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ABSTRACT Interaction detection is a fundamental task in video activity analysis. Activities contain
group structure and temporal order information, which makes interactions complex. In this paper, a novel
framework is proposed to explore the global and local activity interactions by using Granger causality
discovery in multivariate time series. Based on the inherent properties of time series dependent structures
related to variable time orders, an order selection algorithm considering group information is proposed.
Experiments on the real world video surveillance dataset show that the activity network constructed by the
proposed method is hierarchical, including global and local dependence structure.

INDEX TERMS Activity analysis, interaction detection, Granger causality, order estimation.

I. INTRODUCTION
One main problem in video data mining is to discover hidden
temporal dependencies in the sequential data. In temporal
data mining, the input data is typically a sequence of dis-
crete items associated with time stamps. This study aims to
automatically detect the temporal interactions between them,
just using local motion features as inputs, such as optical
flow vectors. For video surveillance scenes, there co-exist
a number of activities. By performing the dimensionality
reduction, local motion features are clustered into atom activ-
ities, which are more easily to interpret. And these atom
activities can be deemed as multiple temporal variables. As a
powerful tool for sequential data analysis, Granger causal-
ity [1] has played a key role in understanding behaviors in
many domains to detect dependence structure of multivariate
time series, including economics [2], climate science [3] and
neuroscience [4]. Recently, the Granger causal framework
has been successfully applied to computer vision, especially
activity analysis [5]–[9].

The original concept of Granger causality was proposed by
Wiener and then introduced into data analysis by Granger [1].
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A variable A Granger causes another variable B, if the pre-
diction of B is significantly improved when the historical
information of A is included in the prediction model. And
this notion is extended from two variables to multiple vari-
ables through the analysis of vector autoregressive (VAR)
models [10].

The first challenge in using Granger causality to detect
temporal dependencies is that in real-world video scenes,
the interactions among activities are inherently complex.
There exists structural grouping information about variables.
Thus it is helpful to incorporate this information into the
Granger causality framework. In a traffic scene, for example,
the activities can usually be naturally grouped according to
their location, direction and so on. If these structural informa-
tion can be used, it is possible to achieve activity interaction
analysis more accurately and efficiently

The second challenge comes to the problem of selecting
time lags among activities. The temporal interaction between
two activities is typically characterized within a specific time
lag. For example, in cases where the time lag between related
activities is assumed to be large, it can be considered that
related activities with a short lag occur at the same time. How-
ever, when the time lag between related activities is viewed
small, it is considered as a sequence pattern. Therefore, time
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lag is one of the key characteristics to determine the time
dependence relationship.

The objective of the present article is to demonstrate that
leveraging group structure among the temporal variables
can indeed help improve the accuracy of Granger causality
measure, and specifically the effectiveness of the proposed
method is largely due to the use of regression methods with
adaptive order. The main contributions of this paper are listed
as follows:

1) A new framework to identify the local and global inter-
actions is proposed. Specifically, the group structure of
activities is taken into account. Both inter-group and
intra-group level causalities can be measured.

2) A modified Bayesian information criterion is proposed
to estimate the order of the VAR model. The time lag
is adaptive to the global and local characteristics.

3) Provide a more effective method for constructing
Granger causality network.

The rest of the paper is organized as follows. In Section II,
we do literature review on Granger causality and order selec-
tion. In Section III, the proposed framework is introduced.
In section IV, activity detection, clustering and multivariate
time series generation are introduced. Section V describes
the intra-group and inter-group causality analysis, and in
section VI adaptive order selection algorithm is discussed in
details. VII describes the experimental results in real dataset.
Section VIII concludes the paper and discusses future studies.

II. RELATED WORK
Many works of temporal dependency discovery employ the
framework of Granger causal models. Multivariate time
series often contains structural grouping information, and this
knowledge can be incorporated into the Granger causality
framework through the regression algorithm with different
Group Lasso penalties. Specifically, Lozano et al. [11] intro-
duced a penalty called Group Boosting, to group all the
past observations, in order to construct a relatively simple
Granger network model; Bolsta et al. [12] performed variable
selection using Group-lasso principles by assuming that the
time series was stationary. However, these methods can only
realize model selection at the group level, and cannot enable
the selection of variables within the group. To overcome
this issue, Basu et al. [13] introduced the concept of direc-
tion consistency in the Group Lasso regression regulariza-
tion framework, in order to realize the variable selection at
the inter-group and intra-group level, when constructing the
network Granger causality for panel data. However, in these
works the time lag dependence structure, which exists in
multi-variant time series, has not been taken into account.

Based on the inherent property of time series depen-
dent structures related to variable time orders, a number of
works focus on order selection for modeling multivariate
time series. A popular approach is to try different values for
the lag and then to choose a value based on some criteria
such as Bayesian information criterion (BIC). For example,

FIGURE 1. The proposed framework.

Vlachos and Kugiumtzis [14] proposed a backward-in-
time-selection (BTS) method to select the lag order of
the VAR model for multivariate time series. Furthermore,
Siggiridou et al. [15] adapted the BTS method for Granger
causality, in which the BIC is used as criterion. Du et al. [16]
proposed a framework which can infer the time lag and
causality at the same time. One of the main issues with
this approach is that, it cannot incorporate additional prior
information that the user might have. The prior information,
when modeled appropriately, can aid in better estimating
the maximum lag and improve the performance of causal
discovery.

III. PROPOSED FRAMEWORK
A. FRAMEWORK
Considering the importance of grouping information and the
parameter of time lag during time series analysis, this study
proposes a framework (Fig.1) that can integrate group detec-
tion and lag estimation, which would provide more accurate
causality analysis. Firstly, the low-level features are extracted
and quantified. The activities are then detected based on
the topic model. Each activity is further treated as a time
variable to generate a multivariate time series. In order to
obtain the group structure information, the activities are clus-
tered into groups by using the K-means. Finally, through
the vector autoregressive (VAR) model, Granger causality
is used to measure interactions within and between groups.
A new method is proposed to estimate the time order of
VAR model by taking into account the group information.
Based on the analysis of causality within and between groups,
the hierarchical network of the whole scene can be inferred.

B. ASSUMPTION
Suppose the video scene containsH activity groups, and each
group has multiple activities. The purpose of this study is
to discover time dependencies between groups and between
individuals in each group. As shown in Fig. 2, it is an example
of a video scene which includes six activities that can be clus-
tered into two groups. Let YA and YB represent two activity
groups, and the start of YA causes the start of YB after time
interval τG. It indicates that the occurrence of YB depends on
the occurrence of YA, which means that an item within YA
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FIGURE 2. An example of activity interactions.

is often followed by an item within YB. At the same time,
within the groups, there also exist temporal dependencies
among activities with different time lags. It is obviously that
interactions between and within groups are with different
time scales. Interactions between groups are within large
time intervals, while internal interactions are within finer
intervals. Based on this prior knowledge, this study proposes
an adaptive time order selection criterion for VAR models.

IV. MULTIVARIATE TIME SERIESE GENERATION
A. ACTIVITY DETECTION
In this section, the topic model HDP is adopted to model
video scenes, in which latent topics are deemed as activi-
ties [17]–[19]. HDP is a nonparametric hierarchical Bayesian
model that can automatically discover the number M of
topics [20], as shown in Fig.3. Firstly, each video is tempo-
rally divided into N non-overlapping clips. And then opti-
cal flow vectors are extracted and quantified into visual
words according to the directions and positions. Furthermore,
visual documents are generated by the words accumulation
over the corresponding video clips. Finally, M activities can
be automatically detected by the HDP model and activity-
proportion Gn for every clip form a matrix. This matrix is an
M -dimensional multivariate activity-proportion series with
N clips.

FIGURE 3. Hierarchical Dirichlet process model.

B. MULTIVARIATE TIME SERIES
By considering each activity as a time variable, each row of
the activity-proportion matrix can be deemed as a discrete
time series. After preprocessing,M zero-mean stationary dis-
crete time series of length N ,{X1(n), ...XM (n)}, 1 ≤ n ≤ N ,
are generated, which can form a multivariate stationary
process X (n) = [X1(n), ...XM (n)]T . Before detecting the
local and global causal relationships between activities, it is
necessary to take appropriate grouping strategies to obtain

the structure information. In this section, K-means clustering
is used to partition these M observations into H groups,
so that activities within the same group have similar dynam-
ics, but are different from the activities of other groups. Let
us consider H discrete time vector-valued stochastic pro-
cesses {Y1(n), ...YH (n)} of dimensions {M1, ...,MH }, such
that each group is a vector-valued stochastic process com-
posed of Mh zero-mean scalar-valued stationary processes
Yh(n) = [Xh1(n), ...XhMh (n)]

T . When global interactions are
being identified, each group can be treated as a whole. But
when local interactions are being identified, individualities
of group’s members should be emphasized.

V. INTERACTION MEASURE BASED ON
GRANGER CAUSALITY
A. INTER-GROUP GRANGER CAUSALITY
The intent of global analysis is to assess the interactions
between groups by means of Granger Causality in the fre-
quency domain. Given that groups are well divided, this
procedure can perform without group variable selection. Dif-
ferent from the scalar-value based vector auto-regression,
the overall process is a vector-valued process: Y (n) =
[Y1(n), ...,YH (n)]T , and it can be represented by the VAR
model,

Y (n) =
pg∑
k=1

A(k)Y (n− k)+ U1(n), (1)

where A(k) represents the M ×M matrix of the model coef-
ficients,U1(n) is theM×1 vector of zero means white noise,
and Pg is the maximum order which needs to be decided. The
spectral representation of the VAR process can be obtained by
Fourier transform. The coefficients in the frequency domain
is defined as,

A(w) =
pg∑
k=1

A(k)e−jwkT , (2)

where w represents angular frequencies, and T represents
the sampling period. The M × M spectral density matrix of
the overall process S(w) and its inverse P(w) = S(w)−1 are
factorized as follows [21]:

S(w) = T(w)6T(w)∗, (3)

P(w) = Ā∗(w)6−1Ā(w), (4)

where T(w) is the transfer function between variables and 6

is the noise process covariance. Because there are H groups
that are considered as whole,A(w), P(w) and6 can be broken
into H × H blocks,

A(w) =

 A11(w) ... A1H (w)
... ... ...

AH1(w) ... AHH (w)


P(w) =

 p11(w) ... p1H (w)
... ... ...

PH1(w) ... PHH (w)

 , (5)

where the dimension of the i− j block is Mi ×Mj.
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And then in order to measure the direct causality between
these groups, the frequency domain causality measure for
multiple vector-valued process [22] is adopted. The direct
causality from Yj to Yi is measured at the frequency w as
follows:

gj−>i(w) = ln

∣∣Pjj(w)∣∣∣∣∣Pjj(w)− Ā∗ij(w)6
−1
ii Āij(w)

∣∣∣ , (6)

where Aij(w) represents the i − j block of A(w), Pjj(w) rep-
resents the j − j block of P(w), and 6ii represents the i − i
block of 6. The total causal causality can be obtained by
integrating (6) with respect to the frequency w as follows,

Ginter (j, i) =


∑
w
gj−>i(w), ∀ i 6= j

0, i 6= j
(7)

B. INTRA-GROUP GRANGER CAUSALITY
For local analysis, the aim is to measure the direct Granger
causality between each pair of activities within a group. For
the group’s corresponding scalar-value multivariate process:
Yh(n) = [Xh1(n), ...XhMh (n)]

T , its VAR representation is as
follows:

Yh(n) =
pl∑
k=1

B(k)Yh(n− k)+ U2(n), (8)

where B(k) represents the Mh × Mh matrix of the model
coefficients, U2(n) is theMh × 1 vector of zero-means white
noise. pl is the order of the VARmodel which will be selected
according to an adaptive algorithm in the next section.

Based on the spectral representation of the VAR model,
the direct Granger causality from xhv to xhu at frequency w is
as follows:

ghu−>v(w) = ln

(
Pvv(w)

Pvv(w)−
∣∣b̄uv(w)∣∣2/δ2uu

)
, (9)

where Pvv(w) is the v − v element of P(w), δ2uu is the v − v
element of6, buv(w) is the u−v element ofB(w), and 1 ≤ u ≤
Mh, 1 ≤ v ≤ Mh. A total measure of the causality between
processes Xhv and Xhu can be obtained by integrating (9) with
respect to the frequency as follows:

Gintar (v, u) =


∑
w
ghv−>u(w), ∀ u 6= v

0, ∀u = v
(10)

VI. ADAPTIVE ORDER SELCETION
The sensitivity of the results of Granger causality test to
the choice of the order (time lag) is a topic of active
research. Order selection can have different results for mul-
tivariate signal processing. Based on the assumption that the
time lag of local interactions is always no greater than that
of group interactions, an adaptive order selection method is
proposed in this section.

Algorithm 1 Algorithm 1 Estimating Model Orders
Input: Y1, ....YH : time series for each group

H : The number of groups
Pmax : The maximum order for the whole process
αg, αl : The penalty factor for global and local analysis

Initialize: Pmax, αg, αl
1. For p =1: Pmaxdo // for global analysis
2. Regress Y for order p and compute RSS(p)
3. compute mBIC(p) using (12)
4. End for
5. [mBICmin, pg]← min(mBIC) using (14)
6. PLmax← pg// for local analysis
7. h = 1
8. While h ≤ H do
9. For p = 1: PLmaxdo
10. Regress Yh for order p and compute RSS(p)
11. Compute mBIC(p) using (12)
12. End for
13. [mBICmin(h), pl(h)]← min(mBIC) using (14)
14. h← h+ 1
15. End while
Output: pg, pl

In practice, given time series data, a finite order p of the
best VAR is selected based on theoretical principles. It is
usually selected from candidate orders between 0 and pmax.
Based on the assumption in section III, pmax is set large
enough for global analysis. As for local analysis, pmax is set
equal to the selected best order for the global. That is,

pLmax = pg (11)

Then a new criterion based on Bayesian information criterion
is defined to determine the optimal value of orders,

mBIC(p, α) = N log(RSS(p))+ α log(N )M2p, (12)

where M is the number of variables, N is the length of
variables, and α is a penalty factor. RSS is the regression
residual sum of squares and calculated by:

RSS(p) =
N∑
n=1

(Yn −
_

Y n(p))2, (13)

where
_

Y n(p) is the prediction value calculated by regression
function with different p ∈ [0, pmax]. For cases in which
variable length values are large and the number of variables is
small, the highest candidate order is usually selected. There-
fore, for local analysis, higher values of α should be specified
in order to select lower orders. We compute the mBIC scores
using (12) and select the optimal value of p that yields the
smallest score as the optimal value,

po = argmin
0≤p≤pmax

mBIC(p, α). (14)
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VII. ANALYSIS OF INTERACTION IN REAL DATASET
A. EXPERIMENT DATASET AND PREPROCESSING
In this section, the proposed framework was evaluated on
two traffic video sequences selected from the QMUL dataset
(360×288, 25 fps, 1 h). As shown in Fig. 4, these two scenes
are governed by traffic lights in a certain temporal order.
Typically, a scene is divided into several traffic states, each
of which lasts for a period of time. For the intersection scene,
there are four states, and the temporal order between them is
{A->B->C->D->A. . . }. For the roundabout scene, there are
three states, and the temporal order between them is {A->B-
>C->A. . . }.

FIGURE 4. Dataset (a) intersection scene (b) roundabout scene.

To apply the topic model on video data, the video
sequences are represented as bag-of-words. Firstly, the scene
was spatially divided into a 36 × 29 grid with a spacing
of 10 pixels, and then, the motion direction was quantified
into 8 orientations for each cell. Therefore, a codebook with
36× 29× 8 visual words was constructed. The whole video
sequences were temporally segmented into 3-s-long non-
overlapping video clips. Optical flow vectors with the mag-
nitudes less than 0.8 were ignored and quantified into visual
words. Video documents were generated by accumulating
visual words. The parameters of the HDP model for the two
scenes are set as follows: {γ = 0.25, α0 = 2 , D0 = 60} for
the intersection scene and {γ = 0.1, α0 = 0.5 , D0 = 30}
for the roundabout scene, in which D0 the parameter for
the Dirichlet distribution H = Dir(D0). Gibbs Sampling
was used for inference in the model. HDP can automatically
determine the number of topics. Finally, twenty-one and
twenty-six topics (activities) were respectively discovered for
the two scenes. In this study just the dominated activities,
which explained at least 5% of the all flow vectors, were
selected to be further analyzed and shown in Fig. 5. For
the intersection scene, there were 8 activities, while for the
roundabout scene, 7 activities were selected. Based on the
K-means, these selected activities were clustered into groups.
The number of cluster centers was manually set to be the
same as the number of traffic states. For the intersection
scene, activities 1, 2, 3 are clustered into the same group,
and activities 6 and 7 belong to the same group. Activity
5 and activity 8 represent respectively two groups. For the
roundabout scene, activities 1, 2 and 3 are in the same group,

FIGURE 5. Activities detected by HDP (a) intersection scene
(b) roundabout scene.

FIGURE 6. Time series of one activity.

activities 4 and 5 belong to the same group, and activities
6 and 7 belong to the same group. Obviously, the clus-
tering results are consistent with the actual traffic statuses.
Therefore, global interaction is to detect transitions between
different groups. The purpose of local analysis is to discover
the interactions between activities within the same group.

In light of the use of HDP model as a multivariate detec-
tion step, the distribution over activities associated with each
clip formed an activity-proportion matrix. Each row repre-
sents the proportions of one activity occurring over time.
In order to perform Granger causality analysis, the time
series were made stationary by de-trending and differencing.
As Fig. 6 shows, the top is the original time series of one
activity and the bottom is the post-preprocessed data.

The coefficients and input covariance of VAR model were
estimated by least squares method. Then the causal relation-
ship between the time series is calculated from the coefficient
estimates in frequency domain.

B. EFFECT OF MODEL ORDER
In this section, in order to validate the assumption that depen-
dent structures are affected by orders of the VAR model,
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the entire process is treated as a scalar-valued multivariable
process and the Granger causality between pairs of activities
are computed.

FIGURE 7. Granger causality from activity 1 to others with different
orders in the roundabout scene.

Fig. 7 shows the results of causality measure from activity
1 to others in the roundabout scene. It is obviously that the
value of causality is closely related with the model order. For
instance, when p = 3, the causality from activity 1 to 2 is
the strongest. But as the value of order grows, the interaction
from activity 1 to activity 2 become weaker, while that from
activity 1 to 7 become stronger. As we known, activity 1 and
2 belong to the same group, thus the interaction between them
is local. Activity 1 and 7 belong to different groups, the time
lag between them is large. This results demonstrate that it is
important to adapt different scale of model orders for global
and local interaction detection.

C. INTER-GROUP INTERACTION
In this subsection, the global interaction, that is, inter-
group interaction, is detected. The parameters are as follows:
{pmax = 20, pg = 7, N = 1244, H = 3}. For comparison,
we also computed the sum of pairwise causality from group i
to group j as follows:

G(i, j) =
Mi∑
l

Mj∑
k

g(l, k), (15)

where Mi represents the number of variables in group i, Mj
represents the number of variables in group j, and g(l, k)
denotes the measure of Granger causality from activity l to
k . The order is set to same as the proposed method. But in
this method, the overall process is deemed as a scalar-value
process. Causality between activities were measured, and
summed based on the group information.

Fig. 8 shows the results of the two method for the round-
about scene. The average of the causal measurement is used
as the threshold. If the result is greater than the threshold, it is
considered that there is an interactive relationship between

FIGURE 8. Granger causality between groups for the roundabout scene
with Pg = 7.

the two groups. It is obvious that the complete traffic light
cycle {A → B → C → A...} is discovered by the proposed
methods. But the sum causality approach failed to detect
the relationship between the group C and A. On the other
hand, it is difficult to distinguish between direct and indirect
interactions from group A to group C.

D. INTRA-GROUP INTERACTION
In this subsection, the local interactions within each group
are analyzed. For the roundabout scene, seven activities are
classified into three groups corresponding to the three traffic
states. Group A consists of three activities, and Groups B and
C include two activities respectively. Fig. 9 and Fig.10 show
the results, in which the X-axis (horizontal axis) represents
the frequency, while the Y-axis (vertical axis) represents the
values of causal measurement. Obviously, causal measures
are asymmetrical, which means that the time dependence
between activities is directional. IfGintar (v, u) ismuch greater
than Gintar (u, v), we believe that activity v Granger causes
activity u. Specifically, there exists a local temporal order
between these activities in group A:{1→ 2→ 3→ 1}.

FIGURE 9. Spectral causality for each pair in group A with pl = 4.

Take the second group as an example, we further demon-
strate the effectiveness of the proposed order selection
mehotd. Fig. 11 compares the value ofmBIC and BIC varying
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FIGURE 10. Spectral causality for each pair in group B and C with pl = 4.

FIGURE 11. Value of mBIC and BI C varying with order.

TABLE 1. Granger causality with different orders.

with orders. In this test, for the proposed mBIC, we set α =
1.7. It can be seen that there are two local minimums on
the mBIC curve, while for the BIC curve there is only one.
If we set pmax = 20, then both of the two criteria will choose
p = 18 as the optimal order. If we set pmax = 7, which is the
optimal order for the inter-group anlysis, mBIC will choose
p = 4. But BIC will choose p = 7.
Table 1 shows the Granger causlity between the two activ-

ities in the group B. When p = 18, the causal measures in
both directions are basically equal, so the two are consid-
ered to be simultaneous. When p = 4, the causal measure
from activity 4 to activity 5 is much larger than that of the
opposite direction, so the two can be regarded as sequence
occurrences. As Fig. 12 shows, the experimental results are
consistent with the actual situation.

E. APPLICATION: INFERING NETWORK
Table 2 and Table 3 are the causal matrixes for the two
video scenes, in which gray blocks represent the local
causal matrixes, and the rest global causalities. Furthermore,

FIGURE 12. Sequential and co-occurring motion patterns.

TABLE 2. Causal matrix for the ROUNABOUT scene.

TABLE 3. Causal matrix for the INTERSECTION scene.

the average causal measure is used as a threshold; if the causal
measure between actions/groups is greater than the threshold,
there exsits an interaction between them and vice versa. The
red and blue values in the tables represent causal measures
greater than the threshold.

Based on the obtained causal matrixes, hierarchical net-
works of the whole scenes can be inferred. As shown in
Fig. 13-14, it is evident that the proposed framework can
identify the traffic light cycle governing the scene. And at the
same time, the network of the activities within the groups are
also constructed. Specifically, in intersection scene, state A is
sometimes interspersed with state B.

173974 VOLUME 7, 2019



Y. Fan et al.: Activity Interaction Detection by Using Causal Discovery With Order Estimation

FIGURE 13. Granger causality approach applied to the roundabout scene.
(a) Top: activity interactions network; (b) Bottom: visualization of the
scene with three states. Different color represents different activities.

FIGURE 14. Granger causality approach applied to the intersection scene.
(a) Top: activity interactions network; (b) Bottom: visualization of the
scene with four states. Different color represents different
activities.

VIII. CONCLUSION
In this paper, we have proposed a framework to identify the
global and local interactions of activities in video scenes
by detecting the Granger causal relationship based on VAR
model. Activities are detected and converted into multivariate
time series which can be regressed byVARmodel. The frame-
work differs from existing methods in two ways: considering
both the grouping information and the parameter of time
lag. For estimating the VAR model order, a new criterion
called modified BIC is introduced. The experiment results
have shown that the proposed adaptive order selectionmethod
can select more accurate orders. Based on the obtained
global and local causal matrix, the activity network can be
inferred.

In future work, the problem of overlap between groups
should be taken into account. Because some activities could
be shared with several groups. It would also be beneficial to
study the nonlinear parametric model for Granger causality
of time series.
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