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ABSTRACT To tackle the difficulties in the detection and removal of impulse noise faced by the existing
filters, and to further improve the denoising performance, we propose an adaptive sequentially weighted
median filter for image corrupted by impulse noise. In the proposed method, a noise detector employing the
3σ principle of normal distribution and the local intensity statistics, is proposed; and a sequentially weighted
median filter with a neighborhood of adaptive size, is proposed for noise removal, in which the weighted
operator is derived in reference to the spatial distances from central noisy pixel, i.e., theweighting coefficients
are sequentially inversely proportional to the spatial distances. The experimental results confirm that the
proposed method outperforms the existing filters, excelling in the capability of noise removal, structure and
edge information preservation.

INDEX TERMS Image denoising, median filter, noise detection, noise removal, sequentially weighted
median filter, 3σ principle.

I. INTRODUCTION
An image is often corrupted by impulse noise in the process
of acquisition and transmission; and there are two types
of impulse noise: fixed-valued impulse noise and random-
valued impulse noise [1]. Fixed-valued impulse noise is
also called salt and pepper noise, one most common noise
in images; it severely impacts the image processing and
analysis, such as image recognition, segmentation, and so
on. Therefore, effective removal of impulse noise is highly
needed. For removal of fixed-valued impulse noise, the mean
filter [2] and median filter [3] were originally proposed.
However, mean filter was found unable to preserve the struc-
ture and edge information of image, while median filter is
preferred because of its simple processing and good per-
formance. But thereafter, the traditional median filter was
found unable to obtain a thorough noise removal and structure
information preservation simultaneously, especially for high
density noise, because it processes all pixels regardless of
whether they are noisy or not, destroying the noise free pixels.
To address this problem, some researchers initially proposed
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switching median filters [4]–[7] that integrate the noise
removal processing with a noise detector so as to make the
removal processing imposed only on the detected noisy pixels
so that the performance ofmedian filter was improved consid-
erably. And in the wake of development of image processing,
analysis, and application, the better denoising performance
of filters is highly demanded; thus, various improved filters
integrated with various strategies were proposed. However,
the existing filters inevitably have inherent shortcomings,
and are not necessarily effective, especially for high density
noise: they either overly smooth the image, or are unable to
restore effectively the structure and edge information, so that
they still could not satisfy the high requirements of image
analysis and application. To tackle this problem and provide
high quality image for analysis and application, we proposed
an adaptive sequentially weighted median filter (ASWMF)
for image highly corrupted by impulse noise; the contri-
butions of the proposed ASWMF are briefly described as
follows.

(i) A noise detector employing the 3σ principle of normal
distribution and the local intensity statistics based on the
intensity distribution of natural image, taking full advantage
of intensity distribution features to discriminate accurately
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the noisy pixels from the noise free ones having the same
intensity.

(ii) A noise removal method employing sequentially
weighted median of neighborhood of adaptive size; the
weighted operator employed is derived in reference to the
spatial distances from central noisy pixel, in which the
weighting coefficients are sequentially inversely proportional
to the spatial distances, distinguishing accurately the various
contributions and impacts of neighbor pixels on the central
noisy pixel according to the distances.

The rest of this paper is organized by several parts as
follows. Section II states the related works, followed by the
proposed method detailed in section III; the experiments and
result analyses are conducted in section IV; and section V
concludes this paper.

II. RELATED WORKS
For improving the standard median filter, researchers pro-
posed switching median filters [4]–[7], which discriminate
the noisy pixels from the noise free ones prior to the noise
removal processing, so as to onlymake the detected noisy pix-
els undergo noise removal processing and keep the noise free
ones unchanged. Comparatively, the switching median filters
protect the original information of noise free pixels. However,
switching median filters are unable to handle various density
of noise. Considering this issue, adaptive switching median
filters [8]–[11] were proposed; they are robust for various
density of impulse noise. Wang et al. [10] proposed a novel
learning-based switchingmedian filter which detects noise by
a learning-based method, and by an iterative manner, takes
the median of noise free pixels surrounding noisy pixel as
the estimated intensity of noisy pixel. However, its improved
performance is achieved at the expense of computational
complexity. Erkan et al. [11] proposed a different applied
median filter (DAMF) to protect the thin lines and edges
of image, and avoid smearing image details while removing
noise; the DAMF employs the noise free pixels in a neighbor-
hood of adaptive size for noise removal, and uses previously
processed pixels to remove the residual noises.

In order to further improve the performance with various
strategies, decision based filters [12], [13] were proposed;
their robust strategies improve the noise detection accuracy
and the performance of noise removal. A modified decision
based unsymmetric trimmed median filter [12] proposed
a noise detector identifying impulse noise simply by the
extreme intensity; the detected noisy pixels are replaced
by the unsymmetric trimmed median of a neighborhood of
fixed size. A neighborhood decision based impulse noise
filter (NDBINF) in [13] employs a neighborhood decision
approach to protect the noise free pixels having extreme
intensity while detecting noise, and a first-order neighbor-
hood decision approach to restore the detected noisy pixels.

It is generally believed that mean filters are unable to
achieve good performance, for they go without the ability
of structure and edge information preservation; however,
the improved variants of mean filter may get remarkable

results, especially for high density noise, such as [14], [15].
In [15], the intensity estimation of noisy pixel is performed
by an adaptive weighted mean based on Euler distance; it is
claimed by the authors that this filter can achieve excellent
noise removal and good edge preservation. Apart from this,
mean filter integrated with median filter may achieve better
performance, such as [16]–[18]. In [18], the filter using pixel-
variation gain factors (PVGF) groups the neighbor pixels
having non-extreme intensity according to the intensity vari-
ation, and then, the distribution ratio and pixel variation level
of each group are employed to determine the gain factors;
thereafter, the value obtained by the gain factors multiplied
with the median of each group is taken as the estimated
intensity of noisy pixel.

As improved versions of switching median or mean filter,
weighted filters [19]–[24] remove impulse noise by taking
the weighted median or mean of neighbor noise free pix-
els with a weighted operator, differentiating the contribu-
tions and impacts of neighbor pixels on the central pixel by
weighted processing so as to achieve a better denoising result.
The adaptive dynamically weighted median filter (ADWMF)
[22] estimates the intensity of noisy pixel by employing
the weighted median of a neighborhood of adaptive size;
the weighted operator employed is derived from Gaussian
surface. The filter using radial basis functions interpolation
(RBFI) in [24] estimates the intensity of noisy pixel with
radial basis functions interpolation, and then, refines the
recovery image using a distance inversely weighted mean
filter.

In view of the wide application of fuzzy theory, it was
introduced into the image processing for improving the
denoising performance [25]–[28]. The SVM classification
based fuzzy filter (SVMFF) [25], aiming at performance
improvement irrespective of noise density, employs a support
vector machine classification for noise detection, along with
a histogram based fuzzy filtering for noise removal. Inspired
by the fuzzy switching median filters and the works on the
concept of information sets, a noise adaptive information
set based switching median filter (NAISM) is proposed in
[27]; the information sets are derived from fuzzy sets to
deal with the uncertainty, and by virtue of the switching
criterion and the local effective information surrounding the
noisy pixel, the best calculated value replaces the noisy pixel.

Generally, existing techniques strongly rely on exploiting
the neighbor information of noisy pixel for noise removal;
however, considering the diversity singularity and non-
stationary feature of image signal in local neighborhood,
the estimation result could easily diverge from the true value
and cause ugly visual effects in textures and edge regions.
These inspired some researchers to expect better denoising
performance by exploiting the nonlocal information during
the noise removal procedure. However, initially, the nonlo-
cal techniques were only for removal of additive Guassian
noise and random-valued impulse noise [29]; and subse-
quently, some researchers ingeniously proposed the improved
versions of nonlocal techniques for fixed-valued impulse
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noise removal.Wang et al. [30] proposed an iterative nonlocal
means filter (INLM); the concept of nonlocal means filter is
based on the fact that there exist lots of similar patches with
repeat patterns in natural image, and the central pixels of these
similar patches share the same intensity value distribution;
the central noisy pixel under processing is thus replaced by
the weighted mean of central pixels of all similar patterns.
In general, the nonlocal filters show high computational
complexity, and performance improvements for fixed-valued
impulse noise are not necessarily conspicuous.

Originally, the deep learning technique based filters
focused on Gaussian noise removal; thereafter, inspired
by the emerging deep learning theories, some researchers
attempted to use them for fixed-valued impulse noise, such
as [31], [32]. When the noise is additive Gaussian, the noisy
image value is still correlated to the original value, hence,
deep learning based filter can achieve a good performance
for Gaussian noise removal. However, unlike Gaussian noise,
impulse noise is not correlated with the original image data,
each pixel has a probability of being corrupted; thus, the deep
learning based filters are not fit for impulse noise removal,
also, by observing their experimental results in [31], [32],
their performances are not conspicuous.

III. PROPOSED METHOD
A. MODEL OF FIXED-VALUED IMPULSE NOISE
Generally, the fixed-valued impulse noise can be modeled by
its intensity and distribution. (i) Impulse noise takes extreme
intensity in the image intensity range; in an 8-bit gray image
whose intensity ranges from 0 to 255, the impulse noise takes
intensity 0 and 255. (ii) When corrupts an image, the impulse
noise distributes randomly and evenly with a certain proba-
bility, being independent from neighbor noise free pixels; the
noises with minimum intensity and the ones with maximum
intensity distribute with equal probability. Correspondingly,
the impulse noise can be mathematically modeled as

f (p) =


min d/2
max d/2
o 1− d

(1)

Here, f (p) is the intensity of pixel p in corrupted image with
a noise density d , extreme values min and max denote the
intensity of noisy pixel, and o denotes the intensity of noise
free pixel.

B. NOISE DETECTION BY 3σ PRINCIPLE
AND LOCAL STATISTICS
1) FEATURES OF FIXED-VALUED IMPULSE NOISE
To reveal the features of impulse noise as well as the dis-
tinction between noisy pixel and noise free pixel, a sim-
ple experiment is carried out, and the results are shown
in FIGURE 1. FIGURE 1 shows a zoomed-in local part
of image Lenna, which locates at 135∼154 rows and
220∼239 columns, and its corrupted versions by 10%, 50%,
and 90% noises, respectively. By observing the corrupted

FIGURE 1. Zoomed-in local part of Lenna and its corrupted versions.
(a) A local part of original image Lenna; corrupted versions by (b) 10%
noises; (c) 50% noises; (d) 90% noises.

versions carefully, several important observations can be
obtained as follows.

(i)Fixed-valued impulse noise takes extreme intensity,
i.e., 0 and 255.

(ii)Noises with minimum intensity and noises with max-
imum intensity distribute randomly but local unevenly with
equal probability.

(iii)Local noise free pixels vary smoothly, and smooth
regions are separated by edges.

(iv)For noisy pixel, its intensity differs greatly from those
of neighbor noise free pixels surrounding it, it is thus in
isolation.

(v)There are often some noise blocks in highly corrupted
image.

2) NOISE DETECTOR BASED ON 3σ PRINCIPLE
AND LOCAL STATISTICS
For a natural image, it can be noted from its intensity his-
togram that generally, the intensities of pixels approximately
obey normal distribution, and so does the intensities of local
pixels. The local noise free pixels have high similarity, and are
highly correlated with each other, so that they approximately
obey local normal distribution. And the noisy pixels take
fixed extreme intensity, and their locations obey random dis-
tribution; thus, they are lonely, deviating considerably from
the neighbor noise free pixels.

Naturally, based on the intensity feature of impulse noise,
assuming all pixels having extreme intensity to be noisy,
may not be valid, as the noise free pixels having extreme
intensity are definitely taken as noisy pixels by this assump-
tion. To address this problem, we seek help from the normal
distribution.

Based on the just above analyses, we employ the 3σ
principle of normal distribution for further detection, with
the expectation that the noise detector has good ability to
discriminate noise free pixels from the noisy ones having the
same intensity value. As shown in FIGURE 2, denote by u the
mean of a set, and σ the standard deviation, if the individuals
X of the set obey normal distribution, then 68.26% individu-
als would locate in interval (u−σ , u+σ ), 95.44% individuals
locate in interval (u − 2σ , u + 2σ ), and 99.74% individuals
locate in interval (u− 3σ , u+ 3σ ); they can be defined by

P{µ− σ < X < µ+ σ } = 68.26% (2)

P{µ− 2σ < X < µ+ 2σ } = 95.44% (3)

P{µ− 3σ < X < µ+ 3σ } = 99.74% (4)
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FIGURE 2. 3σ principle of normal distribution.

Note that one pixel with extreme intensity means high proba-
bility of being noisy, because of the extreme intensity feature
of impulse noise; but if it locates in the 1σ interval shown
in FIGURE 2 and formula (2), we take it as noise free, for
it shows high correlation with the neighbor pixels having
non-extreme intensity.

However, in a black or white region, noise detection by the
extreme intensity and the 3σ principle of normal distribution
fails; but fortunately, the features of black or white region can
be inferred and utilized for noise detection. For example, for
a black region, two important observations can be made as
follows.

(i) Originally, most or all the pixels in this black region take
minimum intensity.

(ii) When impulse noise corrupts this region, the noises
with minimum intensity disappear for they are assimilated,
only the noises with maximum intensity exist. Accordingly,
it is noteworthy that most of pixels in this corrupted region
are of minimum intensity.

Therefore, in a black image region, we employ local
intensity statistics for noise detection based on these two
observations, that is, if a pixel takes minimum intensity,
and the minimum intensity accounts for the majority in its
neighborhood, this pixel is labeled as noise free, otherwise as
noisy. The noise detection strategy can be similarly made for
a white region.

In addition, by reference to the literatures, and based on
the approximate local symmetry of the pixels in spatial dis-
tribution, we take square neighborhood, which is symmetrical
about the center, for noise detection and removal; we denote
by Np(k) the neighborhood of size k × k centered at pixel p.
Specifically, the proposed noise detector based on 3σ prin-

ciple and local intensity statistics is defined as follows.
(i) Take the pixels having extreme intensity as noise candi-

dates, because of the intensity feature of impulse noise.
(ii)For each noise candidate p, in Np(7), if more than two

non-extreme values are available, turn to (iii), or else, turn to
(iv).

(iii)Compute the mean u and standard deviation σ of the
non-extreme intensity in Np(7); if f (p) falls into interval (u-
σ , u+ σ ), label p as noise free, otherwise as noisy.
(iv)In Np(5), if f (p) = 0 and the number of intensity

0 (denoted by n0) accounts for the majority, here we set
n0 > T , label p as noise free, otherwise as noisy. This strategy
is similar for f (p) = 255.

FIGURE 3. PSNR of ASWMF with various T on BSD68 dataset corrupted
with various density of impulse noise.

For the optimal value of T , by using vast trial and error
methods, we conducted an experiment with ASWMF on
BSD68 dataset corrupted with 20% noises, 50% noises, and
80% noises, respectively, the result of which is shown in
FIGURE 3. The result shows how the denoising performance
depends on the noise detector with various values of T . Based
on the result, we prefer to take T = 20, which means the
following formula should be approximately satisfied

∂PSNR(T )
∂T

∣∣∣∣
T=20

= 0 (5)

The performance of an impulse noise detector depends on
its capability to detect all the true positives effectively in
the presence of false positives as less as possible. And the
proposed noise detector is able to achieve this so that the edge
and structure information can thus be better preserved and
restored in the noise removal processing.

C. NOISE REMOVAL BY ADAPTIVE SEQUENTIALLY
WEIGHTED MEDIAN
In our method, only the noisy pixels undergo a noise removal
processing, and noise free pixels are left unchanged so as to
protect the original image information as much as possible;
in addition, for one noisy pixel, only the noise free pixels
surrounding itself are employed in its intensity estimation.
Besides, we employ a neighborhood of adaptive size for noise
removal processing, i.e., if no noise free pixels are available in
small neighborhood for noise removal processing, the neigh-
borhood is enlarged so as to contain noise free pixels.

In our noise removal processing, noise free pixels only on
the border of one neighborhood are employed. Take FIGURE
4 for an example. For the central noisy pixel p, initially, its
Np(3) neighborhood is employed, and thus, noise free pixels
only on the border ofNp(3) are employed; and if no noise free
pixels are available in the Np(3) for noise removal, the Np(5)
is employed, in this case, equally, noise free pixels only on
the border of Np(5) are employed, for no noise free pixels
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FIGURE 4. Neighborhood of adaptive size.

are available in the Np(3) which is also included in Np(5).
However, the noise free pixels on the border of one neigh-
borhood are not equidistant, and therefore, their contributions
and impacts on the central pixel are unequal so that directly
taking themedian of them as the estimated intensity of central
noisy pixel is partial and inadvisable. To differentiate the
contributions and impacts of neighbor noise free pixels on the
central pixel, the noise free pixels available on the border of
one neighborhood, are weighted by a weighted operator, and
then, the median of the weighted ones is taken as the intensity
of noisy pixel under consideration.

Our weighted operator is innovatively defined in
FIGURE 5, in which denoted byW (k) the weighted operator
of size k × k . Note that in W (k), the non-zero coefficients,
by which the corresponding pixels are duplicated so as to
control their probability of becoming the median, are sequen-
tially inversely proportional to their spatial distances from
central pixel, and are signed only to the noise free pixels
at the corresponding locations, representing accurately the
contributions and impacts of neighbor pixels on the cen-
tral pixel. In addition, it is noteworthy that the coefficients
assigned to noisy pixels are zero, for noisy pixels could
not participate in the intensity estimation of central noisy
pixel.

As mentioned above, if no noise free pixels are available,
the neighborhood is enlarged until at least one noise free
pixel is found or the neighborhood size has reached the
predefined maximum. At this point, if the neighborhood has
reached the maximum size, and still no noise free pixels are
available, the noisy pixel under consideration is replaced by
the median of all pixels in its neighborhood N (5), including
the pixels of previously processed, unprocessed, and noise
free. As to the maximum size of neighborhood employed for
noise removal, denote it by MaxN; it could not be too large,
for pixels at far distance show weak correlation and impact,
also, it could not be too small, for it shows no robustness for
high density noise. By conducting experiments on various
images and using trial and error method, we see that our
proposedmethodwithMaxN=9 andMaxN=11 shows almost
the same best denoising performance; thus, we prefer to take
9 as the optimal value of MaxN, because of computational
complexity.

In summary, the adaptive sequentially weighted median
filter is set forth as follows. Each detected noisy pixel p under-
goes the following adaptive weighted median processing.

(i) If noise free pixels are available on the border of Np(k)
(initially, k = 3 is taken) under consideration, turn to (ii), or
else, turn to (iii).

(ii) Conduct weighted processing on the noise free pixels
by the weighted operator W (k), and take the median of
weighted ones as the intensity of p, which can be formulated
as

f (p) = median(Np(k) �W (k)) (6)

where the symbol � is the pixel-wise duplication operator; for
example, for a noise free pixel p with weighted coefficient n,
the weighted processing is defined by

f (p) � n =

n times︷ ︸︸ ︷
f (p), f (p), f (p), · · ·, f (p) (7)

(iii) Enlarge the Np(k), i.e. set k = k+2; if k ≤MaxN, turn
to (i), or else, let p unprocessed.
(iv) After processing all the detected noisy pixels by (i) and

(ii), replace each unprocessed noisy pixel p with the median
of its Np(5) including the pixels of previously processed and
unprocessed.

The adaptive sequentially weighted median processing,
which differentiates accurately the contributions and impacts
of neighbor pixels on the central pixel with a sequentially
weighted operator, can achieves a better recovery result, and
can be capable of restoring the edge and structure information
very well.

IV. EXPERIMENTS
By running Matlab R2019a on a machine with Intel(R)
Core(TM) i7-7700 CPU at 3.60 GHZ, equipped with 8 GB
RAM, we conduct the experiments on datasets SET12,
BSD68, and medical images shown in FIGURE 6. The empir-
ical validation for the proposed ASWMF is conducted by
performing thorough comparative analyses with the state-
of-the-art filters proposed recently in literatures, which are
DAMF [11], NDBINF [13], PVGF [18], ADWMF [22], RBFI
[24], SVMFF [25], NAISM [27], and INLM [30], in terms of
noise detection accuracy, peak signal to noise ratio (PSNR),
structural similarity index (SSIM) [33], edge preservation
index (EPI) [34], image entropy H [35], visual perception,
and computational time. The PSNR, SSIM, EPI, and H are
defined by

PSNR = 10× log10
m× n× 2552

m∑
i=1

n∑
j=1
(f (i, j)− g(i, j))2

(8)

SSIM =
(2uf ug + C1)(2σfg + C2)

(u2f + u
2
g + C1)(σ 2

f + σ
2
g + C2)

,(
C1 = (K1L)2,C2 = (K2L)2

)
(9)
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FIGURE 5. Sequentially weighted operator W (k) of (a) size 3 × 3; (b) size 5 × 5; (c) size 7 × 7; (d) size 9 × 9.

FIGURE 6. Medical images. (a) Chest_Xray; (b) Abdomen_CT.

EPI =

m∑
i=1

n∑
j=1

(
fhp(i, j)−ufhp

)
×
(
ghp(i, j)−ughp

)
√

m∑
i=1

n∑
j=1

(
fhp(i, j)−ufhp

)2
×

m∑
i=1

n∑
j=1

(
ghp(i, j)−ughp

)2
(10)

H = −
255∑
i=0

255∑
j=0

Pij lnPij,

 255∑
i=0

255∑
j=0

Pij = 1

 (11)

Here, f and g are the original image and recovery image,
respectively; m and n are the height and width of image,
respectively. Denoted by uf and σf the mean and standard
deviation of f , respectively, σfg the covariance of f and g.
The stabilizing constant C1 and C2 are calculated with the
dynamic range, L = 255, K1 and K2, by default K1 and K2
are selected as 0.01 and 0.03, respectively [33]. fhp and ghp
are respectively the high-pass filtering images of f and g
with Laplacian filter, with uf hp and ughp being their mean
values, respectively [34]. Pij reflects the comprehensive char-
acteristics of the intensity distribution of one pixel and its
surrounding pixels [35].

PSNRmeasures the similarity of original image and recov-
ery image; the higher the PSNR is, the better the noise
removal capability is. SSIM measures the structure infor-
mation preservation capability; higher SSIM signifies better
preservation capability. EPI measures the edge preservation
capability; the higher the EPI is, the better the edge preser-
vation capability is. Entropy H is a statistical measure of
randomness and variability that can be used to characterize

TABLE 1. Performance of the state-of-the-art filters and ASWMF in noise
detection on image Chest_Xray.

the texture of image; larger entropy implies coarser texture
and better texture preservation ability [36].

A. NOISE DETECTION PERFORMANCE OF FILTERS
Among DAMF, NAISM, PVGF, and RBFI, we only take
DAMF for evaluation, for they adopt the same noise detection
strategy, i.e., min-max noise detector. In terms of missing
detection rate (MDR) and false detection rate (FDR), the
detected results of all filters on image Chest_Xray are shown
in TABLE 1; and the MDR and FDR are given by

MDR = 100×

∑
p∈f
(Rr (p) = 1 ∧ Rd (p) = 0)∑

p∈f
Rr (p)

(%) (12)

FDR = 100×

∑
p∈f
(Rr (p) = 0 ∧ Rd (p) = 1)∑

p∈f
Rr (p)

(%) (13)

Here Rr denotes the matrix for indicating the true noises,
which indicate a pixel p as noise free with Rr(p) = 0 or
noisy with Rr(p) = 1; Rd denotes the matrix for indicating
the detected noises.

By comparing the statistics in TABLE 1, two points can
be concluded. (i) At various noise densities, some existing
filters have a very small number in MDR, show superiority
over the proposed ASWMF; however, they have a very large
number in FDR, such as DAMF and SVMFF. (ii) Although
the ASWMF shows no superiority in MDR, it achieves
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TABLE 2. PSNR and SSIM of the state-of-the-art filters and ASWMF on
image Lenna.

a far smaller number in FDR. These imply that ASWMF can
achieve better noise detection overall comparing to the other
filters at various noise densities.

B. PERFORMANCE OF FILTERS ON SET12 DATASET
Here, the PSNR, SSIM, and EPI of the recovery results of
the state-of-the-art filters and ASWMF on images Lenna,
Mandrill, Man, and Boat from SET12 dataset, which are cor-
rupted by various density of impulse noise, are tabulated; and
the best results are indicated in bold. Applying the proposed
ASWMF brings about a considerable increase in the PSNR,
SSIM and EPI compared with the state-of-the-art filters with
respect to various noise densities.

The results of all filters on image Lenna are tabulated as
TABLE 2. It can be inferred from numerical results that the
ASWMF gives a considerable improvement in noise removal
and structure information preservation at all noise densities;
in PSNR, the ASWMF consistently achieves superior results
to those of the other filters, and in SSIM, the superiority of
ASWMF to the other filters at high noise density is more sig-
nificant than that at low noise density. These can be attributed
to the intelligent use of the 3σ principle of normal distribution
and the local intensity statistics in noise detection, as well as
the sequentially weighted median processing.

The restored results of all filters for image Mandrill are
revealed in TABLE 3. From the PSNR and SSIM values
in TABLE 3, it can be easily grasped that the performance
of ASWMF is much better than those of the other compet-
ing state-of-the-art filters. ASWMF is the most successful
method than the others even at high noise density. It is
noteworthy that the superiority of ASWMF in SSIM over
the other filters grows, as the noise density increases. These
imply that the ASWMF is successfully devoted to improving
the noise detection, noise removal and structural information
preservation.

In terms of PSNR and EPI, the superior performance
of ASWMF to the other filters for image Man is demon-
strated in TABLE 4. Compared to the state-of-the-art filters,

TABLE 3. PSNR and SSIM of the state-of-the-art filters and ASWMF on
image Mandrill.

TABLE 4. PSNR and EPI of the state-of-the-art filters and ASWMF on
image Man.

the ASWMF gives more promising results; its higher
PSNR values imply better noise removal capability, and its
higher EPI values signify better edge preservation capability.
In PSNR, the superiority of ASWMF to the other filters
is almost approximate along various noise densities; and in
EPI, the superiority of ASWMF grows, as the noise density
increases. This is primarily due to the fact that ASWMF can
accurately discriminate the noisy pixels from the noise free
ones, and effectively estimate the intensity of noisy pixel,
thereby making it more able to restore the image from high
density noise.

In terms of PSNR and EPI, TABLE 5 shows the superior
results of ASWMF to those of the other filters for image
Boat. By observing carefully TABLE 5, we arrived at two
conclusions. (i) The ASWMF improve the performance of
the existing filters by removing noise thoroughly and ren-
dering the restored image free from blur effect, while the
edge information is well preserved. (ii) The superiority of
ASWMF to the other filters in EPI increases with the noise
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FIGURE 7. PSNR and EPI of the state-of-the-art filters and ASWMF on image chest_Xray. (a)PSNR; (b)EPI.

TABLE 5. PSNR and EPI of the state-of-the-art filters and ASWMF on
image boat.

density increases; thus, the edge information preserved by
ASWMF is remarkably better than those preserved through
the other filters. These imply that noise removal and edge
information preservation can be achieved more effectively by
ASWMF.

C. PERFORMANCE OF FILTERS ON MEDICAL IMAGES
Here, we investigate the performance of ASWMF on med-
ical images; and the superiority of ASWMF is revealed by
the results plotted in FIGURE 7 and 8. The PSNR and
EPI of the recovery results of the state-of-the-art filters
and ASWMF on image Chest_Xray with various density of
impulse noise, are plotted in FIGURE 7. From FIGURE 7,
it is noticed that compared to the other filters, substantial per-
formance improvements can be obtained through ASWMF;
the ASWMF outperforms the state-of-the-art filters in noise
removal thoroughly which is revealed by PSNR curves.
As to the edge information preservation, which is revealed

by EPI curves, the conclusion derived from EPI is similar
as that derived from PSNR; along various noise densities,
the ASWMF shows excellent performance in edge preser-
vation. The reason behind these improvements is that the
ASWMF can accurately discriminate the noisy pixels from
the noise free ones, so as to protect the noise free pixels,
and effectively remove the noise while preserving the edge
information.

FIGURE 8 clearly demonstrates that ASWMF gives
definite improvements in PSNR and SSIM over those of
the other filters for image Abdomen_CT. Compared to the
other filters, the ASWMF shows more promise for pro-
cessing medical images; in noise removal processing by
ASWMF, more structure information can be preserved and
better denoising performance can be achieved. Many pix-
els having extreme intensity are often available in medical
images; hence, the superiority of ASWMF over the other
filters in medical image processing highly depends on its
noise detector.

D. PERFORMANCE OF FILTERS ON BSD68 DATASET
We plot in FIGURE 9 and 10 the average PSNR, SSIM, EPI,
and entropy values of the state-of-the-art filters and ASWMF
on BSD68 dataset with various density of impulse noise,
visualizing their denoising performance.

As expected, the results in FIGURE 9 confirm the supe-
riority of ASWMF again, and are consistent with the results
reported above. Three important observations can be made
from FIGURE 9. (i) As the noise density increases, consis-
tently for all filters, the restoration quality degenerates, but
our method consistently gives the best performance. (ii) The
PSNR and SSIM curves of ASWMF are above those of the
other filters, keeping a gap with them along various noise
densities. (iii) Interestingly and apparently, the performance
gap between ASWMF and the other filters in SSIM grows
larger, as the noise density increases.
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FIGURE 8. PSNR and SSIM of the state-of-the-art filters and ASWMF on image Abdomen_CT. (a)PSNR; (b)SSIM.

FIGURE 9. Average PSNR and SSIM of the state-of-the-art filters and ASWMF on BSD68 dataset. (a)PSNR; (b)SSIM.

The results in FIGURE 10 confirm the better capability of
proposed ASWMF in edge preservation, and keeping the uni-
formity of image intensity distribution and the image textures.
It can be seen obviously that the EPI values of ASWMF are
larger than those of other filters along various noise densities,
showing better edge preservation capability; as to the entropy
of recovery image, the ASWMF outperforms the other filters
at almost all the noise densities, except that ASWMF lags
behind the DAMF at very high noise density, showing good
capability in keeping the variation of image intensity and the
image textures.

These can be attributed to that the ASWMF is designed in
such a way that it discriminates the noisy pixels accurately
from the noise free ones and estimates the intensity of noisy
pixel effectively.

E. VISUAL PERCEPTION OF RECOVERY RESULTS
Here, the images Barbara and Jetplane in SET12 are selected
as experimental images. Because the performance of a filter

at low noise density is often difficult to evaluate by visual
perception, we focus on evaluating it at high noise density.
Visual analyses on the capability of noise removal, structure
and edge information preservation of the proposed ASWMF
against the state-of-the-art filters in the recovery results for
image Barbara with 80% impulse noises and Jetplane with
90% impulse noises are made in FIGURE 11 and 12, respec-
tively. For a visually clear comparison, only a zoomed-in local
part of each recovery image is shown.

FIGURE 11 shows the improvements in visual appearance
given byASWMF against the state-of-the-art filters for image
Barbara; two numbers in the parentheses below each recov-
ery image are the corresponding PSNR and SSIM, respec-
tively. By observing FIGURE 11 carefully, three important
conclusions can be inferred. (i) The ASWMF gives a more
visually pleasant recovery image, and provides a signifi-
cant contribution towards preserving the structural infor-
mation. (ii) In the recovery images of the other filters,
either residual noises or obvious blur effects can be seen.
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FIGURE 10. Average EPI and entropy of the state-of-the-art filters and ASWMF on BSD68 dataset. (a)EPI; (b)Entropy.

FIGURE 11. Recovery results of image Barbara with 80% impulse noises.(a) Zoomed-in local part of Barbara with impulse noise;
Results of (b) DAMF; (c) NDBINF; (d) PVGF; (e) ADWMF; (f) RBFI; (g) SVMFF; (h) NAISM; (i) INLM; (j) ASWMF.

(iii)Again, the PSNR and SSIM values below the recovery
images confirm the superiority of ASWMF over the other fil-
ters. These mean that the ASWMF possesses better capability
of noise removal and structural information preservation than
the existing filters, and the image produced by the ASWMF
is visually sharper and more distinctive than those obtained
by the other filters.

The recovery images of all filters on image Jetplane with
90% impulse noises, are shown in FIGURE 12; two numbers
in the parentheses below each recovery image are the corre-
sponding PSNR and EPI, respectively. On careful observation
from FIGURE 12, the visual result of ASWMF is percep-
tually better than those of the other considered filters; the
recovery results confirm that our result is far superior to those
of the other filters, indicating that the ASWMF still produces
consistently higher quality image at such a high corruption

level with better capability of local features preservation. And
the corresponding PSNR and EPI are also consistent with the
conclusion derived by visual perception. The ASWMF still
works fairly well, even at a very high noise density; this is
due to the same reason as explained above.

Here, these inferences by visual perception are consistent
with the comments given above.

F. COMPUTATIONAL TIME
Denoted by n the pixel number of one image and Cx
a constant. Consider the complexity of each subprocess
in the proposed ASWMF: noise detection by extreme
intensity— O(n); detection by 3σ principle or local
intensity statistics— O(C1n), here C1 = 49 or C1 = 25;
search noise free pixels in neighborhood of adaptive
size— O(C2n); weighted processing for each noisy
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FIGURE 12. Recovery results of image Jetplane with 90% impulse noises. (a) Zoomed-in local part of Jetplane with impulse noise;
Results of (b) DAMF; (c) NDBINF; (d) PVGF; (e) ADWMF; (f) RBFI; (g) SVMFF; (h) NAISM; (i) INLM; (j) ASWMF.

TABLE 6. Average computational time (seconds) of each filter on six
selected images.

pixel— O(C3n); replace each noisy pixel with median—
O(C4n). Therefore, summing them together, the total com-
plexity of ASWMF is O((1+C1+C2+C3)n). Hence, it can
be concluded that the computational complexity of the pro-
posed ASWMF is acceptable. Further, we end this section
by considering the computational time of our ASWMF and
the state-of-the-art filters; they are performed on image
Lenna, Mandril, Man, Boat, Barbara, and Jetplane, and the
average computational time of each filter is tabulated as
TABLE 6.

A careful look at TABLE 6 and reference to the above
performance analyses reveal that some state-of-the-art filers
often provide such a good performance only at the cost of
computational time, such as INLM and RBFI. Among all
filters, no significant superiority in computational time is
shown by the proposed ASWMF; however, its running speed
is comparable to most of the state-of-the-art filters, and sur-
passes some other filters, such as ADWMF, INLM and RBFI.

V. CONCLUSION
In this paper, we proposed a new method ASWMF for image
restoration from impulse noise, consisting of a simple and
effective noise detector, and a noise removal technique capa-
ble of removing impulse noise thoroughly and preserving the
structure and edge information very well. The noise detector
in ASWMF takes full advantage of the 3σ principle of normal
distribution and the local intensity statistics; and the noise
removal technique in ASWMF gets support from the adaptive
sequentially weighted median processing. The 3σ principle
of normal distribution and local intensity statistics employed
in noise detection and the adaptive sequentially weighted
operator employed in noise removal are the remarkable con-
tributions of the proposed ASWMF; they jointly make the
denoising performance advanced considerably. With exten-
sive experimental results on various images with various
density of impulse noise, it is observed that quantitatively and
qualitatively, the proposed ASWMF performs superiorly to
the state-of-the-art filters in the presence of impulse noise.
In addition, no significant superiority in computational time
is shown by the proposed ASWMF; we will advance it in
the further work, making it applicable for real-time image
denoising.
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