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ABSTRACT In data mining, a rule-based classification approach called Associative Classification (AC)
normally builds accurate classifiers from supervised learning data sets. It extracts ‘‘If-Then’’ rules and
associates each of the generated rules with two computed parameters; support and confidence. These
two parameters are utilized to differentiate the rules’ superiority during the building of a classifier’s step.
In current AC algorithms, whenever a rule is inserted into a classifier, all of its corresponding training data
is discarded. However, the discarded data actually are used to compute support and confidence of other rules
and will affect other lower ranked rules since rules normally have common training data examples. The use of
static support and confidence may result in very large less-accurate classifiers.Thus, a procedure that amends
other rules’ support and confidence is important. This paper proposes a new procedure namedActive Pruning
Rules (APR) to overcome the above problem so then the classifiers’ performance - especially predictive
accuracy and reducing rule redundancy - will be further improved. The experimental results obtained from a
number of University of California Irvine (UCI) data sets and real adult autism classification data set showed
that APR is highly competitive to other AC and rule-based classifiers and often produces smaller yet more
predictive classifiers.

INDEX TERMS Association rule, associative classification, data mining, prediction, rule induction, rule
pruning.

I. INTRODUCTION
Nowadays, businesses have numerous data sets scattered
internally over numerous functioning units within organiza-
tions and externally - most commonly online. Automated
smart software tools can be vital for the analysis of such large
data sets in the decision-making process. Data mining, which
is a multi-disciplinary research field, can be at the core of
many of such needed software. It is based on mathematics,
databases and other computer science topics and can help
decision makers find useful information from their data sets.
It is also involved in several tasks such as clustering, associ-
ation rules, classification and regression.

In the last decade, the classification and association rules
have been integrated to form a new research topic named
associative classification (AC), [1]. AC primarily utilizes
association rule discovery methods to train on an input data
set in order to discover rules and then it adds on steps
involving constructing the classifier and predicting the test
data. Recently, AC has been utilized in several businesses
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and security applications, i.e., website phishing detection [2],
fault prediction [3], recommendation systems [4], and text
mining [5], etc.

Two distinguishing characteristics associated with the AC
approach which expands on its use in applications are:
• The high predictive classification accuracy of its
classifiers.

• The interpretability of the rules within the classifier.
Most AC algorithms induce the knowledge (rules) from the

input data, and then construct a predictivemodel that is named
the classifier. The two main parameters connected with each
rule are support and confidence (see Definitions 6 and 8).
The process of choosing the rules during the building of the
classifier is the concern of this article. In this context, the cur-
rent AC methods evaluate the induced rules on the input data
set one by one after sorting them based on a rule ranking
procedure, i.e., (rules’ confidence, support, length). Starting
from the highest ranked rule downward, each training data
will be evaluated and covered by a single rule only. When
a training example is covered by a certain rule, it will be
discarded and that rule will become part of the classifier. The
evaluation process continues until all of the rules have been
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evaluated or no more data can be removed. Only at this time,
is the classifier generated. The classifier will contain only
rules that were covered in the training examples and all other
rules are removed since they are redundant.

This paper investigates a major shortcoming associated
with AC algorithms during the process of rule evaluation.
Specifically, when removing the training examples connected
with a classifier’s rules whenever a rule gets evaluated against
a training data set. This problem was raised by [6] in
which the authors proposed a multi-label rules mechanism.
We argue that when training examples are discarded after a
rule is evaluated, this removal affects other lower ranked rules
since rules normally have common training data examples
(items inside the data). Current AC algorithms in the literature
assume that a training example can be used to learn multiple
rules. So these algorithms do not eliminate any overlap of
the training data amongst the generated rules, resulting in
generating very large classifiers. The aim of this research
is to overcome the data overlapping issue in AC mining
by developing a new learning method to ensure that rules
derived have no data overlapping thus reducing the size of
the classifier and maintain predictive accuracy performance.

The above issue occurs during the process of inducing the
rules and should be resolved when the algorithm chooses
the classifier’s rules. Consider for instance rule R1: ‘‘If y1
and x2 then Class A’’, that has been evaluated against the
training data set, assuming that all training data examples
of R1 are deleted. All other lower ranked rules having the
values (‘‘y1’’ and ‘‘x2’’) in their body are impacted because
of R1’s data removal. This means that these rules’ confidence
and support and support counts should now be updated to
reflect R1’s data removal. When the training data set is fre-
quently updated because of rule example removal, the rule
rank should change as well during the process of the rule
evaluation. If this is implemented, a fairer classifier that does
not rely on static rules rank will result.

A newACmethod that we call Active Pruning Rules (APR)
is developed to resolve the discussed issue. For each rule
inserted into the classifier, the algorithm not only deletes all
of its connected training data but also removes said data from
any other unevaluated rules. This results in decrementing
the confidence and support values for some of the rules
and changing the ranking of these rules before the next in-
line rule is evaluated. This can be viewed as a rule-pruning
procedure that discards insufficient rules without having
to evaluate them against the training data as with current
AC algorithms, saving computing resources. Furthermore,
amending the rule rank every time a rule is inserted into the
classifier may generate classifiers with no rule redundancy.
Most importantly, the algorithm significantly increases the
predictive accuracy of the classifier as the results from the
experiments section shows.

Section II explains the AC definitions besides the raised
research issue. Section III reviews the known rules related
to pruning and AC methods and Section IV proposes the
new algorithm and its primary steps. Section V provides a

comprehensive example on the phases of the proposed algo-
rithm, and Section VI describes the UCI data, experiments
and result analysis. Section VII is devoted to experimental
results on a behavioural application related to autism, and
finally, conclusions are given in Section VIII.

II. RESEARCH ISSUES AND TERMS DEFINITIONS
For a predictive task such as classification, an input data set
such as T contains a number of different variables (attributes)
At1,At2, . . . ,Atm plus a target variable named the class label,
i.e., cl. The cardinality of T size is given by |T |. A vari-
able can be continuous or discrete. Discrete variables are
mapped to positive integers set, and any continuous variable
is partitioned (discretized) before data processing. The goal
of AC is to construct a predictive model from T that is able
to accurately forecast the target variable in an unseen data
called the test data set. The definitions below summarized the
primary terms of AC as follows:
Definition 1: An item plus its value in T is called attribute

value and denoted as (Ati, vi).
Definition 2: A row in T is called a training example and

is represented as (Atj1, vj1) . . . (Atjv, vjv), clj where clj is the
target class value.
Definition 3: A rule r consists of <antecedent, class>,

where antecedent is disjoint conjunctive items in a class
value.
Definition 4: r’s frequency in T (r_freq) is how many data

examples in T similar to r.
Definition 5: antecedent’s frequency (antecedent_freq)

denotes the number of examples in T that have similar
antecedent to a rule r.
Definition 6: The minimum support (minSupp) is a prede-

fined threshold that gets inserted by the end user.
Definition 7: r survives minSupp when r’s |r_freq| / |T | ≥

minSupp. A surviving rule is considered a strong rule.
Definition 8: r survives minConf when r’s confidence =
|r_freq|/|antecedent_freq|.
Definition 9: r is formatted in the classifier as: at1 = v1 ∧

at2 = v2 ∧ . . . ∧ atn = vn→ class1.
APR relies on the two thresholds as mentioned earlier;

minSupp and minConf. The minSupp is set by the end-user to
discriminate rules. Each potential rule frequency in the train-
ing data set from the size of that data set denotes its support
(Definition 6). Any rule with support stronger than the
minSupp is kept for further evaluation. On the other hand,
minConf is a threshold that distinguishes between the
strong and weak rules (those that are statistically not
fit). A rule confidence represents the frequency of the
rule, i.e., <antecedent, class>, from the frequency of the
antecedent in the training data set (Definition 5). A rule passes
the minConf when it has a larger computed confidence value
according to Definition 8.

III. LITERATURE REVIEW
Association rule mining and classification are related tasks as
the former tries to discover concealed correlations amongst
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the attributes’ values in a data set while the latter uses the
attributes’ values to build a model which in turn is utilized
to predict the response variable of a test case. Therefore,
integrating both tasks together produces Associative Classi-
fication (AC) [1], which employs association rule methods in
extracting classifiers that contains ‘‘IF-THEN’’ rules.

Generally, there are three main steps that an AC algorithm
performs:
• Learning the rules (Training). The algorithm processes
the data to generate the rules.

• Rule ranking and pruning. The extracted potential rules
are sorted based on certain criteria like rule confidence,
support and length and others are then evaluated on the
training data set to identify the ones contained within
the classifier. During this step, any duplicate rules are
removed.

• Classification of test data. In this step, the rules in the
classifier are utilized to forecast the class values of
unseen data (test data). During this step, the predictive
power of the classifier is measured using prediction
accuracy or error rate.

In the last decade, multiple research studies, for example
[4], [7] have reported the applicability of AC on various
different applications including fraud detection, credit card
scoring, bioinformatics, on-line security, medical diagnoses,
text categorization and others. The wide spread of this clas-
sification approach is primarily due to the simplicity and
interpretability of the rules in the classifier besides the high
predictive accuracy of its classifiers.

In the literature, many algorithms utilize a variety of
knowledge-reasoning methodologies, rule pruning, and class
predictions for test data. Since AC methods suffer from the
exponential growth of the rules [8], this article tackles this
problem and proposes a novel pruning method hence this
section focuses more on the rule pruning procedures rather
than on general AC algorithms in the literature. Rule pruning
is the key to success in AC and ensures that any classifiers
derived are controllable and usable by the end users. In fact,
without rule pruning, most generated classification systems
will not be useful and might get discarded because of the
large number of rules in the classifier [9]. This might lead
into difficulties in managing the classification systems and
hence the managers and decision makers will not put these
systems in practise.

One of the first developed AC algorithms is CBA [1]. This
algorithm utilizes the Apriori candidate generation function
to discover class association rules from data sets. CBA intro-
duces the database coverage pruning method to choose high
predictive rules. This pruning method is similar to the way
that classic greedy algorithms find the rules. The database
coverage in relation to the pruning assumes that the rules are
already discovered and ranked in order of the confidence and
support values. Then starting with the top rule, this method
evaluates the rule on the training data set for possible classi-
fication. If the current rule was able to classify at least a single
training example, it will be put into the classifier and all of its

classified data examples will be removed. The same test is
repeated for all of the remaining potential rules until all of
the data examples are classified or all rules have been tested.
Any potential rule that was unable to classify at least one
training example is discarded. A number of successive AC
algorithms have adopted the CBA database coverage method
like CBA (2) [10] and ACCF [11], (uCBA) [12], X-class [13],
SPARK-CBA [7], and others.

An improvement over the database coverage pruning was
done in the Multiclass Associative Classification (MAC)
algorithm [14]. MAC induces the rules based on the concept
of vertical AC mining. In pruning the rules, MAC tests each
of them on the training data set to decide the most significant
ones. Unlike CBAwhich requires equality between the candi-
date rule’s class and the training example class so that the rule
can be inserted into the classifier, MAC considers only the
similarity between the rule’s body and the training example’s
attributes values and omits the class equality. This increases
the data coverage per rule and reduces over fitting. MAC was
applied successfully on generic classification data sets and
domain specific data sets (website phishing classification),
and showed superiority over CBA with reference to its pre-
dictive accuracy and the number of rules in the classifier.

A new improved database coverage method was proposed
by [15] in the classification phase of test data. When test data
is about to be classified, this method considers each rule’s
position in the classifier and the number of rules that have
similar items to the test data items. Therefore, each class
label will be associated with a computed score based on the
above conditions and the class that has the largest score will
be assigned to the test data. Another closely related work by
Hasanpour et al. [8] that employed binary harmony search
method to choose the ideal class association rule showed
competitive results in terms of accuracy on 17 data sets. The
authors integrated CBA classifier building method with a
harmony search method to cut down the number of chosen
class association rules.

Another early developed association-rules based algorithm
is Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) [16]. It added optimization stage over Incremental
Reduced Error Pruning (IREP) [17] that works by simplify-
ing each of the rules as soon as it is built. Reduced Error
Pruning (IREP) [18] is the base of both RIPPER and IREP.
Unlike CBA and its improvements that use database coverage
pruning method, REP and its successors use the concept of
error reduction, as stated in the names. It was developed to
simplify or prune complex decisions trees by separate-and
conquer strategy that divides the data in two sets; growing set
and pruning set. The growing set is created using the initial
training set whole the pruning set is created by applying one
of the pruning operators. When applying the pruning operator
results in increased of the error, the process stops. The main
disadvantages is the high running time complexity; O(n4).
Unline REP which builds a full rile set before it prunes it,
IREP and RIPPER prune each rule as soon as it is built; and
the algorithms re faster in computation; O(n log n).
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Reference [19] developed algorithm called Multiple Asso-
ciation Rules (CMAR). It works by constructing the rules
in a data structure, which takes on the shape of a tree. This
tree saves the rules in a ranked manner according to the
rules’ support values. Then CMAR performs rule pruning by
discarding any rulewith a large number of attribute values and
keeps the smaller attribute value rules in order to minimize
the chance of rule redundancy. The rule pruning method
proposed in CMAR favours rules with a smaller body (left
hand side) since these rules frequently classify larger portions
of the training data examples and therefore the final classifier
size gets minimized. This makes the classifier more usable.
There are a few AC algorithms that have utilized CMAR
pruning method including lazy AC approaches, i.e., Live and
Let Live L3 [20]. In 2012, a new enhancement over CMAR
pruning was developed in [21]. The authors developed a
pruning method called I-Prune that not only eliminates low
frequency items in the preliminary stage but also eliminates
items with low to no correlation with the class labels. The
basis of item-class correlation is chi-square testing:

CHI
(
a, c

)
=

N×
(
XZ−YW

)(
X+W

)
×
(
Y+Z

)
×
(
X+Y

)
×
(
W+Z

) (1)

where X is the number of times feature a and class c occur
together, Y is the number of times feature a occurs without
class c, W is the number of times class c occurs without
feature a, Z is the number of times neither a or c occur, and
N is the total size of the training set.
A different learning methodology inherited from the FOIL

rule induction technique [22] was introduced in Classification
based on Predictive Association Rules (CPAR) [23]. Unlike
the greedy approach, CPAR builds the rules simultaneously
without having to remove their data examples from the train-
ing data set. Rather, when a rule is built, CPAR amends
the weight of the data examples by decrementing them by
a factor. This ensures the generation of additional rules since
a training example can be covered by multiple rules instead
of a single one. Nevertheless, this unfortunately may lead to
large classifiers. CPAR reduces this problem by performing
Laplace estimation pruning on each discovered rule as shown
in Equation (2).

Laplace estimation =
nc + 1
ntot + k

(2)

where k denotes number of classes, n is the examples and c is
the predicted class of a rule.

This procedure involves computing the expected error per
derived rule and comparing the computed error with the
predefined threshold. When the expected error of the rule
exceeds the threshold, the rule gets deleted. This pruning
procedure favours rules with a higher expected accuracy.

A closely related pruning method based on the Pearson
correlation measure (Equation 3) was proposed in an AC
called Hierarchical Multi-label Associative Classification

(HMAC) [24].

Pearson correlation measure

=
N
∑
xy− (

∑
x)(
∑
y)√

[N
∑
x2 − (

∑
x)2][N

∑
y2 − (

∑
y)2]

(3)

where N is the member of pairs x and y variables to be tested
for their relationship strength.

This pruning is performed to measure the correlations
between the class of the rule and the rule’s items. Any rule
that has a computed correlation below theminimum threshold
will be discarded. HMAC further reduces the number of rules
by invoking CMAR rule pruning to remove any specific rules
that havemany attribute values in their bodies (left hand side).

Reference [25] proposed a new pruning method called
MCAC that makes use of the conflicting rules in an algorithm.
Conflicting rules are rules with the same body but that predict
different class labels. These conflicting rules were considered
errors and therefore removed by the majority of the existing
AC algorithms. Nevertheless,unlike the aforementioned AC
algorithms,the MCAC algorithm merges these conflicting
rules to derive a new multi-label rule during the rule evalu-
ation phase. This rule pruning was based on an earlier rule
discovery approach called recursive learning that was pro-
posed by [26]. Experimental results on generic classification
data sets from UCI repository - besides phishing data sets -
revealed the advantages of the new multi-label rules that
users may gain besides the higher predictive accuracy clas-
sifiers. Distributed versions of different AC pruning methods
were implemented by [9] in an algorithm named MapReduce
MCAR. The authors clearly pinpointed to the performance
differences of pruning phase when it comes to big datasets.

Finally, [27] developed a modified pre-pruning method
based on J-Pruning [28] to minimize overfitting the training
data. J-Pruning adopts Entropy from the information theory to
measure the worthiness of deleting a variable (attribute) from
the rule’s body. Experimental results against UCI datasets
showed a decrement on the number of items per rule when
J-prune was plugged in covering the algorithms.

The aforementioned AC approaches evaluate the rules to
select the most effective ones. In doing so, unfortunately,
these approaches do not consider the fact that the rules have
common data examples. Not paying attention creates the
serious problem addressed earlier in Section II. This problem
can be reduced if a constant change of the rules’ position
is applied whenever a rule such as Ri is inserted into the
classifier because of R′is training data removal. Hence, it is
imperative to remove the overlapping data amongst all of the
rules to end up with a more genuine classifier with minimal
rule redundancy.

Padillo et al. [7] evaluated a number of associative clas-
sifiers on 30 classic data sets and 10 big data sets (datasets
with very high dimensionality). These algorithms including
CBA and CPAR among others have been extended and imple-
mented In big data platform such as SPARK and FLINK.
Results reported that CBA-SPARK and CBA-FLINK gener-
ated good results in terms of accuracy. However, sequential
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learning methods are unable to process high dimensional data
sets because of the extensive computations and the interme-
diate memory needed during the training phase.

IV. THE PROPOSED APR ALGORITHM
The proposed algorithm consists of three main phases: induc-
ing the rules, constructing the classifier and classifying the
test data. The algorithm in phase (1) scans the training data set
to discover the rules based on two main thresholds: (MinSupp
and MinConf ). In phase (2), the discovered rules are ranked
based on different criteria including the rule’s confidence,
support and number of attributes and it is then evaluated on
the training data set to seek out the ones that are able to cover
data examples. Any rule that is able to cover at least one
training data example is inserted into the classifier and rules
with no data coverage are deleted. During the rule evaluation,
when a rule is tested on the training data set, the order of
the remaining untested rules is constantly revised to reflect
the action of removing the training examples per inserted
rule. This procedure is discussed in Section 4.2. Phase (3)
involves using the classifier to forecast the test data. In this
phase, a group of rules classification method that allocates
class labels to the test data based on weights is utilized.
This method is explained in Section 4.3. The APR algorithm
primary steps are displayed in Algorithm 1 and in the next
subsequent sections details about each phase are elaborated.

Algorithm 1 APR Algorithm Main Steps
Input:Training data set T, MinSupp andMinConf thresholds
Output: A classifier that contains rules

Phase (1) Inducing the rules
1: for each attribute value (atv, class) in T do
2: Build a vertical data structure to hold attributes values

and their location in T (TidList)
3: Convert frequent 1- attribute values that pass the

MinConf threshold into 1-rules (Rule_Temp← (atv,
class))

4: for each disjoint frequent n-attribute value (start with
n=1) do

5: a. Perform intersection to produce candidate n+1-
attribute values

6: b. Identify frequent n+1-attribute values
7: c. Produce n-rules from n+1- frequent attribute val-

ues (Rule_Temp← n+1 (atv, class))
8: d. Repeat for next inline level candidate attribute

values
9: e. Stop when no n+1-attribute value frequency sur-

vives the MinSupp threshold
10: end for
11: end for
Phase (2) Constructing the classifier (Algorithm 3,
Section 4.2)
Phase (3) Predict the class of test data (Algorithm 4,
Section 4.3)

A. RULE INDUCTION STEP
In the search for the rules, our algorithm performs two main
steps. The first step involves discovering all of the frequent
items. In the second step, the frequent items are converted
into ‘‘If-Then’’ rules. An item is said to be frequent when
its frequency in the training data set is larger than the user’s
MinSupp threshold. All infrequent items are discarded since
they do not hold enough support.

In the process of discovering frequent items, unlike the
majority of the existing AC algorithms which primarily use
horizontal mining based on Apriori [29] and its successors,
the APR algorithm utilizes a vertical mining approach intro-
duced by [30]. For additional information on the differ-
ences between horizontal and vertical mining [2] with the
references herewith are good review. The significant ele-
ment in vertical mining is a data structure named TidList
(Transaction IDs List) that holds all items plus class labels
along with their appearances in the training data. Hence
after the first training data scan, our algorithm creates a
TidList that initially contains candidate 1-items and the class
value. APR then performs simple intersections among the
item TidLists to discover the frequent ones and subsequently,
the rules. For example, if we have two frequent 1-items
such as (<‘‘Gender=Male’’>, class=yes) and (<‘‘Credit
rate= Good’’>, class=yes) with TidLists (Row IDs) (10,
20, 22,205, 255, 285) and (5, 6, 20, 22, 200, 205, 280, 285,
291) respectively. The new possible candidate 2-items, i.e.
(<‘‘Gender=Male, Credit rate= Good’’>, class=yes), has a
TidList = (20,22,205,285) because of the 1-items’ intersec-
tion. This new item has a support count of 4 (the size of its
new TidList).

The production of candidate items at any level (1,2,3,
etc) is performed by intersecting the TidLists of any two
disjoint frequent N-attribute values with similar class labels
to create candidate N+1-items. So, frequent 1-items are used
to generate candidate 2-items, which in turn, are used to
derive frequent 2-items, and so forth. The fact that the item’s
TidListis used to locate its frequency is an advantage when
calculating the item’s support and confidence, which are the
main criteria used to produce the rules. This is an efficient
data processing task. The APR algorithm performs the below
steps according to phase (1) in Algorithm 1 to find the rules:

1) Scan the training data set to build TidLists for frequent
1-items and their class labels.

2) Intersect disjoint frequent 1-items’ TidLists to produce
candidate 2-items. Once the entire frequent 2-items are
derived, we repeat the same process of intersection to
derive frequent 3-items and so forth.

3) When the complete frequent items are found, we con-
vert any with a confidence greater than the MinConf
threshold as a candidate rule.

B. RULE EVALUATION STEP
The process of building the classifier or finding the most
significant rules is comprised of two sub-steps. Firstly, all of
the extracted rules from phase (1) are sorted according to the
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sorting method of Algorithm 2. This sorting method ensures
that the rules with high confidence and support values are
placed at the top so they have a higher chance of becoming
part of the classifier. This is a vital step to ascertain high
predictive rules, usually those that mathematically have a
large confidence and support values. In addition, the rules
in the classifier need to cover substantially large numbers of
training examples (rows) tominimize the size of the classifier.
The process of ranking precedes the step of the rule evaluation
against the training data. The ultimate aim of the evaluation
is to select good representative rules set as the classifier.

Algorithm 2 Rule Ranking Procedure of APR Algorithm
Input: The set of rule; R’
Output: A set of ranked rules R.
For two rules; ra and rb, ra > rb iff :

1: Confidence (ra) > Confidence (rb)
2: Confidence (ra) = Confidence (rb) but Support (ra) >

Support (rb)
3: Confidence (ra) = Confidence (rb) and Support (ra) =

Support (rb) but |ra| > |rb|
4: When all 1-3 are similar for ra and rb then the choice is

arbitrary

In the rule evaluation (Algorithm 3), and for each training
data example, we iterate over the set of discovered candi-
date rules starting with the highest sorted one. When the
rule’s body matches the training example, it will cover the
training example and will then be inserted into the classi-
fier. Then, the training data examples connected with the
evaluated rules are deleted. The process is repeated until no
more data remains or the complete set of candidate rules has
been evaluated. When this happens, the largest frequent class
label in the remaining uncovered data examples becomes the
default class rule.

The novelty of the proposed algorithm lies in the process
of rule pruning. In particular, once a Ri is highlighted as a
classifier rule and its training data is deleted, we can argue
that this deletion impacts other not yet evaluated rules (often
with a lower rank). The removal of R′is training data must
be reflected on those rules and therefore the APR algorithm
updates the confidence and support frequencies of these rules.
The proposed procedure changes the rank for some rules and
may determine which rules have the chance to be inserted
into the classifier. Hence identifying on a continuous basis
which rules have higher rank is crucial since they have a
better chance of being selected first during the rule evaluation
and thus can be used later in the test data classification step.
The proposed procedure leaves no chance for lower rank
candidate rules to become part of the classifier and discards
them once their frequency drops below MinSupp.
Lastly, running the APR rule pruning procedure ensures

keeping the right rules that are mathematically fit (higher
rank) and discarding others that are weaker (lower rank) in

Algorithm 3 APR Rule Evaluation Procedure
Input: The set of extracted Rules_set and the training data
set (T)
Output: classifier (C)

1: Temp’ = rank (Rules_set)
2: θ ← Classifier
3: θ ← Data Structure (D_S)
4: for each training example t in T do
5: find the first ranked rule ri ∈ Temp’ that its attributes

is inside t
6: if no rules match t then
7: keep t uncovered;
8: else
9: begin
10: D_S← D_S ∪ ri
11: remove t
12: update the rank of rules in Temp’
13: end
14: end if
15: end for
16: discard all rules in Temp’
17: C← C ∪ D_S
18: if |T | > 0 – size of the training data set then
19: create a default rule from unclassified examples T
20: else
21: create a default rule from the current C (most class

appearing with rules) and add it to C
22: end if

real time. This is a new process in which the useless rules are
identified without going back to count them in the training
data set, hence enhancing the classifier’s overall performance.
Overall, when a rule covers a training example, APR per-
forms the following in phase (2):

1) The rule will be inserted into the classifier
2) All covered training data examples are removed.
3) The rules’ rank gets changed

Table 1 below shows the primary differences between the
proposed pruning method and existing ones in AC research.

C. TEST DATA CLASSIFICATION STEP
The last and most vital step in the life cycle of any classifica-
tion algorithm is test data classification. In this step, the AC
algorithm normally uses one or more rules to assign the class
label to a test data. Generally, there are two main approaches
in AC classification to accomplish test data classification.
The first relies on assigning a single rule class, usually the
first rule similar to the test data items. This approach has
been highly criticized by several scholars primarily because
there could be multiple rules that possibly match the test data
and therefore utilizing all of these rules seems to be more
realistic and less questionable. The second approach utilizes
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TABLE 1. Primary differences between the proposed pruning method and existing pruning methods in AC mining.

a group of rules to make the classification decision based on
voting or weights.

The APR algorithm utilizes a multiple rule test data clas-
sification method (see Algorithm 4) whereupon when a test
data (tsi) is about to be classified, our algorithm goes over
the classifier rules and identifies those whose body (items)
is contained within the test data. Then the identified rules are
divided into clusters according to the class labels and the class
which belongs to the largest cluster (the cluster containing
more number of rules) is then allocated to the test data.
In cases where there is more than one cluster with similar
rules’ count, the choice will depend on the rule rank in the
classifier. By applying this procedure, we fulfil the concept of
group-based rule decisions and eliminate the biased decision
of favouring a single rule over others. Consequently, the class
allocation decision of test data becomes less questionable and
unbiased. Lastly, when no rules in the classifier are similar to
the test data, the default class rule will be used.

Algorithm 4 Classification Procedure of APR
Input: classifier (C) / set of ranked rules and a test data
instance (t_s)
Output: classifier (C)

1: for each class cl_j in C do
2: for for each rule (ri) do
3: if ts ∈ ri then
4: clj_count ++;
5: end if
6: end for
7: ts (class) = clj (max (clj_count))
8: if clj_count = 0 then
9: ts (class) = default rule
10: end if
11: end for

D. MERITS OF APR ALGORITHM AND DISTINGUISHING
FEATURES

1) APR proposed a new pruning method that ensures
each rule is tested during the learning phase and not
after all rules have to be generated. This removes an
entire phase in AC which is rule evaluation.

2) The search space of items in APR algorithm is
reduced since weak items are eliminated on the fly
and therefore minimizing the time required to build
the classifier.

3) APR algorithm ensures a true frequency (support)
and strength (confidence) are linked with each rule
rather a static support and confidence. Therefore,
each rule represents the true state of the data it was
derived from.

4) The classification accuracy is improved by the APR
algorithm because more than one rule is taken
into account when allocating the class of test data.
In doing so, two metrics are utilized; the rule posi-
tion in the cluster and the number of rules in each
cluster. This method reduces random prediction
particularly when more than one rule is applicable
to classify a test data.

V. APR EXAMPLE
A detailed example is given in this section to demonstrate
the pros and cons of the APR algorithm. It will show the
algorithm’s main phases using a sample of historical data
(Table 2). Let’s assume that the user’sMinSupp andMinConf
are set to 20% (2 out 10) and 66.67% respectively for pre-
sentation purposes. The support count is used in the tables
instead of percentage to indicate the MinSupp.

A. RULE GENERATION
The frequent 1-items are given in Table 3. All infrequent
1-items are deleted after the initial training data set scan.
When frequent 1-items are derived, they are used to produce
frequent 2-items based on testing their support counts against
the MinSupp threshold.

One feature imposed within APR is that it only intersects
candidate items that have a common class label which reduces
the number of TidLists intersections. This may summarize
the number of candidate items at any given iteration. Once
all candidate items are identified, the APR computes their
confidence in order to generate the rules as shown in Table 4.
All rows that are not bold in Table 4 correspond to rules that
have been removed since they fail to survive the MinConf
threshold. Before the candidate rules are evaluated against the
training data set, theymust be ranked according to the ranking
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TABLE 2. A sample historical data set.

TABLE 3. Frequent 1-rule items obtained from Table 2.

TABLE 4. Frequent 2 & 3-rule items.

procedure of Algorithm 2. Thus, a column titled ‘‘Original
Candidate Rule Rank’’ (First column)is added to Table 5.
In Table 5 the survived candidate rules are sorted with respect
to confidence and support values.

B. RULES EVALUATION
The rule evaluation method of APR (Algorithm 3) is applied
on the candidate rules derived (see Table 5) where each

training example can be classified by one rule. Starting
with the highest ranked rule (x1 ∧ y1 → class2), which
covers line #’s (1,2,6) in the training data set, it will be
inserted into the classifier and its training examples will be
discarded. All unevaluated rules that have all of its items
inside (Lines 1,2,6), i.e., rules’ rank #4, #6,#9 and #10 are
amended and pruned since they no longer cover any more
data. The algorithm then moves to evaluate the next in line
rule according to rank (Rule: x2→ class1) after updating the
rule rank when Rule #1 was inserted into the classifier. This
rule was originally ranked #2 but after evaluating Rule #1,
its rank has improved to #1. This rule covers line #’s (3,7)
so it gets inserted into the classifier and all its classified data
is removed. The removal of this rule’s data instances from
the training data set has decremented the support of three
potential rules z3 → class1, y2 → class1 and y2 ∧ z3 →
class1. Two of these three rules are discarded since their
support values are now below the minimum support threshold
and one impacted rule has stayed, i.e., y2→ class1.

The next in line rule to be evaluated is x1 ∧ y2 → class1.
This rule covers four training instances (4, 8,9,10) and thus
these instances are removed leaving a single uncovered data
example (Line #5). From this data example, APR creates
a default class rule since none of the candidate rules are
able to classify this particular data example. This means that
all training data examples are now classified (covered) by
only three rules, as well as the default class rule (Class 1 -
majority class). The remaining candidate rule, i.e., (#12) is
redundant and so it is discarded. The classifier generated from
the training data set of Table 2 consists of three rules plus a
default rule as shown in Table 6. The default class represents
the most frequent class in the unclassified training instances.

VI. DATA AND ANALYSIS OF RESULTS
In this section, different data sets from the University of
California Irvine (UCI) repository have been used to evaluate
the proposed algorithm’s performance. The data sets are
displayed in Table 7 where all numerical attributes have
been discretised. We have chosen different types and sizes
of data sets for a fair comparison and to measure scalability.
A number of known classification algorithms that generate
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TABLE 5. Candidate rules set produced before rules evaluation.

rule-based classifiers have been utilized to conduct the
experiments. In particular, decision trees [22], CBA [1] and
RIPPER [16] are the selected algorithms. The selection of
these algorithms was based on three primary reasons:

a) All produce rules in the format of ‘‘If-Then’’ similar
to the proposed algorithm

b) They adopt different rule induction mechanisms
c) All are known algorithms that have been evaluated

by previous researchers in the data mining commu-
nity and applied to different types of data

The experiments on the UCI data sets using the consid-
ered classification algorithms were conducted on theWaikato

TABLE 6. Classifier produced from Table 2.

Environment for Knowledge Analysis (Weka) tool [31]. This
tool is an open source based on a Java platform that contains
implementation for different data mining methods including
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TABLE 7. The UCI data sets characteristics.

filtering, classification, clustering, evaluation, visualisation,
etc. This tool was designed and implemented at The Univer-
sity of Waikato in New Zealand to help students, researchers,
and academic staff in conducting quantitative research. The
proposed algorithm has been coded in Java programming
language within theWeka environment. All experiments have
been run on a computer machine with a 2.0 GHz processor.

The minSupp and minConf for APR and CBA have been
set in all experiments to 2% and 30% respectively. The
minSupp plays a critical role in controlling the number of
candidate rules that may be generated and therefore we have
followed other scholars in AC literature [1], [25] and set it
to 2% accordingly. On the other hand, the minConf has low
impact on the performance and was set to 30%. The stratified
ten-folds cross validation method has been used for testing
all of the considered classification algorithms. This method
is widely used in data mining for fair testing. In this testing
method and prior rule discovery, the data set gets partitioned
into ten folds and the algorithm is trained on nine folds and
then tested on the remaining fold. This process is repeated
for ten runs whereupon in each run, an error rate is produced.
Then the error rates derived from the ten runs are averaged to
produce an overall error rate on the classifier.

A number of evaluation measures are utilized to show the
pros and cons of the proposed algorithmwhen compared with
other classification algorithms. The measures below have
been used to evaluate APR:
• One error rate (%) (Equation 5)
• Number of rules derived
One of the common metrics of evaluation in classification

is Accuracy (Equation 4). It represents the number of correct
classifications made from of the total classifications made
by the classifier. Error rate is the total number of misclas-
sifications made by the classifier from the total number of
classifications.

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(4)

ErrorRate = 1− Accuracy (5)

FIGURE 1. Average 1-error rate % for the considered algorithms on the
UCI data sets.

Figure 1 depicts the average one-error rategenerated by
C4.5, CBA, RIPPER and APR on the UCI data sets. The
figures show that the APR algorithm outperformed the con-
sidered algorithms on average and particularly a higher aver-
age error than C4.5, CBA and RIPPER by 3.12%, 2.92%,
and 1.71% respectively. The new rule pruning that ensures
constant updates on the confidence and support values during
building the classifier that guarantees fair and high quality
rules. These rules play a significant role in decreasing the
error rate of the classifiers produced by the APR algorithm
when compared with the other static learningmethods such as
CBA. Furthermore, the APR algorithm utilizes natural prun-
ing by deleting any weak rules that have been induced and
are associated with low support or confidence. This assures
that the only rules kept for predicting test data cases have
acceptable statistical representation.

In Figure 2, the error rate per data set has been generated
for all of the considered algorithms to further evaluate the pre-
dictive power of the proposed algorithm. The figures clearly
show consistent domination for APR when compared to
the remaining algorithms. In particular, APR’s won-lost-tie
record against C4.5, CBA and RIPPER is 7-3-0, 7-3-0 and
9-1-0 respectively. The way that APR constructs the classifier

FIGURE 2. Error rate (%) for the considered algorithms on the UCI data
sets.
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by removing the training data overlapping among the rules
safeguards that:

a) Each training example is covered by only a single
rule and is used only once during the training phase.
Therefore, not allowing a training example to be
used multiple times in rule learning as in the asso-
ciation rule.

b) Rules’ frequencies which are the primary measure
for the rule strength (confidence and support) are
constantly amended to achieve high quality classi-
fiers.

Dealing with the exponential growth of the rule problem
contributed to the decrease of the one-error rate in the clas-
sifiers derived from APR. This is since allowing only those
rules that cover training data to be part of the classifier ensures
that good predictive rules are used to assign class labels for
the test data during the classification step. The classifier sizes
(average numbers of rules) generated by C4.5, RIPPER, CBA
and APR algorithms are shown in Figure 3. The purpose is to
compare the proposed algorithm with rule induction, AC and
decision tree approaches to seek the effectiveness of the new
pruning method and its impact on the final classifiers.

Figure 3 illustrates that the proposed algorithm was able
to reduce the classifier size of the AC algorithms yet did
not negatively influence the predictive accuracy. This can be
attributed to the new pruning performed by APR during the
rule evaluation. APR always sustains strong rules by pruning
any weak rules that do not maintain an acceptable support
and confidence value during the rule evaluation step. In other
words, removing training data instances from other rules
whenever a rule becomes part of the classifier surely mini-
mizes rule redundancy, and therefore has resulted in a more
concise set of rules that maintain high predictive accuracy
during the test data classification phase. It is obvious from
the number of rule results that the CBA algorithm produced
the largest classifiers despite performing multiple pruning
runs followed by C4.5. The algorithm that derived the least
numbers of rules is RIPPER since it follows a separate-and-
conquer strategy while inducing the rules beside multiple
levels of rule pruning. RIPPER normally employs validation

FIGURE 3. Average number of rules generated by the considered
algorithms on the UCI data sets.

set pruning and testing set pruning to only keep perfect rules
(rules with low data coverage yet high expected accuracy).
However, despite the fewer number of rules generated by
RIPPER, this algorithm’s classifiers often suffer from low
predictive accuracy when compared to AC and decision tree
approaches.

Lastly, the time taken to construct the classifier from the
UCI datasets of the AC algorithms (CBA, APR) is shown
in Figure 4. The proposed algorithm consistently required less
training time to generate the classifiers when compared to
CBA. We limited the experiments of the classifiers’ training
time to the AC algorithms (CBA, APR) for a fair test. The
won-lost-tie record of APR with reference to processing time
when compared to CBA is 9-0-1. This is clear evidence of the
superiority of the APR pruning procedure in which it discards
rules early on without having to check the data coverage
against the training data set. This is unlike CBA, which
assumes that all candidate rules have a fixed confidence
and hence they will be checked during the building of the
classifier until the training dataset becomes empty. The fact
that our proposed algorithm removes rules when they become
weak (their frequency dropped) during rule evaluation step
is advantageous. APR scales well in terms of the number of
instances in the dataset. This is obvious on the ‘‘Mushroom’’
and ‘‘Led’’ datasets that have large numbers of data examples
if contrasted with the other datasets.

FIGURE 4. Processing time required to construct a classifier on the UCI
data sets.

VII. AUTISM DATASET RESULTS ANALYSIS
A real Autism Spectrum Disorder (ASD) dataset related to
adults have been used to validate APR performance. This
dataset was retrieved from Thabtah [32], [33] using a mobile
screening application called ASDTests. The dataset contains
24 varaibles and 1118 data instances of adults with and with-
out ASD. The first ten variables in the dataset are questions
based on a classic medical questionnaire for ASD called
Autism Quotient - short version (AQ-10) (See Table 8) [34].
The values of the questions are converted into 0 and 1 based
on respondents’ replies Thabtah et al. [35]. The main variable
that denotes exhibiting ASD traits is called the score. This
variable represents the total score computed after summing up
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TABLE 8. Description of the first ten variables of the ASD adult dataset.

all 1s for variables A1–A10. When the score is larger than 6,
then the response variable (target class) is given ’Yes’ depict-
ing the adult has ASD traits, and when the score is smaller
than 6 the class is assigned ’No’ showing that the adult has no
ASD. There are additional attributes such as Family History,
Age, Gender, Ethnicity and Resident Country among others.
For complete details on the variables and their description for
the adult ASD dataset refer to Thabtah et al. [35].

The adult ASD dataset is imbalanced with the low fre-
quency class ’NO’ (adult without ASD) of 358 instances,
and majority class being ’YES’ (adult without ASD) with
760 instances. To ensure we end upwith fair classifiers during
the process of training, we discarded the score variable from
the dataset, as the class variable is derived from the total score.

The predictive accuracy generated by the considered clas-
sification algorithms from the adult ASD dataset is depicted
in Figure 5. In that figure, it is clearly that APR consis-
tently derived higher competitive classifiers with regards to
accuracy than C4.5, RIPPER and CBA algorithms. It seems
that automatically amending the rules and keeping the most
influential ones (those that cover training instances without
any overlapping) have direct impact on the predictive accu-
racy at least on the ASD dataset we consider. APR not only
keeps rules with high confidence as conventional associative
classifiers but also ensures that each rule covers at least one
instance thus cutting down the search space and ensuring that

FIGURE 5. Predictive accuracy of APR when compared with the
considered algorithms on the ASD dataset.

a rule may classify more instances within the training dataset.
Furthermore, only 25 instances that are actually not on the
spectrum has been misclassified by APR algorithm based
on the classifier derived from the ASD dataset. Whereas,
38 and 30, 30 instances that are actually without ASD have
been misclassified by RIPPER and C4.5 and CBA algorithms
respectively increasing the false positives. The number of
rules derived by APR was 32 compared with 99 rules by
CBA associative classifier and this indeed shows that not only
APR reduced the classifier size but also slightly increased its
predictive power.

VIII. CONCLUSION
AC methods suffer from a large number of rules, which
is a problem inherited from association rule mining. This
problem limits the use of AC in application domains due to
the very large classifiers that might be derived, which is hard
to control by the end users. This article proposed a novel
rule pruning procedure in AC; APR that amends the rules’
position in the classifier every time that a rule is inserted
rather than relying on the initial rules’ frequency computed
from the training data set. This results in only keeping rules
with actual data coverage in the classifier and discards any
rule whose data frequency has dropped below the acceptable
minimum frequency. The influence of this new procedure was
apparent on the classifiers size and on the predictive accuracy
of the APR classifiers. The results have been obtained from
experimenting on a number of data sets from the University
of Irvine’s (UCI) data repository & real adult ASD dataset
and using known AC, covering and decision tree algorithms.
The experimental results showed that APR is very compet-
itive with reference to the predictive accuracy in relation to
the C4.5, RIPPER, and CBA algorithms. In fact, the new
classifiers procedure of APR showed an improvement in the
classification accuracy when compared to those of C4.5, RIP-
PER, and CBA. Furthermore, APR regularly generated fewer
rules yet had a more efficient training procedure than CBA
due to the new pruning that discards any weak rules while the
classifier is progressing. In the near future, we intend to apply
APR on unstructured application data such as text mining to
seek any possible challenges or improvements.

In near future, the proposed AC will be extended into two
directions. The first issue on how to deal with unstructured
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features related to medical diagnosis particularly in ASD
and other behavioural applications. APR will need partic-
ular extension in dealing with variables with sparse possi-
ble values or variables that are need transformation before
utilizing them during the training step. The second possible
area of extending the current work is to integrate APR with
ensembles learning approach in [36]–[39] in which multiple
classifiers can be used to come up with a collective decision
for assigning the class table.
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