q%-energy sparsity of x:,i
is K .

The energy sparsity of the data is actually different from the
signal sparsity in the previous literature. For general signals,
the sparsity is often unknown and time-varying, while the
energy sparsity can be estimated based on the signal model.
For example, Candes and Tao [25] model the sparse coeffi-
cients of data as exponential decay, satisfying

|x|(n) ≤ R · n−1/s, R, s > 0 (6)

where |x|(n) represents the nth of the sparse coefficients x:,i
amplitude arranged from largest to smallest. Thus, once our
sparse basis is selected, the K value can be estimated based
on the definition of energy sparsity.

Taking 24 hours as the width of the time window, sliding
the window in steps of 100 minutes, analyzing the daily
energy sparsity of the MMD, and synthetically investigat-
ing the sparsity stability. It is known from the previous
chapters that the sparsity of AirT, Rhum, and SST is bet-
ter than wind speed (coefficient energy is more concen-
trated), so the 99.9% energy sparsity is investigated, and
q is taken as 99 for the wind speed. The result is shown
in Fig. 4.

As can be seen from Fig. 4, the energy sparsity of the
data may change with time and is affected by factors such
as the environment and weather. In general, the sparsity
stability of wavelet decomposition coefficients is better than
DCT and FFT. The sparsity change of adjacent days does
not exceed 4, and the sparsity of the whole analysis range
does not exceed 10, but it can capture more than 99% of the
data.

FIGURE 5. Spatial similarity of MMD.

D. SPATIAL SIMILARITY
The previous sections have analyzed the sparseness and time
stability of the MMD. This section analyzes the sparse mode
between different sensors. Still based on several commonly
used transformations described in Section IV.A, transform
the data into sparse coefficients. The average and normalized
sparse matrix X is plotted as shown in Fig. 5. Arranged
according to different transformations, different columns in
each block correspond to different sensing positions, and
rows correspond to sparse coefficients.

As shown in Fig. 5, most of the coefficients are close to
or equal to 0, and only a few top coefficients occupy most of
the energy, which again reflects the sparsity of the data. More
importantly, although the sensors are far apart (the latitude
and longitude differ by a few degrees or even tens of degrees),
the support set for each sensor is very similar, that is, the data
have a spatial similarity. This is also determined by the nature
of the sparse transform. For example, the energy of the DCT
transform is concentrated in the low frequency part. The scale
coefficients after the wavelet transform occupy most of the
energy, which constitutes the priori about the support set.

Therefore, the problem of acquisition and reconstruction of
MMD can be summarized as a joint reconstruction problem
of multiple sparse signals with the same support set, just as
described in Section III.A, satisfying the MMV model.

V. RECONSTRUCTION ALGORITHM AND ITS
PERFORMANCE ANALYSIS
A. MINIMALIST RECONSTRUCTION ALGORITHM
Specific steps are described in Algorithm 1

In Algorithm 1, the sparse basis 9 is selected according
to Section IV.C, and the initial support set is preset to be
the first K coefficients. As in the wavelet transform, these
coefficients correspond to the scale coefficients occupying
the main energy. The data are reconstructed using the a priori
support set and the residual Rl is updated.
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Algorithm 1 Minimalist Reconstruction (MR)

Input Multiple observation vectors Y,
Measurement matrix 8

Output t frame reconstruction data matrix D̂

Step 1 Initialization X̂
0
= 0, generate 9 and

estimate K , A = 8 ·9,
l = 0, T 0

= {1 : K };

Step 2 Apriori
Support Set
Reconstruc-

tion

X̂
l
= A†

T 0Y, R
l
= Y− AX̂

l
;

Step 3 SMV Support
Set Recon-
struction

l = l + 1,
i = randperm (n, 1),
T l = T l−1∪ Sup-OMP

(A,Rl
:,i);

Step 4 MMV Recon-
struction

X̂
l
T l = A†

T lY;

Step 5 Update Rl = Y− AX̂
l
,

IF
∥∥Rl∥∥F ≥ ∥∥Rl−1∥∥F output

D̂ = 9X̂
l−1

,
ELSE Go back to step 3.

Algorithm 2 Support Orthogonal Matching Pursuit
(Sup-OMP)

Input Observation vectors y, Sensing matrix A
Output Recovery support set �
Step 1 Initialization x̂0 = 0, r0 = y, l = 0,

T 0
= ∅;

Step 2 Support set
expansion

l = l + 1,
j = argmax

i/∈T l−1

∣∣AT
i rl−1

∣∣,
T l = T l−1 ∪ {j};

Step 3 Reconstruction x̂l = argmin
sup p(x)∈T l

‖Ax− y‖22;

Step 4 Update Rl = Y−AX̂
l
, rl = y−Ax̂l ,

F
∥∥rl∥∥2 ≥ ∥∥rl−1∥∥2 output

� = T l−1, ELSE Go back
to step 2.

rantperm(n,1) randomly generates an integer in [1,n] in
order to randomly select one of the sensors for SMV support
set reconstruction. The support set can be recovered using
the OMP algorithm, referred to herein as Sup-OMP to distin-
guish, as shown in Algorithm 2. As analyzed in Section IV.D,
the support set is the same under the MMV problem, so by
randomly selecting a column, reducing the dimension to the
SMV recovery support set can greatly reduce the amount
of computation. Finally, the MMV problem is reconstructed
with the restored support set. The residual is used to control
the iterative process. If the residual is found to be expanded,
the iteration is stopped and the last reconstruction result is
output.

After random sparse sampling, the whole algorithm makes
full use of the sparsity prior of MMD, and locks the key
support set in advance (that is, the part that accounts for the
majority of energy). Based on the spatial correlation dimen-
sion reduction data processing process, only a small amount
of data are used to restore the support set, then reconstruct
the entire MMV problem. The computation and traffic of the
marine detection system are greatly reduced, so it is called
the ‘‘minimalist’’ algorithm. The performance is analyzed
below.

B. MEASUREMENT MATRIX RESTRICTED
ISOMETRY PROPERTY
In this section, we first prove that the measurement matrix
generated by distribution (3) satisfies the restricted isometry
property (RIP). The main results will be based on the Gerš-
gorin circle theorem and Hoeffding’s inequality.
Definition 2 [26]: (RIP) if the matrix 8 ofM × N dimen-

sion satisfies

(1− δK ) ‖z‖22 ≤ ‖8T z‖22 ≤ (1+ δK ) ‖z‖
2
2 (7)

and holds for any vector z ∈ RN with only K term non-zero
coefficients. Then, the matrix 8 is said to satisfy the K -order
RIP with the parameter δK ∈ [0, 1), which is abbreviated as
8 ∈ RIP (K , δK ).
In other words, if the eigenvalues of the Gram matrix

corresponding to the sub-array composed of K columns in 8

is in the range [1− δK , 1+ δK ], then 8 satisfies RIP (K , δK ),
so for a sparse vector that does not exceed K non-zero terms,
8 is an isometry.
Lemma 1 (Geršgorin): The eigenvalues of an N × N

matrix 8 all lie in the union of N discs di = di (ci, ri),
i = 1, 2, · · · ,N centered at ci = φi,i and with radius

ri =
N∑
j=1
j 6=i

∣∣φi,j∣∣ (8)

where φi,i and φi,j are the diagonal elements and the non-
diagonal elements of matrix 8, respectively.

There are a total of CK
N sub-matrices consisting of K

columns extracted from the matrix 8. If it is sequentially
proved that the eigenvalues of each sub-matrix Gram matrix
are respectively located at [1− δK , 1+ δK ], then this will be
a combinatorial complexity problem.

Therefore, we may consider an arbitrary column support
set T ⊂ {1, . . . ,N }, |T | ≤ K , and 8T is a sub-matrix formed
by columns indexed by T in 8.

The Gram matrix of the matrix 8T is G (8T ) = 8T
T8T .

To prove that all the eigenvalues are in the range of [1−δk , 1+
δk ], δd , δo > 0 can be appropriately selected to meet δd +
Kδo = δk ∈ (0, 1). If the diagonal elements gii of the G (8T )

satisfy |gii − 1| < δd , and the non-diagonal elements gij(i 6=
j) satisfy

∣∣gij − 1
∣∣ < δo, the distance between the center of

each Geršgorin disk and 1 does not exceed δd , and the radius
of each disk does not exceed Kδo. The range of values for
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diagonal and non-diagonal elements can be determined by the
following lemma
Lemma 2 (Diagonal Element Boundary): Considering gi,i

as the diagonal element of the above-mentioned Grammatrix,

gii =
M∑
j=1
φ2ji, i ∈ T , and each element φji is independent and

identically distributed in (3), then

Pr (|gii − 1| ≥ δd ) ≤ 2 exp
(
−2Mpδ2d

)
(9)

Proof: By Hoeffding’s inequality [27], M independent
bounded random variables zi ∈ [Li,Hi]according to proba-
bility 1, where only k elements are non-zero, maybe for the

first k , and the sequence s =
k∑
i=1

zi satisfies

Pr (|s− E [s]| ≥ δ) ≤ 2 exp

[
−

2δ2∑k
i=1 (Hi − Li)

2

]
(10)

Let zi = φ2ji, from the distribution of the formula (3), zi ∈[
0, 1

/
(Mp)

]
is established according to the probability 1.

Considering that only k = Mp elements of theM summation
terms are non-zero according to the distribution, s = gii,
E [gii] = ME

[
φ2ji

]
= 1, substituting into (10)

Pr (|gii − E [gii]| ≥ δd ) ≤ 2 exp

(
−

2δ2d
Mp

(
1
/
M2p2

)) (11)

Thus, (9) is proved.
Lemma 3 (Non-Diagonal Element Boundary): gij is the

diagonal element of the above-mentioned Gram matrix, gij =
M∑
r=1

φri · φrj, i, j ∈ T , and each element is independently and

identically distributed in the formula (3), then

Pr
{∣∣gij∣∣ ≥ δo} ≤ 2 exp

[
−
Mδ2o
2

]
(12)

Proof: still using Hoeffding’s inequality (10), at this

time, zi = φriφrj, zi ∈
[
−1
/
(Mp), 1

/
(Mp)

]
, s =

M∑
i=1

zi = gij,

E [s] = 0. Notice that there are only k = Mp2 ofM elements
non-zero according to the distribution. Substitute into (10),
then

Pr
(∣∣gij∣∣ ≥ δo) ≤ 2 exp

[
−

2δ2

Mp2
(
2
/
Mp
)2
]

(13)

Formula (12) is proved.
Theorem 1:8 is anM×N dimensional randommatrix, and

each element is i.i.d in the distribution of formula (3). Then,
for any ε, δK ∈ (0, 1), when the sampling rate r = Mp ≥
2 ln 2K2

c2δ2K−ε
, 8 satisfies the K -order RIP with a probability of not

less than 1− exp
[
−Mpε

/
2
]
.

Proof: arbitrary column support set T ⊂ {1, . . . ,N },
|T | = K , 8T is a submatrix composed of columns indexed

by T in 8, and its corresponding Gram matrix isG (8T ) =

8T
T8T . By Lemma 2, for all gii satisfied

Pr

(
K⋃
i=1

|gii − 1| ≥ δd

)
≤ 2K exp

(
−2Mpδ2d

)
(14)

At the same time, consider that the non-diagonal elements
of G (8T ) have symmetry, and there are a total of K (K −
1)/2 non-diagonal elements that are different from each other.
By Lemma 3, all gij joint probability distributions satisfy.

Pr


K⋃
i=1

K⋃
j=1
j 6=i

∣∣gij∣∣ ≥ δo
 ≤ K 2 exp

[
−
Mδ2o
2

]
(15)

According to Lemma 1, the probability that all the eigen-
values of G (8T ) are located in the disc (within [1− δK , 1+
δK ]) is P, which is known from (14) and (15).

P̄ = Pr

(
K⋃
i=1

[|gii − 1| ≥ δd ]

)
+ Pr


K⋃
i=1

K⋃
j=1
j 6=i

∣∣gij∣∣ ≥ δo


≤ 2K exp
(
−2Mpδ2d

)
+ K 2 exp

[
−
Mδ2o
2

]
Because δd + Kδo = δk , and δo = cδK , δd = (1 − cK )δK ,
where c ∈

(
0, 1

/
K
)
. Therefore,

2K exp
(
−2Mpδ2d

)
+ K 2 exp

[
−
Mδ2o
2

]
= 2K exp

[
−2Mp (1− cK )2 δ2K

]
+ K 2 exp

[
−
Mc2δ2K

2

]

Take c ∈
(
0, 1

K

)
\

[
2

2K+1 ,
2

2K−1

]
, then 2 (1− cK )2 > c2

2 , so

P̄ ≤ 2K 2 exp

[
−
Mpc2δ2K

2

]
(16)

For any ε < c2δ2K , when Mp ≥
2 ln 2K2

c2δ2K−ε
,

P > 1− exp
[
−
Mpε
2

]
(17)

Since the column support set T , |T | = K is arbitrarily
selected, it has been proved that the probability that all the
eigenvalues of the Gram matrix G (8T ) are in the range of
[1 − δK , 1 + δK ] is P. That is, the probability is P that
the eigenvalues of all Gram matrix corresponding to the
sub-matrix composed of no more than K columns in 8 are
in [1− δK , 1+ δK ], which just satisfies the definition of RIP,
and the theorem is proved.

In particular, when the orthogonal transform 9 is
employed, it is known from the norm-preserving properties
of the orthogonal transform that the sensing matrix A = 89

is also satisfied if 8 meets the RIP.
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C. RECONSTRUCTION GUARANTEE
Wen et al. [28] gave the sharp recovery conditions
for the OMP algorithm under the SMV model, and
Yang et al. [29] extended the conclusions of the SMV given
by Mo and Shen [30] earlier to MMV. In the same way,
we can also promote the sharp conditions under SMV.
Theorem 2: For a K rows sparse matrix X, if the sensing

matrix A satisfies RIP and

δK+1 <
1

√
K + 1

(18)

the OMP algorithm can accurately recover the original data
X from the MMV observation Y = AX. Proof can be found
in references [28] and Theorem 3.5 in [29].

It can be seen from the description of Section V.A algo-
rithm that the minimalist algorithm is an OMP recovery with
a known support set of prior conditions. Therefore, δK is
determined according to the theorem 2 for the sparsity K ,
and then the sampling scale Mp is determined by theorem 1,
and finally control the probability P of the exact reconstruc-
tion. The following uses the measured data to investigate the
overall performance of the CS-MMD scheme with the space-
time sampling and minimalist reconstruction proposed in this
paper.

VI. PERFORMANCE EVALUATION
The overall performance of the CS-MMD scheme was eval-
uated using the TAO measured data mentioned in Section IV.

A. RECONSTRUCTION ACCURACY ANALYSIS
As described in Section III.B, the sampling size is controlled
by adjusting the number of rows M and the probability p of
the non-zero elements in the measurement matrix. According
to the analysis of IV.A and IV.C, the sparseness of the wavelet
decomposition coefficients of MMD is better than DCT and
FFT. The Haar decomposition coefficients energy sparsity
K is the smallest about 2, and K of the Sym4 coefficients
is the largest about 8. Therefore, this section uses these two
wavelet bases as an example to analyze the compressed sens-
ing sampling and reconstruction of four typical MMD ( AirT,
Rhum, SST andWS ). Analyzing the relative error (RE) of the
reconstructed data compared to the original data, defined as

RE =

∥∥∥D̂− D∥∥∥2
F

‖D‖2F
(19)

Its physical meaning is the ratio of the data energy lost by
the compressed sensing reconstruction process to the original
data energy.

Fig.6 and Fig.7 show the case where the RE of the
CS-MMD scheme changes with M and p when the sparse
basis selects the Haar and Sym4 wavelets respectively, and
the value is described in gray scale. From the trend in the fig-
ures, RE decreases with the increase ofM and p. As described
in Section III.B, the ratio of the sample number in this method
to it in the traditional method is r = Mp. The more the

FIGURE 6. RE v.s. p & M (Haar).

FIGURE 7. RE v.s. p & M (Sym4).

number of samples, the higher the reconstruction accuracy,
and the theorem 1 is verified.

It can be seen from Fig.6 that the relative errors of AirT,
Rhum and SST converge to 10−4 orders ofmagnitude, and the
error of WS converges to 10−2 orders, which is in accordance
with the analysis in Sections IV.A and IV.C. Because for the
Haar wavelet base, the scale coefficients will capture 99.98%,
99.9%, 99.93%, and 92.6% of the energy of AirT, Rhum, SST,
and WS, respectively, indicating that CS-MMD accurately
restores at least significant scale coefficients and recovers
partial wavelet coefficients.

Comparing Fig.6 and Fig.7, it is found that the same data
have different requirements forM , because for Haar wavelet
base, K is about 2, and under Sym4, K is about 8. It can
be seen from Fig.7 that the observation number should be
at least greater than K to ensure the reconstruction accuracy
of the data. The convergence error is in accordance with the

159804 VOLUME 7, 2019



W. Tian et al.: Efficient Acquisition Method for MMD Based on CS

FIGURE 8. RE v.s. p (Haar).

analysis in Sections IV.A and IV.C, because for the Sym4
wavelet base, the scale coefficients will capture 99.99%,
99.96%, 99.98%, and 96.48% of the energy of AirT, Rhum,
SST and WS respectively.

The following analyzes the reconstruction performance of
similar algorithms.

B. THE RELATIONSHIP BETWEEN RECONSTRUCTION
ERROR AND PROBABILITY P OF DIFFERENT ALGORITHMS
In Section II, the commonly used recovery algorithms include
greedy algorithms,minimization optimization algorithms and
Bayesian algorithms. Here, several representative algorithms
in each class are selected as controls. The number of obser-
vations M is fixed at 2K , the probability is increased from
0.005 to 0.2 in steps of 0.005, and the probability of recon-
struction relative error with the probability p of non-zero
elements in the measurement matrix is shown in Fig.8. The
sparse basis 9 is the Haar wavelet basis. From the results,
the reconstruction errors of TMSBL, MFOCUSS and MR
proposed in this paper are all converge, and the relative errors
of AirT, Rhum and SST converge to the order of 10−4. The
error of WS converges to the order of 10−2 consistent with
the analysis in Sections IV.A, IV.C, and VI.A.

From the results of Fig.8, it is shown that TMSBL,
MFOCUSS and MR can accurately recover the scale coef-
ficients occupied most energy and recover part of the wavelet
coefficients with a small amount of observation data. In par-
ticular, it is noted that the CS-MMD scheme proposed in
this paper can be converged first under the severe conditions
of p = 0.01. It is known from the physical meaning of
p that it describes the working probability of the original
sensor, in other words, the premise of saving 99% of sampling
resources. The accuracy rate can be as high as 99% or more.
Parameters like WS, although the sparsity is slightly weaker,
can achieve an accuracy of 92.6%.

FIGURE 9. RE v.s. p (Sym4).

The performance of other algorithms in the control group
is not ideal. The performances of the three improved OMP
algorithms are similar because they do not use the support set
prior. Once an iteration has selected wrong atoms, subsequent
iterations will be difficult to recover the error that has already
occurred due to the lack of a culling mechanism. Among the
three improved MUSIC algorithms, SeqCSMUSIC performs
relatively well, but it is not ideal enough. The problem is
that such methods are mainly oriented to solving the sparse
reconstruction problem in the `0 norm sense, and some
require sparsity to be known. However, theMMDhere are not
sparse in the `0 norm, so the performance of the algorithm is
limited.

In order to compare the effect of energy sparsity on per-
formance, next, the sparse basis selects the Sym4 wavelet
base. From IV.C analysis, the energy sparsity K is about 8.
At this time, the relative errors of the reconstructed energy of
the four kinds of data change with p as shown in Fig.9. The
reconstruction errors of TMSBL, MFOCUSS and the MR
proposed in this paper are all converge to the level analyzed
in Sections IV.A, IV.C, and VI.A. When the above three
algorithms converge, at least the scale coefficients are accu-
rately restored, and some wavelet coefficients are restored.
The requirements of p for convergence of each algorithm have
increased. It is noted that the CS-MMD scheme proposed in
this paper can still be converged under severe conditions of
p = 0.01.
The three improved OMP algorithms and the threeMUSIC

improved algorithms in the control group basically failed.
This is becausewhen the energy sparsity increases, the energy
of each coefficient is relatively dispersed. When the data
sparsity in the sense of `0 norm does not exist and the sparsity
is unknown, the reconstruction support sets by the above two
types of algorithms are prone to ambiguity, especially when
the number of observations is relatively small.
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FIGURE 10. Time v.s. p (Haar).

FIGURE 11. Time v.s. p (Sym4).

C. RELATIONSHIP BETWEEN RECONSTRUCTION
TIME AND SAMPLING RATE
Next, we will examine the trend of the running time of each
algorithmwith p. Fig.10 shows results under the Haar wavelet
base. The operation results under the Sym4 wavelet base are
shown in Fig.11. The overall trend conforms to the general
law, that is, the minimization optimization algorithm has
higher complexity, the greedy algorithm is simpler, and the
Bayesian algorithm complexity is between the two. Although
the CS-MMD scheme of this paper is also extended on the
basis of OMP, it makes full use of the support set priori com-
pared with ReMBo and OMP-MMV, which greatly reduces
the number of iterations. So, the calculation time of CS-MMD
is the shortest, and the average is within 10−4 second order.
Compared with the other two algorithms, MFOCUSS and

TMSBL with better performance in Section VI.B, the time
complexity of our scheme is reduced by more than two orders
of magnitude.

The energy sparsity increases under the Sym4 wavelet
base, so the number of iterations may increase, thus the
running time of each algorithm generally increases. However,
the CS-MMD scheme in this paper is not affected by the
increase of energy sparsity, and the time complexity is still
maintained at 10−4 order, because most of the iteration has
been omitted by the prior support set. Therefore, through the
analysis of this part, the idea of ‘‘simple and simple’’ in our
paper are verified, that is, reducing the number of samples
and simplifying the reconstruction by dimension reduction.
Our scheme fully adapts to the situation where the energy and
traffic of the maritime monitoring system are limited.

VII. CONCLUSION
This paper proposes a CS-MMD scheme that uses the sim-
plest possible solution that can be taken to get the best results
that can be achieved. A highly sparse random matrix is used
to collect a small number of measurements. Based on the
natural energy sparsity characteristics of the data, the wavelet
base is selected, and the a priori support set generated by
the significant wavelet coefficients is fully utilized. Mean-
while, the MMV problem is randomly reduced into SMV
for reconstruction. Considering that the power and commu-
nication capacity of the marine data acquisition system are
limited, each step saves resources, simplifies the process, and
makes full use of the sparse features of the data, and finally
accurately and efficiently reconstructs the data. Accuracy can
reach 99% or more on the premise of saving 99% of sampling
resources.

Of course, the sparse basis is the key to determine the
energy sparsity of the data, and then determines the perfor-
mance of the reconstruction. This paper considers the overall
complexity of the system, therefore, the off-the-shelf DCT,
FFT and several wavelet bases are selected for comparison.
Other sparse dictionaries that require a complex dictionary
learning process are not considered. This will be a key point in
the follow-up study, which is to discuss a dictionary with low
complexity and good energy concentration. This is another
topic.
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