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ABSTRACT Accurate and up-to-date information on the spatial and geographical characteristics of agri-
cultural areas is an indispensable value for the various activities related to agriculture and research. Most
agricultural studies and policies are carried out at the field level, for which precise boundaries are required.
Today, high-resolution remote sensing images provide useful spatial information for plot delineation;
however, manual processing is time-consuming and prone to human error. The objective of this paper is
to explore the potential of deep learning (DL) approach, in particular a convolutional neural network (CNN)
model, for the automatic outlining of agricultural plot boundaries from orthophotos over large areas with
a heterogeneous landscape. Since DL approaches require a large amount of labeled data to learn, we have
exploited the open data from the Land Parcel Identification System (LPIS) from the Chartered Community of
Navarre, Spain. The boundaries of the agricultural plots obtained from our methodology were compared with
those obtained using a state-of-the-art methodology known as gPb-UCM (global probability of boundary
followed by ultrametric contour map) through an error measurement called the boundary displacement error
index (BDE). In BDE terms, the results obtained by our method outperform those obtained from the gPb-
UCM method. In this regard, CNN models trained with LPIS data are a useful and powerful tool that would
reduce intensive manual labor in outlining agricultural plots.

INDEX TERMS Convolutional neural network, deep learning, edge extraction, land parcel identification
system, parcels delineation.

I. INTRODUCTION

World food production needs to grow by 70% in devel-
oping countries to meet food demands of 9 billion people
by 2050 [1]. Hence, the agricultural sector faces a critical
global challenge: ensuring access to safe, healthy, and
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nutritious food for a growing world population; and, at the
same time using natural resources more sustainably while
making an effective contribution to climate change adapta-
tion and mitigation [2]. For agriculture to be sustainable,
agricultural practices must take full advantage of technol-
ogy, research and development and adapt to local require-
ments. Adequate statistics, geo-spatial information, maps
and qualitative knowledge are needed for the planning and
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management of the agricultural sector [3]. On the other hand,
a symbiosis between technical and investment-oriented orga-
nizations is also necessary.

At the European level, the Common Agricultural Policy
(CAP) fosters green and sustainable agriculture! by offer-
ing compensation payments to farmers. The geographical
location and size of the agricultural parcel play a key role
in determining which payment entitlements may be eligi-
ble and for which payment may be claimed for [4]. In this
regard, the Land Parcel Identification System (LPIS), a GIS
inventory similar to cadastre, has been created as a con-
trol mechanism to verify the eligibility of subsidies, and
monitoring of plots with respect to selected environmental
rules and rural development programs [4], [S]. The European
Union (EU) Member States have their own LPIS which fol-
lows common guidelines. In addition to its original purpose,
LPIS information has proven useful for studying various
aspects of agricultural activity [6], such as the effect of land
fragmentation and carbon dioxide emissions.

The dynamic nature of agricultural activities (e.g., crop
rotation, subdivision or consolidation of fields, temporary
fallow) generally makes agricultural plots unstable both in
boundaries and land use [4]. Therefore, in order to reduce the
risk of paying sanctions due to the improper identification of
agricultural lands [7], the LPIS should be updated regularly
(i.e. once a year). In general, the creation and updating of each
LPIS is mainly done by photo-interpretation using very high
resolution orthophotos [7], which makes it a laborious pro-
cess which is susceptible to human error [8]. In this respect,
efforts should focus on the automation of workflows for the
outlining parcels in cadastral maps [9]. In the literature on
remote sensing, automatic and semi-automatic methods have
been proposed to outline the boundaries of agricultural plots.
Most of them are based on image segmentation, edge detec-
tion algorithms and classification models, or combinations of
these techniques.

Crommelinck et al. [10] proposed a workflow, based on
an ultrametric contour map (UCM) generated from the gPb
(globalized probability of boundary based contour detection),
known as gPb-UCM [11], for the automatic delineation of
objects, in particular cadastral boundaries, using RGB images
acquired through an unmanned aerial vehicle (UAV) plat-
form. The results showed that a gPb-UCM based approach
is best suited for areas in which object contours are clearly
visible and coincide with cadastral boundaries, obtaining cor-
rectness rates of up to 80%. The authors concluded that this
approach is of limited usability as an independent approach
to cadastral mapping, and can be used for an initial location
of the boundaries of candidate objects, which need to be ver-
ified and located exactly by integrating additional workflow
steps. In a later work [12], Crommelinck et al. proposed a
workflow for the interactive outlining of cadastral boundaries
from UAV data. The components of this boundary delineation

1 https://ec.europa.eu/agriculture/sites/agriculture/files/events/2012/
rio-side-event/brochure_en.pdf
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methodology were: gPb contour detection, SLIC (simple lin-
ear iterative clustering) superpixels and random forest classi-
fier. The main results reported were that, compared to manual
delineation, the number of clicks per 100 million was reduced
by up to 86%. However, as the authors state, this methodology
was not applied to real-world cadastral mapping scenarios,
so it requires more research and development to be used in
cadastral mapping workflows.

In the work of Garcia-Pedrero et al. [13], a new method-
ology based on a consensus of superpixel segmentations
for delineating agricultural farm boundaries was presented.
The most important contributions of this work have been
to combine segmentation at different scales using superpix-
els and to incorporate information of the vegetative stage
by means of images taken on different dates in order
to obtain a single segmentation of the agricultural plots.
Ghaffarian and Turker [14] proposed a segmentation method
based on active contour models for the automatic extraction
of sub-boundaries (boundaries between different types of
crops) within permanent agricultural fields. Active contour
models used the results of both automatic fuzzy c-means clus-
tering and edge detection to calculate an improved gradient
vector flow [15]. This methodology is a promising solution
for outlining sub-boundaries on agricultural plots with high
intra-plot variability. However, to establish the geometry of
agricultural fields, the authors used a reliable parcel database.
In [16], Xu et al. addressed the problem of outlining agri-
cultural parcels using a stratified extraction method based on
objects from RGB satellite imagery. According to the authors,
the estimation of the segmentation scale based on spatial
statistics can avoid sub-segmentation and over-segmentation
to a certain degree. However, the accuracy of the segmenta-
tion and its subsequent analysis was limited in regions with
complex objects.

The aforementioned approaches have several drawbacks:
they are sensitive to intra-plot variability, which can pro-
duce more segments than desired; and most of these meth-
ods rely heavily on a correct selection of parameters
(e.g., the similarity measure used to group the pixels of the
image), which requires prior knowledge of the scene or trial-
and-error tuning. In order to overcome these drawbacks,
Garcia-Pedrero et al. [17] proposed a methodology for delin-
eating agricultural plots using a machine learning method
known as RUSboost classifier [18]. This methodology used
superpixels as minimum processing units, and a superpixel
agglomeration process where the decision to join two super-
pixels is taken by the classifier resulting in a segmentation
where agricultural plots are distinguished. A disadvantage is
the amount of time taken to select the most suitable features
to get a good performance from a machine learning classi-
fier [19]. In addition, the variability in plot sizes and shapes
means that certain configuration parameters do not allow for
the proper delineation and classification of all agricultural
plots in a scene [20].

Considering that deep learning (DL) techniques have
proven useful as a tool in understanding agricultural
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processes [21], [22], DL methodologies for outlining agricul-
tural plots seem to be a solution to overcome the drawbacks
of the aforementioned approaches.

DL techniques, and in particular convolutional neural
networks (CNNs) are capable of exploiting the unknown
structure in the input data distribution to discover good
representations, often at multiple levels, with higher-level
features defined in terms of lower-level features; reducing
large and complex data sets to a predictive output [23], [24].
This provides greater learning capacity and therefore higher
performance and accuracy compared to traditional methods.
Two types of CNNs are generally used in remote sensing
applications [25]: patch-based convolutional networks and
fully convolutional networks. In the first approach, a typical
CNN model receives fixed-size patches centered on each
image pixel as input and, consequently, the network’s
response (prediction) to every single pixel is represented by
the image region corresponding to that particular patch [26].
These models work particularly well in sparse annotated data
sets; however, when dense predictions are required (i.e., one
for each pixel of the image) they require a lot of computa-
tional power [27]. Although there are approaches to reduce
these resources such as the use of superpixels instead of
pixels [28], they present problems such as inaccuracies at
the edges of the objects in the image. On the other hand,
fully convolutional networks are built solely from locally
connected layers, such as convolution, pooling, and upsam-
pling [29]. Unlike patch-based architectures, they can offer
dense predictions because they do not contain fully connected
layers with fixed dimensions, depending only on the size of
the input image. Thus, a fully convolutional network tries
to learn representations and make decisions based on local
spatial information [30]. These features make them more
efficient than patch-based approach [25].

As far as the authors know, there is little literature avail-
able dealing with the automatic/semi-automatic delineation
of agricultural plots using CNNGs. Xia et al. [31] proposed a
workflow for the extraction of deep edges of crop plots from
very high spatial resolution images. The workflow combined
RCF [32] and U-Net [33] models respectively to detect soft
edges (rivers and roads) and to detect regions such as hard
edges and types of farmland. To evaluate the methodology
they used a pansharpened image from the GF-2 satellite [34]
with a coverage area of 1808 km?, which is equivalent to
a square image of 1680 by 1680 pixels (spatial resolution
of 0.8 m). While the work is difficult to replicate due to the
lack of information provided in the methodology, the results
showed a promising future for DL-based techniques. In [35],
the authors proposed a strategy to detect field boundaries
using a fully convolutional network (FCN) in combination
with a grouping algorithm. Field boundary detection was
defined as a supervised pixel classification problem, using
the SegNet architecture [36] to distinguish boundary from
non-boundary pixels. The detected boundaries were used
to extract a hierarchy of closed segments using gPb-UCM.
The final segmentation was obtained by applying the
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single-scale combinatorial grouping algorithm [37]. The
methodology was applied in two areas of study, using images
from WorldView-2 and 3. Although the results showed that
the methodology is promising, the size and number of images
used in this work do not appear to be sufficient to avoid over-
adjustment of the models. This issue was not addressed in this
research. These approaches are an important contribution to
the development of tools based on DL for boundary cadastral
of agricultural plots. However, in both cases, the experiments
have been carried out using very limited training areas. This
restricts the capacity of the generalization of the results,
tending to over-fit the obtained models. Although the impor-
tance of DL is increasing, there are significant challenges
that have to be tackled to develop robust models. One of
the most important drawbacks and barriers to the use of
DL methodologies in agriculture is the lack of large labeled
data sets needed for modeling [38]. Because of this, it is
possible to say that DL-based strategies for the generation of
agricultural cadastres present a gap between laboratory-scale
developments and their application in the real world.

In order to reduce the gap described above, in this paper
we explored the use of a DL methodology for the automated
mapping of agricultural plot boundaries over a large area
with a heterogeneous landscape. In particular, we performed
an experimental analysis using the LPIS open-data of an
extensive region of Spain. The proposed approach opens up
the possibility to create a framework to a support human
operator task, as a complementary tool for the systematic
updating of agricultural cadastral boundaries on a large scale.

The rest of the manuscript is organized as follows:
Section II describes the data set used as well as its geograph-
ical location. Section III describes each stage of the proposed
methodology. The results obtained as well as their discus-
sion are presented in Section IV. Finally, the conclusions
and problems to be addressed in future efforts are presented
in Section V.

Il. STUDY AREA AND MATERIAL

In Spain, the implementation of LPIS, called SIGPAC, is sup-
ported by the Ministry of Agriculture, Food and Environment
of the Government of Spain. SIGPAC is a public data source
that allows the geographical identification (e.g., land use and
boundaries) of parcels declared by farmers and stockbreeders
throughout the Spanish territory. All SIGPAC data” has been
generated from digital orthophotos (RGB images), cadastral
information and on-site field visits.

In this work the data set corresponding to the last revi-
sion (2019) of the SIGPAC of the Chartered Community
of Navarre® was used. From this, 207 raster tiles were
selected, each corresponding to an RGB image of 9,384 x
13,688 pixels and 25 cm spatial resolution. The location of the
study site as well as the coverage of the raster tiles used are
shown in Figure 1. In addition, the boundaries of agricultural

2https JIwww.fega.es/es/node/48564. Last accessed April 2019.
3https://sigpac.tracasa.es. Last accessed on February 2019.
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FIGURE 1. Study site.
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FIGURE 2. Workflow to train the models and predicting agricultural plots boundaries.

plots in the same area are available in Shapefile format, cov-
ering most of the tiles. Since SIGPAC contains information
not exclusively on agricultural plots (e.g., water bodies and
cities), from the available information only those parcels
corresponding to the following land cover were selected: fruit
trees, nuts, olive groves, orchards, arable land and vineyards.
This information was used as ground truth (GT).

ill. METHODS

The proposed methodology (Figure 2) is based on a CNN
model, known as U-Net, to outline agricultural plots bound-
aries automatically. To overcome the lack of labeled data sets
needed to train the model, in this work, open-access LPIS data
was used. The main steps of the proposed methodology are
detailed below.

A. PRE-PROCESSING
To reduce the time and computational requirements of the
training process, the spatial resolution of the data set was
reduced by 1/8 by the nearest neighbor algorithm, obtaining
images of 2 m resolution and size of 1,173 by 1,711 pixels.
Although it is known that more contextual information helps
to better identify objects in an image [39]; hardware lim-
itations impose the maximum image size with which it is
possible to work. In this regard, the downsizing of the images
allows computing costs to be reduced as well as extending the
contextual information.

GT (shapefile) was rasterized to this same resolution. From
the polygons (agricultural plots) of the GT, three classes were
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generated corresponding to the background, the plot and a
buffer around the boundaries of the agricultural plots. The
latter represents the transition between the background and
the agricultural plot and is used to reduce possible errors
caused by the inaccuracy of the manual outlining carried out
by manual operators. To train the models, the raster tiles
and the GT were clipped into overlapping patches of 224 by
224 pixels, with a 50% overlap. The area covered by each
patch is equivalent to 20 hectares, which provides a good
representation of the context of the agricultural plots. Because
the GT does not completely cover the tiles (i.e., not all of
the plots have been delineated), only those patches with a GT
coverage greater than or equal to 50% were used. Considering
that the training data set must contain as many different exam-
ples as possible to avoid over-fit of the model generated, data
augmentation was applied by means of a random Dihedral
transformation of the Dih4 group [40]. In addition, with a
probability of 0.5, a random rotation was performed with
those degrees in the range of 45° to —45°. Based on the work
of [41], the patches were normalized, subtracting the mean
RGB value of ImageNet data set (R = 103.939, G = 116.779,
B = 123.680) from each channel.

B. TRAINING CNNS MODEL

We used the U-Net architecture [33] (Figure 3), a cutting-
edge neural network model to segment images, to delineate
agricultural plots. The U-Net architecture can be described
in general terms as a model of multi-scale encoders-
decoders with skip connections. The coding part extracts the
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Concatenation

characteristics of the data while reducing the width and height
of the input data. The decoder part shows the feature maps
and halves the number of feature channels. Skip connections
alleviate the problem of the vanishing gradient improving
the learning process [42]. Finally, the output layer uses a
1x1 convolution along with an activation function to map
the feature vector to an output matrix with the width and
height of the input image. In this work, we used a softmax
function as the activation function. Based on the work of [43],
the encoders and decoders of the network were built using a
VGG-16 [41] encoder pre-trained on ImageNet. As can be
seen in (Figure 4), an encoder block includes three 3 x 3
convolutional layers with a stride of 1 and the same number
of output channels. The last layer of this block is a maximum
pooling layer that reduces input by calculating the maximum
value for non-overlapping windows (2 x2). On the other hand,
a decoder block consists of an upsampling layer, two 3 x 3
convolutional layers, two batch normalization layers, and two
ReLU activation layers arranged as shown in Figure 4. The
upsampling layer replicates the rows and columns of the input
data by doubling their size. The batch normalization layer
applies a data standardization (mean zero and standard devi-
ation close to one) to the input batch. The ReLU activation
layer rectifies the input data by replacing values below zero
with zeros.

The use of trained weights on ImageNet data was preferred
over training from scratch because it usually accelerates con-
vergence and helps reduce over-fitting in small data sets [44].
The network was retrained using the Adam optimizer [45]
with a learning rate of 0.0001 and a batch size of 16.
As the loss function, a combination of Jaccard dis-
tance [46] and categorical cross-entropy [47] proposed by
Rakhlin ez al. [48] was used. The proposed model was trained
for a period of 200 epochs.
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C. POSTPROCESSING

In order to obtain the boundaries of the agricultural plots
of a complete tile, the following post-processing strategy is
followed. First, a padded version of the tile obtained through
a mirror padding strategy is divided into several overlapping
patches, from which the U-net model performed the segmen-
tation. During the prediction phase, random transformations
are applied to the test patches. In this way instead of showing
the regular images only once to the trained model the various
versions of the images are shown several times improving
the chances of identifying the target and predicting it accord-
ingly [49]. In this work, we used the eight transformations
of the Dih4 group. Once the model provides the segmented
images, the inverse transformation is performed on them,
in such a way that all the pixels agree. The final segmentation
of a tile is given by a soft voting that returns the final class
label y; as arg max of the sum of predicted probabilities:

M
j;izargznax;wc%'fc cef0,1,2} 1)

where )A)Z’C is the probability of the i pixel belonging to the
¢ — th class given the prediction m, w, is the weight, and
M is the total number of predictions over the i pixel.
As can be intuited, M depends on the number of over-
laps and the number of Dih4 transformations. In this work,
the weights (w.) were defined as 1/C, this allows all classes
to have the same weight during the final prediction, however,
other weights can be explored to favor a particular class,
for example in favor of agricultural plots in environments
with a mostly urban cover. To reduce distortions due to the
border effects of the sliding window, the probabilities of each
window are weighted by a Gaussian function with o = 1
and u = 0. After obtaining the prediction of a complete
tile, the corresponding edges of segments corresponding to
the parcel class are obtained. This last step provides the final
delineation of the agricultural plots.
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D. ASSESSMENT OF ACCURACY

In order to evaluate the results an error measurement centered
on the boundaries of the image objects, known as bound-
ary displacement error index (BDE), was chosen. The BDE
index, proposed in [50], measures the difference between two
segmented images by averaging the displacement of their
corresponding segment border pixels. Specifically, the dis-
tance (dg) between a boundary pixel (bs) in the obtained
boundary image (By) and the closest pixel (b, ) in the ground-
truth boundary image (Bg,) is used to define the disagreement
(error) of each boundary pixel. The BDE index can be defined
mathematically as follows:

1 1 .
3 B Z Z min{dg(bs, bgr)}

bs€Bs by €Bg;

BDE =

1
|Bg:|

+ >0 min{de(by. b} | (2)

bet €Bgr bs€By

A more detailed description of the BDE index can be found
in [50].

E. PERFORMANCE EVALUATION

To measure the performance of our method, the results
obtained were compared with the gPb-UCM method used
by [10]. The gPb-UCM workflow consists of three phases:
(1) contour detection using gPb, (2) segmentation using Ori-
ented Watershed Transformation (OWT), which forms the
initial contours of the regions, and (3) construction of an ultra
metric map (UCM), which defines a hierarchical segmen-
tation according to a th threshold within a range of [0, 1].
Increasing the threshold is equivalent to eliminating contours
and merging separate regions. A more detailed description of
the gPb-UCM method can be found at [11].% In this paper,
an empirical analysis gave us th = 0.05 as an appropriate
value. This value is similar to that reported in the work
of [10].

From the 207 available tiles, 186 were randomly selected
for training and 21 for testing. As well as for the training
and prediction of the proposed methodology, in the case of
gPb-UCM the spatial resolution of the data set was reduced
by 1/8 by the nearest neighbor algorithm, obtaining images
of 2 m resolution. Tiles used for training were subjected to
the pre-processing process described in Section III-A, gener-
ating 150k patches used for training and 15k for calibrating
(validation set) the model. Since the LPIS may contain errors,
as established by [51], another external set of two manu-
ally delineated tiles was created to evaluate the proposed
method. On the other hand, the other two sets (testing and
external sets) were subjected to the post-process described
in the Section III-C, which provides the delineation of the
agricultural plots by tile.

4Codes used are available at https://www?2.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/resources.html. Last accessed on July 2019.
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TABLE 1. Normalized confusion matrix.

background  parcel  buffer
background 0.89 0.05 0.06
parcel 0.01 0.96 0.04
buffer 0.07 0.24 0.69

All of the experiments have been carried out using an
NVIDIA Titan Xp GPU with 3840 CUDA cores and 12 GB
of memory. The codes were developed in Python using the
Keras [52] framework.

IV. RESULTS AND DISCUSSION

The results obtained from the classification for the three
classes (background, parcel, and buffer) of the 21 test tiles are
shown in the confusion matrix of Table 1. The inaccuracy of
the edges of the LPIS plots caused the pixels belonging to the
buffer class to be confused with the other classes, particularly
the parcel class. On the other hand, the background and parcel
classes showed a success rate of more than 89%. Since the
transitions between what is an agricultural plot and what is
background, represented by the buffer class, is not so clear,
it is not possible to obtain a good representation of the bound-
aries of agricultural plots considering only a classification of
asingle class i.e. the agricultural plot boundary. It is important
to point out that although the precision obtained in the buffer
class is not excellent (69%), this is not a disadvantage to the
aim of this work, because agricultural plot boundaries are
obtained from the parcel class.

Visual examples of buffer classification problems are
shown in the Figure 5. As can be seen, in some cases the
model has problems in identifying the different classes which
results in missing sections of plots or the lack of separation
between them (buffer). It should be noted that in some cases
it is even difficult to visually distinguish the separations
between them. Discrepancies can also be observed between
what we would visually consider to be the boundaries of a
plot and what is reported by SIGPAC. This highlights the
importance of having automatic/semi-automatic methods to
update the boundaries of agricultural parcels for operational
use.

As mentioned previously, the boundaries are extracted
from the segments belonging to the class parcel, which in
this work provide the boundaries of the agricultural plots and
whose accuracy is discussed below.

The results of the evaluation using the BDE index that com-
pares the boundaries obtained using the proposed methodol-
ogy and gPb-UCM with those of SIGPAC for each of the
21 tiles in the test set are shown in the Figure 6. As can
be seen, for all tiles, the value of the BDE index is lower
for the boundaries generated by the proposed methodology
than for those obtained using the gPb-UCM method. The
greatest difference between the two methods with respect
to the GT is observed in tile number 4, with BDE values
of 14.64 for gPb-UCM and 5.53 for our approach; while tile
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FIGURE 6. BDE index values of the results obtained by our approach and the gPb-UCM method for

the 21 test tiles.

number 17 shows the smallest difference between them with
BDE values of 2.26 for gPb-UCM and 2.08 for our approach.

In order to understand these differences between the two
aforementioned method, tiles 4 and 17 are shown in Figure 7.
At first glance, there are differences between the types of
plots that appear in each of the tiles, while tile 4 (Figure 7a)
mainly includes large, well-defined plots as well as an urban
area, tile 17 (Figure 7b) contains small plots. These differ-
ences are reflected in the GT, where many more boundaries
are observed in tile 17 (Figure 7d) than in tile 4 (Figure 7c).
In the case of tile 4, it can be seen that while the results
produced by our approach (Figure 7e) are more in line with
the GT, the gPb-UCM method (Figure 7g) not only generates
the edges corresponding to the boundaries agricultural plots,
but also edges within urban areas. In this regard, it is impor-
tant to highlight that gPb-UCM is an unsupervised method,
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therefore, a further step (e.g., classification) is necessary to
eliminate areas that are not of interest. In the case of the
proposed approach this step is not necessary as classification
is implicitly included. The less clear the natural boundaries
of the agricultural plots, the greater the possibility of dis-
crepancy, resulting in a higher BDE index value. This usu-
ally occurs on large farmlands, which are generally divided
for operational reasons (e.g. different crops or other uses).
On the other hand, the results obtained from the two methods
in tile 17 (Figure 7f and 7h) are better because the boundaries
of the plots are clearer due to over-fragmentation of the land.

These results are shown in much more detail in Figure 8.
The boundaries obtained by the proposed approach (Figure 8c
and 8d) fit the GT boundaries better (Figure 8a and 8b) than
those generated by the gPb-UCM method (Figure 8e and 8f).
It should be noted that the boundary transitions of our
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FIGURE 7. Results of the delineation of agricultural parcels. The proposed model and the gPb-UCM methodology obtained
the worst BDE value in tile 4 while the results for tile 17 were the best.
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FIGURE 8. Examples of enlarged random regions for better visualization. The regions correspond to the results
shown in Figure 7.
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FIGURE 9. Results obtained in two hand-delineated tiles are different from those used in the training and test sets.
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approach are also smoother than the edges obtained by gPb-
UCM. In addition those obtained by gPb-UCM present over-
segmentation.

At this point, and for a better interpretation of the results,
it is important to noted that the available GT does not fully
cover the 21 tiles, which could be a handicap for the correct
evaluation of the performance of the methods compared.

To show the generalization capability of the proposed
approach, two tiles (Figure 9a and 9b) corresponding to a
geographical location different from that of the tiles used
the training and testing (i.e., external set) were evaluated.
The boundaries of the agricultural plots of these tiles were
drawn by hand using GIS software. Despite the operator’s
knowledge of the study area and the digitization process,
drawing the boundaries of the agricultural plots was a major,
error-prone and time-consuming challenge.

In the Figure 9 it can be observed that in these tiles the
proposed model also provides a much greater precision than
gPb-UCM for the identification of the agricultural plots,
demonstrating their capacity for generalization. Specifically,
the BDE values obtained by gPb-UCM for case 1 and case 2
were 12.45 and 10.45, respectively, whereas for the pro-
posed approach the errors were 3.93 and 4.86. In addition,
the proposed methodology, based on CNN models, success-
fully distinguishes between those areas with urban cover and
those areas with agricultural cover, without postprocessing
requirements. (Fig. 9(e)).

From authors point of view, the outstanding results
obtained have been achieved thanks to the combination of the
DL model, which has provided really good results in different
image processing tasks, with a large amount of annotated
training data set, it being another strength of our work. The
use of SIGPAC public data has provided a large volume
of training data, which has been increased with the appli-
cation of augmented techniques. The final result has been
a DL model with a high generalization performance as has
been showed in the delineation results of data with a different
geographical localization that the tiles used in the training and
test phases.

However, the computational management of this large
amount of data has required a reduction in the spatial
resolution of the original data. This has made it possi-
ble to feed the network with images covering an area of
about 20 ha, which provides contextual information on the
environment of the agricultural plots which, with the original
resolution and current means of calculation, is difficult to
approximate.

Moreover, since our approach is based on a machine learn-
ing process, even though discrepancies between images and
SIGPAC information are present in some parcels, the gen-
erated DL model has the ability of detecting the borders of
a parcel not included in SIGPAC. These results confirm the
capability of working with out-of-date cadastres for updating
them.

As regards the comparison with methods that do not
require annotated data, such as the gPb-UCM method,
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which has been used as a reference in this work, it has
been shown that the reference method presents over-
segmentation in some areas, and that the boundaries obtained
by the proposed approach fit the SIGPAC boundaries bet-
ter than those generated by the gPb-UCM method and
which are also finer, reducing uncertainty in the label
assignation.

Although the proposed method provides great precision to
find the visible edges of the plots automatically, a successful
update of the agricultural cadastre still requires the partic-
ipation of owners, surveyors and other actors with spatial
knowledge of the sites to be analyzed [53], [54], allowing
the inclusion of non-visible edges (e.g. those that depend on
legal aspects). However, starting from the edges obtained by
our method would undoubtedly improve the efficiency of the
updating process.

V. CONCLUSION

The main contribution of this research is the development of
an automatic DL tool for the automatic tracing of agricultural
parcels, using a public data source such as LPIS, which opens
up the possibility of a systematic updating of agricultural
cadastral boundaries. The use of LPIS data reduces the main
drawback of DL, the availability of annotated data sets to
carry out the training of CNN models.

Considering the state-of-the-art and the results obtained
in this work, the methodologies for the automated outlining
of agricultural plot boundaries should be considered as a
complementary tool for the expert operator. One of the main
limitations for the complete automation of the delineation
process lies in the discrepancy between what is seen in the
images and what is generally recorded as a plot, which can
be influenced by issues such as land ownership (i.e., cadastral
register) and the agricultural practices developed on the land
(e.g., mixed crops).

Finally, this research could play an important role in
agricultural decision-making by converting remote sens-
ing data into timely and accurate information, contribut-
ing to the development of sustainable agriculture and
reducing the gap between information technologies and
users.

Future work should focus on: (1) evaluating the gen-
eralization capacity of CNN models to be used in other
agricultural land cover, and (2) developing an automatic
DL tool for spatial-temporal characterization of agricultural
land uses, allowing a sustainable agricultural management,
and (3) develop semi-supervised DL approaches (expert-
in-the-loop approach) to update agricultural parcel bound-
aries in order to reduce labor-intensive use of labor for this
task.
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