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ABSTRACT Borehole strain monitoring has high sensitivity and is therefore widely used to study slow
earthquakes, volcanic activity, earthquake precursors, and other nature phenomena. However, environmental
factors seriously affect the identification of strain changes caused by crustal deformation. This paper
proposes a method of anomaly detection based on variational mode decomposition (VMD) and principal
component analysis (PCA). The borehole strain signal is decomposed into a number ofmodes simultaneously
using VMD, and a new state-space model used to determine the number of the modes those are decomposed
by the VMD algorithm. The influencing factors of each component are determined by spectrum analysis
and comparative analysis. An example of the separation process of borehole strain data by the VMDmethod
is presented. Then, we use PCA to calculate eigenvalues, which are used to detect anomalies associated
with an earthquake, and eigenvectors, which are applied to show the spatial distribution characteristics
of the data. Our method has been applied to detect borehole strain data anomalies associated with the
Wenchuan earthquake; the VMD demonstrates excellent separation performance for borehole strain signals,
and eigenvalues and eigenvectors together reflect the accelerated deformation of focal faults and adjacent
areas before earthquake in time and space.

INDEX TERMS Borehole strain, principal component analysis, state-space model, variational mode
decomposition, Wenchuan earthquake.

I. INTRODUCTION
Multi-component borehole strain monitoring has the advan-
tages of high resolution, high sensitivity and long term sta-
bility [1], [2]. Consequently, it is it is widely used to study
slow earthquakes [3], [13]–[15], volcanic activity [18], [19],
and earthquake precursors [16], [17]. Thanks to the U.S. Plate
Boundary Observatory project, the development of the four-
gauge borehole strainmeters (FGBSs) in China was acceler-
ated. The YRY-4 strainmeter manufactured by Chi et al. is
nowwidely installed in China. To detect anomalies associated
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with earthquakes, researchers have studied borehole strain
data for large earthquakes [5]–[8], and extracted credible
anomalies. However, because of high resolution and high sen-
sitivity, borehole strain monitoring records not only tectonic
signals but also signals from environmental disturbances.
Environmental factors seriously affect the identification of
strain changes caused by crustal deformation. Environmental
disturbances mainly include the Earth tides [11], [12], air
pressure changes, and rainfall [3]. To remove interference
and correct borehole data, many scholars have analyzed these
complex signals. Hart et al. [10] incorporated cross coupling
into the strain meter calibration to investigate the estima-
tion of Earth strain from borehole strain meter data in a
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study of tidal calibration; this yielded good agreement with
the measured strain tides from a colocated laser strainmete.
Langbein [20] used least squares and data covariance to
describe the temporal correlation of strainmeter data to adjust
strain data to recover small signals that might be related to
crustal deformation; the results provide accurate estimates of
the various parameters. Scholars mostly use modeling and fit-
ting methods to analyze and correct data in the time domain.
However, time domain methods can only extract a portion of
the useful time domain information and the frequency domain
information is lost.

Recently, Dragomiretskiy and Zosso [21] proposed an
adaptive time-frequency analysis algorithm, variational mode
decomposition(VMD), which can decompose a signal into
an ensemble of band-limited intrinsic mode functions, where
their center frequencies are estimated online and all modes
are extracted synchronously. VMD is widely used in non-
stationary signal processing. Xue et al. [22] used VMD to
decompose a seismic signal and compare it with the short-
time Fourier transform (STFT) or wavelet transform (WT);
the instantaneous spectrum after VMD promises higher spec-
tral and spatial resolution. Sharma [23] proposed a new tech-
nique based on VMD for estimating heart rate (HR) from a
photoplethysmography (PPG) signal to provide accurate and
reliable HR information using the PPG signal recorded from
patients suffering from dissimilar problems. Zhang et al. [24]
used VMD to design a blind source separation method
based on variational mode decomposition (VMD), which is
applied to the separation of the wind turbine aeroacoustics
signals acquired by single acoustic sensors; it has excellent
separation performance. These methods testify that VMD
is an effective signal processing method for complex non-
stationary signals; therefore, VMD could have excellent sep-
aration performance for borehole strain signals. However,
it is difficult to select a reasonable mode number for VMD.
Dey and Satija [25] proposed a method based on VMD and
principal component analysis (PCA) for single channel blind
source separation, where PCA is used to select the corre-
sponding source components from the decomposed modes.
Lianet al. [27] proposed a method called adaptive VMD
to automatically determine the mode number based on the
characteristic of intrinsic mode function. Zhang et al. [28]
used the maximum weighted kurtosis index constructed by
kurtosis and the correlation coefficient to optimize VMD
parameters. When there is no data information, it is necessary
to select the number of modes adaptively. However, when
there is data information, it is reasonable to select the number
of modes according to the characteristics of data. In this
paper, we propose a new state-space model to select the
number of VMD.

In the study of multi-component and multi-station earth-
quake precursor data processing, many researchers have
applied PCA to detect the anomalies for many types of
non-stationary geophysical signals, and obtained meaningful
results. Hattori et al. [29] applied PCA to detect the anoma-
lies of Ultra-Low Frequency (ULF) geomagnetic from three

stations; the anomalies of temporary variations of eigenvalues
and eigenvectors are likely to be correlated with large earth-
quakes. Lin [30] used PCA to determine the spatial pattern of
total electron content (TEC) anomalies in the ionosphere post
the Wenchuan Earthquake; the result is remarkably similar to
that reported for a TEC anomaly previously identified as a
precursor anomaly on 9 May, 2008 for the same time period.
Zhu et al. [9] applied PCA to analyze YRY-4 four-gauge
borehole strain data fromGuza Station, and extracted credible
anomalies associated with the Lushan earthquake. Therefore,
PCA is promising formonitoring the crustal activity in studies
of multi-dimensional earthquake precursor data.

In this work, a method of anomaly detection based on
VMD and PCA is proposed. The VMD method is applied
to adaptively decompose borehole strain signal completely
from the data itself.We proposed a new state-spacemodel that
has been used to select a reasonable mode number for VMD.
Unlike [25], PCA is used to detect the anomalies related to an
earthquake.

The rest of this paper is organized as follows: Section II
introduces the observation principle and strain conversion,
and we propose a new state-space model. Section III
introduces the principle of VMD-PCA. In Section IV,
we present an example illustrating the separation process
of borehole strain data by the VMD method. In Section V,
we describe the detection of borehole strain anomalies related
to the Wenchuan earthquake using the propose method.
In Section VI, we analyze and discuss the results of the
eigenvalues and eigenvectors. Conclusions are drawn in
Section VII.

FIGURE 1. Sketch of the two-ring system for measuring strain in
boreholes.

II. BOREHOLE STRAIN DATA
A. OBSERVATION PRINCIPLE AND STRAIN CONVERSION
YRY-4 FGBSs have four gauges arranged at 45◦ intervals in a
cylindrical case, and can measure the changes of diameter in
the corresponding azimuths. As shown in Fig. 1, assuming
linear elasticity and isotropy of the medium, the two-ring
model [31] is suitable for observing the horizontal strain state
in rocks with a borehole strainmeter.
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Gauge i in the cylinder directly measures the change in
diameter in the corresponding azimuth βi that results from
changes in strain state. Although the solutions are complex,
the resulting formula of the relationship between the mea-
surement Si and the strain changes (ε1, ε2, α) is straight
forward [2]:

Si = A(ε1 + ε2)+ B(ε1 − ε2)cos2(βi − α). (1)

TheYRY-4 borehole strainmeter contains four horizontally
emplaced sensors to measure changes in the borehole diame-
ter. Self-consistency is crucial in FGBS design. According to
the theoretical model (1), the relationship can be obtained as
follows:
S1 = Sβ1 = A(ε1 + ε2)+ B(ε1 − ε2)cos2(βi − α)
S2 = Sβ1+π/4 = A(ε1 + ε2)− B(ε1 − ε2)sin2(βi − α)
S3 = Sβ1+π/2 = A(ε1 + ε2)− B(ε1 − ε2)cos2(βi − α)
S4 = Sβ1+3π/4 = A(ε1 + ε2)+ B(ε1 − ε2)sin2(βi − α),

(2)

where Si (i=1,2,3,4) is the measurement obtained from each
of the fourgauges.With one additional measurement, a simple
relationship among the four measurements can be obtained
using the equation (2):

S1 + S3 = k(S2 + S4), (3)

which is the self-consistency equation of the YRY-4 borehole
strainmeter. This equation can be employed to estimate the
credibility of the data.The k is the self-consistent coefficient,
and k = 1 in ideally circumstances. We believe that the data
are reliable when k ≥ 0.95. There are only three independent
variables under plain strain conditions at or near the Earth’s
surface.We can therefore derive various strains from theGuza
recordings. The formulas used are as follows:

S13 = S1 − S3
S24 = S2 − S4
Sa = (S1 + S2 + S3 + S4)/2,

(4)

where Sa represents the areal strain, and S13 and S24 represent
the two independent shear strains.

B. DECOMPOSE DATA WITH A NEW STATE-SPACE MODEL
Strainmeters record not only tectonic-origin signals but
also signals from environmental disturbances. To separate
tectonic-original signals from other noise, borehole strain
observation data can be indicated by:

X (t) = A(t)+ B(t)+ E(t), t = 1, 2, 3, ..., (5)

where X (t) is strain observation data; A(t) is the trend term
for changes in strain data; B(t) is a periodic term, which
mainly includes the solid tidal response; E(t) is short-period
anomalous changes caused by crustal deformation and other
factors causing tectonic earthquakes [32].

Hsu et al. [3] applied a state-space model to remove the
strain response to rainfall, in addition to those due to air

pressure changes and Earth tides, and investigated whether
corrected strain changes are related to environmental distur-
bances or tectonic-original motions. The observed strain S0n
on can be represented by:

S0n = Scn + En + Pn + Rn + εn
εn ∼ N (0, σ 2), n = 1, 2, ...,N , (6)

where Scn is the corrected strain data; Pn, En, and Rn are
induced strain by barometric pressure changes, Earth tides,
and rainfall, respectively; εn is Gaussian white noise; and N
is the number of observations.

Based on the above two models, we propose a new state-
space model. The principle of the effect of rainfall on
borehole strain is very complex. Although it has time lags,
borehole water level can still reflect the influence of rain-
fall [33]. Therefore, we use borehole water level data instead
of rainfall data. The new state-space model is described as
follow:

S0n = Tn + Scn + En + Pn + Ln + εn
εn ∼ N (0, σ 2), n = 1, 2, ...,N , (7)

where S0n is the raw borehole strain data, Tn is the trend
term for changes in strain data; Scn is short-period anomalous
changes caused by crustal deformation; En, Pn, and Ln are
induced strain by borehole pressure changes, the Earth tides
changes, and borehole water-lever changes, respectively; εn is
Gaussian white noise; and N is the number of observations.

III. THE PRINCIPLE OF VMD-PCA
The VMD of nonlinear and nonstationary signals based on
the data itself is adaptive. The VMD generalize the classic
Wiener filter into multiple and adaptive bands, which can
realize signal adaptive decomposition by finding the optimal
solution of the constraint variational model [21]. VMD is
a novel signal decomposition method that is theoretically
well founded and can deal with nonlinear and non-stationary
signals. PCA is a widely used technique in data analysis;
it is a non-parametric method that is capable of extracting
relevant information from complex data sets [26], and which
often reveals relationships that were not previously suspected,
thereby allowing for an otherwise unordinary interpretation.
Therefore, this work combines the best features of VMD
and PCA to construct an approach for signal processing and
anomalies extraction.

We apply VMD to three independent strain converters (S13,
S24, Sa), respectively. First, we determine the mode number
of VMD by the new state-space model. Borehole strain data
can be expressed as follow:

S =
{
u1(ω1), u2(ω2), ..., uk (ωk )

}
, k = 1, 2, ..., n, (8)

where uk and ωk are shorthand notations for the set of all
modes and their center frequencies, respectively. To assess
the bandwidth of a mode, we propose the following VMD
scheme: 1) for each mode, compute the associated analytic
signal by means of the Hilbert transform in order to obtain
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a unilateral frequency spectrum; 2) for each mode, shift the
mode’s frequency spectrum to ’baseband’, by mixing with
an exponential tuned to the respective estimated center fre-
quency; 3) the bandwidth is now estimated through the H1

Gaussian smoothness of the demodulated signal,( i.e. the
squared L2-norm of the gradient). The resulting constrained
variational problem is as follows:

min{
uk
}
,
{
ωk

}
{∑

k

∥∥∥∂t [(δt + j
2π ) ∗ uk (t)]e

−jωk t
∥∥∥2
2

}
s.t.

∑
k

uk = f , (9)

To render the problem unconstrained, a quadratic penalty
term and Lagrangian multipliers are employed and a new
solution expression can be obtained as follows:

L({uk} , {wk} , λ)

= α
∑∥∥∥∥∂t [(δ(t)+ j

2π
) ∗ uk (t)

]
e−jw0t

∥∥∥∥2
2

+

〈
λ(t), f (t)−

∑
k

uk (t)

〉
+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

, (10)

where α is the data-fidelity constraint parameter and λ is the
Lagrangian multiplier.

The alternate direction method of multipliers (ADMM)
approach is used to produce different decomposed modes and
the center frequency during each shifting operation. Then,
the modes uk and their corresponding center frequency ωk
can be updated as:

un+1k ← argminLuk (u
n+1
i<k , u

n+1
i≥k , ω

n
i , λ

n), (11)

and

ωn+1k ← argminLωk (u
n+1
i , un+1i<k , ω

n
i≥k , λ

n). (12)

Each mode obtained from solutions in the spectral domain
can be represented as:

ûn+1k (w) =
f̂ (w)−

∑
i6=k ûi(w)+

λ̂(w)
2

1+ 2α(w− wk )2
(13)

Compare the data of influencing factors and extract the
components related to crustal activity ûS13 , ûS24 , ûSa .
Then, ûS13 , ûS24 , ûSa are presented in a matrix Y of m rows

and n columns:

Y =

ûS13ûS24
ûSa

 =
x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 , (14)

where m is the number of samples, and n is the dimension of
the sample.

First, we calculate the co-variance matrix CY (m × m) of
the dataset Y (m× n), and the element γpq in the co-variance
matrix CY (m× m) can be calculated using the formula:

γpq = [1/(N − 1)]
N∑
i−1

(x ip − X̄p)(x
i
q − X̄q), (15)

FIGURE 2. Unit spherical coordinate system of eigenvectors.

where x ip and x
i
q are the pth and qth columns of the ith row of

data, respectively; and X̄p and X̄q are the averages of the pth
and qth columns of data, respectively. Here N is the number
of samples.

We perform the eigenvalue decomposition using the co-
variance matrix:

CY = V3V T , (16)

where 3 is the eigenvalue matrix with λ1, λ2, λ3 (λ1 >

λ2 > λ3) and V is the eigenvector matrix whose columns
are v1, v2, v3. The first principal component eigenvalue and
eigenvector are λ1 and v1, respectively, which represent the
principal characteristics of the signals [29].In this paper,
the variations in the eigenvalue and eigenvector of the first
principal component are investigated.

The obtained eigenvector v1 has three dimensions in the
vector space because the number of PCA dimensions is three
and it is a unit vector. To present the changes in the eigen-
vector more intuitively, we transform the eigenvectors to the
unit spherical coordinate system, as shown in Fig. 2 The
eigenvector can be represented by θ and φ exclusively.

IV. VMD DECOMPOSITION OF THE BOREHOLE STRAIN
DATA
Here, we will present the process of removing influencing
factors from borehole strain data by VMD using areal strain
data Sa for a period of 1 month. The raw data of Sa, borehole
water-level and borehole pressure are shown in Fig. 3.

First, we apply VMD to Sa, borehole water-level and bore-
hole pressure, respectively. As shown in Fig. 4,we decom-
pose Sa into five components on the basis of the new state
space model. It is noticeable that the removal of Gauss noise
is achieved with a Wiener filter on each mode during the
decomposition progress. From this figure, we can see that Sa
is successfully decomposed into c1, c2, c3, c4,and c5. And we
compared the result of VMD with that of EMD (Fig. 5 shows
the decomposition results of Sa by using EMD). The mode
mixing problem of EMD is seen to be serious when it is used
to deal with composite borehole strain data, there is hardly
any completed sub-signal has been decomposed successfully.
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FIGURE 3. The raw data of Sa, borehole water-level and borehole
pressure.

FIGURE 4. The decomposition results of Sa by using VMD.

In contrast to EMD, VMD can adaptively decompose bore-
hole strain data into an ensemble of band-limited intrin-
sic mode functions, and VMD is suitable for decomposing
non-linear and non-stationary signals. We have attempted to
identify physically significant of the components of VMD.
It is obvious that the first component c1 represent the trend
term. The FFT periodogram of component c2 shows that
the frequency of the signal is mainly concentrated in f1 =
1.157×10−5Hz and f1 = 2.232×10−5Hz, as shown in Fig. 6;
these two frequencies correspond to the semidiurnal wave
and diurnal wave frequencies of the Earth tides, respectively.
Therefore c2 may be considered as the influence of the Earth
tides.

To study the components of c3, c4 and c5, we applyVMD to
borehole water level and pressure. As borehole pressure data
are also affected by the Earth tides, we decompose them into
three components. As shown in Fig. 7, the first component
p1 represents the trend term, p2 represents the Earth tides and
p3 represents the short-period change component of borehole
pressure. Fig. 8 shows the result of decomposing borehole

FIGURE 5. The decomposition results of Sa by using EMD.

FIGURE 6. The FFT periodogram of component c2.

water-level, where w1 represents the trend term and w2 rep-
resents the short-period change component.

Comparative analysis is applied to signals c4, c5, p3 and
w2, and the result is shown in Fig. 8. To contrast waveform
shape, we found that c4, c5, and p3 have similar fluctuations
in the same period of time(as shown in the red boxes), and c5
shows changes similar to those of w2 (as shown in the black
box). Fig. 9 indicates that c4 and c5 mainly correspond to the
response of borehole pressure and boreholewater level. At the
same time, it is also verified that pressure has a significant
influence on borehole strain data [34].

From the above analysis, we can see that the 1st component
c1 represent the trend term, the 2nd component c2 is the
influence of the Earth tides, and the 4th component c4 and
the 5th component c5 correspond to the response of borehole
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FIGURE 7. The decomposition results of borehole pressure by using VMD.

FIGURE 8. The decomposition results of borehole water level by using
VMD.

FIGURE 9. The comparative analysis result of c4 and c5 with borehole
pressure and borehole water level.

pressure and borehole water-level. Hence, we suggest that the
3th component c3 may be considered as short-period changes
caused by crustal deformation in the borehole strain data;
as such, we use only the 3th component in the next step of
analysis.

The same treatment process is applied to S13 and S24, and
the results are similar. Then, short-period changes caused by
crustal deformation components of S13, S24, and Sa are used
to extract anomalies by PCA.

V. EXTRACTING ANOMALIES ASSOCIATED WITH THE
WENCHUAN EARTHQUAKE
We extract anomalies of borehole strain data associated with
the Wenchuan earthquake from Guza Station.

A. OBSERVATIONS AND EARTHQUAKE
The Guza Station is at the southwestern extent of the Long-
menshan fault zone. The deformation observation instru-
mentation includes a very-long-period vertical pendulum

FIGURE 10. Location map showing Guza Station and the Wenchuan
earthquake epicenter.

tiltmeter, YRY-4 borehole strainmeter, DSQ water pipe incli-
nometer, SS-Y body piercing extensometer, and DZW digi-
talized gravity meter. The YRY-4 borehole strainmeter was
installed in October 2006; continuous recordings have been
collected at a sampling rate of one sample per minute since
1 December, 2006.

At 14:28 (UTC+8) on 12 May 2008, an Ms8.0 earthquake
occurred in Wenchuan County, Sichuan. The epicenter was
at 31.01◦ N and 103.42◦ E. According to the data published
by the China EarthquakeNetworks Center of the China Earth-
quake Administration, and the focal depth was approximately
14 km.

The distance between the epicenter of theWenchuan earth-
quake and the receiver at Guza Station is 153 km (Fig. 10).
The Wenchuan earthquake had a wide range of influence,
and pre-earthquake physical phenomena were complicated;
consequently, we cannot exclude a-priori the possibility that
the YRY-4 borehole strainmeter installed at Guza Station
recorded strain anomaly phenomena occurring before the
earthquake.

B. DATA PROCESSING
We analyzed the borehole strain data from 1 January 2007 to
31 December 2008. First, we calculate the self-consistent
coefficient k to confirm the reliability of borehole data.
We found that k = 0.9964, which confirms that the data
are reliable. Then, strain conversion is applied to the raw
borehole strain data, (Fig. 11, where the black dotted line
indicates the time of the earthquake).

Using the VMD method, we decompose the strain conver-
sion data(S13, S24, and Sa) into five components to search for
signals related to crustal deformation, as per the methodology
discussed in the previous section. Fig. 12 shows the short-
period changes caused by crustal deformation components.
Finally, PCA is applied to extract the anomalies associated
with Wenchuan earthquake. To avoid time-domain aliasing,
and to distinguish anomalous days more easily, we perform
PCA on daily data(i.e., 1 day is equal to 1440 points).
We consider that the three components data (p13, p24, pa) are
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FIGURE 11. A time series plot of borehole strain data after the strain
conversion.

FIGURE 12. The short-period changes caused by crustal deformation
components.

arranged in the form of time series data vectors.
p13 = [p13(t1), p13(t2), · · · , p13(t1440)]T

p24 = [p24(t1), p24(t2), · · · , p24(t1440)]T

pa = [pa(t1), pa(t2), · · · , pa(t1440)]T ,

(17)

where T indicates a transpose. Then, the data matrix Y =
[p13, p24, pa]T is prepared to calculate the first eigenvalues
and the first eigenvectors by PCA.

VI. RESULTS AND DISCUSSION
We apply PCA to the data which is the short-period change
caused by crustal deformation, and calculate the first princi-
pal component eigenvalue λ and eigenvector v. We calculate
the average and standard deviation σ using all the values to
recognize anomalous λ values. Those anomalous values are
then defined as values that exceed the average by more than
1σ , and the result is shown in Fig. 13, where the average value
is delimited by a red horizontal dashed line, and the average
of more than 1σ is delimited by a red horizontal dotted line.

The variations in λ (Fig.13) illustrate that there are few
anomalous values before January 2008. After January 2008,
the number of anomaly eigenvalues increased, and this
growth continued until a few months after the earthquake.

To express the variation characteristics of the number
of anomaly eigenvalues more intuitively, we calculate the
cumulative number of anomaly eigenvalues and fit it using a
sigmoidal function. Fig. 14 illustrates the temporal behavior

FIGURE 13. Daily variations in the first principal component eigenvalue.

FIGURE 14. Cumulative number of anomaly eigenvalue calculate by the
results of the daily variations in the first principal component eigenvalue.

of N (t), denoted here as N (eigenvalue anomalies). The day
of the earthquake is represented as a vertical dotted line. The
red and blue curves are the sigmoidal fits before and after the
earthquake. The results show sigmoidal temporal behavior
before the earthquake with lower concavity, and sigmoidal
behavior after the earthquake, with an opposite concavity.
There is an acceleration about 4 months before the earth-
quake (from January 2008). Similar unusual variations are
also seen after the earthquake. After such a large-magnitude
earthquake, rearrangement of stresses in the crust com-
monly leads to a large number of anomaly events [34], [35].
As shown in Fig.14, there was a steep rise in the number
of anomaly eigenvalues after the earthquake. Kong et al. [6]
detected stress changes and the anomalies in the outgoing
long wave radiation(OLR)data before the Wenchuan earth-
quake by using CD method, and indicated that there are large
CD values three months before the Wenchuan earthquake
(from January 2008), and this is consistent with our research.
We consider that the eigenvalues and eigenvectors are both
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FIGURE 15. Spatial distributions of eigenvalues and eigenvectors.

obtained from the decomposition of the co-variance matrix
of the data and that both contain parts of information of
the data. We perform combined eigenvalue and eigenvector
analysis. As shown in Fig. 15, the x-axis and y-axis represent
the θ and φ angles, respectively, and the color indicates the
changes in the eigenvalue. The red arrow denotes the day of
the Wenchuan earthquake.

Fig. 15 shows that eigenvectors present aggregated steady-
state phenomena before June 2007. To some extent, this
reflects that the spatial distribution of the stress level in
different periods is uniform and stable with time [36]. From

June 2007 to December 2007, eigenvectors exhibit longi-
tudinal diffusion phenomena, possibly because of isolated
areas of strain release increase and extend steadily [38]. After
January 2008, eigenvectors present transverse diffusion, and
eigenvalues become abnormal, the reason is that during the
nucleation of the Wenchuan earthquake, the continuity of the
medium in the focal area was destroyed, and the integrity
of the medium around the borehole began to change signif-
icantly [37]. It reflects the acceleration of crustal instability.
After the earthquake, the eigenvectors still show diffu-
sion phenomena, and abnormal eigenvalues appear in large
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numbers. We infer that this phenomenon is due to a large
number of aftershocks and the extremely unstable state of the
fault.

Ma et al.[38] performed a laboratory modeling study of
instability on a planar strike-slip fault. They indicate that
the occurrence of an earthquake is related to the synergism
process of a fault, which includes three stages. In the first
stage, the stress curve deviates from linearity and in the sec-
ond stage, the isolated areas of strain release increase and
extend steadily. In the third stage, the sections of strain release
on the fault accelerate and expand, and the strain levels
of strain-accumulation areas accelerate and rise. As shown
in Fig.14, the spatial distribution of eigenvalues and eigen-
vectors show a consistent result. Between January 2007 and
May 2007, the spatial distribution of eigenvectors present
a steady state, and strain variations of different portions of
the fault begin to diverge(i.e., the first stage). The second
stage begins in June 2007, when the strains of isolated areas
of strain release extend steadily, and the spatial distribution
of eigenvectors presents steady diffusion. As strain levels
of strain-accumulation areas accelerate, eigenvectors present
transverse diffusion (from January 2008) and the number of
anomaly eigenvalues begins to increase, indicating signs the
third stage. Eigenvalues and eigenvectors together reflect the
accelerated deformation of focal faults and adjacent areas
before the Wenchuan earthquake in time and space. It is
presumed that they are directly related to the meta-instability
process of the seismogenic area before the Wenchuan earth-
quake.

VII. CONCLUSION
In this paper, a method of anomaly detection based on VMD
and PCA is proposed; a new state-space model was built
to determin the number of VMD components. VMD has
excellent separation performance for borehole strain signals,
and each component corresponds to a clear physical mean-
ing. The proposed method is applied to detect anomalies
associated with the Wenchuan earthquake. After removing
influence factors, eigenvalues and eigenvectors are calculated
by PCA to extract anomaly information. The eigenvalues and
eigenvectors clearly show the seismogenic process before
the Wenchuan earthquake. In future work, we will apply the
proposed method to multi-station borehole strain data and
other earthquake data.
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