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ABSTRACT To address the uncertainty existing in underactuated mechanical systems (UMSs) and their
nonholonomic servo constraints, we propose a class of adaptive robust control based on the Moore-Penrose
generalized inverse for UMSs in this paper. The uncertainty is considered as (possible fast) time-varying and
bounded. However, the bound is unknown. To estimate the bound information, an adaptive law is designed,
which combines leakage type and dead-zone type. This adaptive law can simultaneously regulate the control
effort and computation speed. The proposed control can guarantee deterministic system performance, which
is analyzed by using Lyapunov method. The effectiveness of proposed control is shown by an example of
simplified two-wheeled self-balancing robot.

INDEX TERMS Underactuated mechanical systems, servo constraints, adaptive robust control, adaptive

law, Moore-Penrose generalized inverse.

I. INTRODUCTION

Underactuated manipulators [1], [2], UAVs [3], surface ves-
sels [4], spacecraft [5], [6], underwater vehicles [7] and
so on have generally become active fields for the past
few years, because they are all underactuated mechanical
systems (UMSs) that have the advantages of low num-
ber of actuators, weight, cost and energy consumption.
However, complex internal dynamics, lack of feedback
linearization and nonholonomic behavior also accompany
UMSs, which increase the difficulty of designing con-
troller for such systems. Even so, many brilliant work for
such systems have been achieved in control field, such as
sliding-mode [8]-[10], LQR [11], partial feedback lineariza-
tion [12], [13], LMI [14], [15], Hx [16] and so on. However,
most of the control methods mentioned above are difficult to
deal with nonholonomic servo constraints [17].
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In 1992, Udwadia and Kalaba proposed a novel
Udwadia-Kalaba equation [18] based on the Moore-Penrose
generalized inverse, and through which can easily establish
the motion equation of a mechanical system and solve the
constraint forces without considering Lagrange multiplier.
The Udwadia and Kalaba’s work is a significant breakthrough
in the field of dynamics. Based on the breakthrough, Udwadia
proposed a novel servo control [19], which can easily handle
nonholonomic servo constraints without relying on additional
sophisticated mathematical tools in the control design of
fully actuated mechanical systems. Furthermore, based on
Udwadia’s and Kalaba’s work, in [20], Chen systemati-
cally proposed the concept of servo control for constrained
mechanical systems and the design method of constraint
forces. In [21], Liu et al. proposed a new servo control based
on pioneer’s work, which makes the advantages of Udwadia’s
control apply in controlling UMSs. However, Liu’s work does
not consider the uncertainty existing in UMSs. In real life,
the uncertainty should be nonnegligible.
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In engineering applications, it is crucial to distinguish
whether certain part of the uncertainty is known or not.
Engineers and researchers always acquire the known portion
of uncertainty though numerous observed data. As long as the
bound information of uncertainty is clearly determined, deter-
ministic control methods can be developed, such as [22]-[25].
However, some data of uncertainty is not easy to observe or is
unlikely to repeat many times accurately, such as earthquake
data. So the bound information of uncertainty is not always
available.

Itis where the rub is that simultaneously handle uncertainty
existing in UMSs and their nonholonomic servo constraints.
Therefore, we propose a novel adaptive robust control for
UMSs along with Liu’s work. The proposed control is
designed based on the Moore-Penrose generalized inverse
to deal with nonlinear time-varying underactuated system
with uncertainty and nonholonomic servo constraint. We con-
sider that the uncertainty is (possible fast) time-varying and
bounded. However, the bound is unknown. So the control
design is not based on pre-given bound information of uncer-
tainty, which may otherwise be too conservative and render
excessively large control effort. We design an adaptive law,
which combines leakage type and dead-zone type, to esti-
mate the bound of the uncertainty. The leakage term can
adjust the value of the adaptive parameter according to the
system performance, which further helps to regulate the con-
trol effort. The dead-zone term helps to simplify the adap-
tive law calculation, which further speeds up the algorithm
practice.

The main contributions of this paper are threefold.
First, the proposed adaptive robust control is able to
deal with nonlinear time-varying UMSs and nonholonomic
servo constraints. Second, the uncertainty is (possibly fast)
time-varying and bounded. However, the bound is unknown.
An adaptive law is designed to emulate a constant parameter
vector which may be relevant to the bounding set. Therefore,
the designed control is not based on a pre-given bound.
Third, the adaptive law merged leakage type and dead-zone
type is designed to estimate the bound of the uncertainty
and regulate the control effort and speed up the algorithm
practice.

The rest of this paper is organized as follows. In Section 2,
the dynamic equation of constrained UMSs with (possi-
ble fast) time-varying uncertainty is described, and the
forms of the servo constraints are also presented, which
can be holonomic and nonholonomic. In Section 3, a class
of adaptive robust control with adaptive law is proposed
based on the Moore-Penrose generalized inverse to real-
ize approximate constraint-following of UMSs. Furthermore,
the control guaranteeing deterministic system performance
(including uniform boundedness and uniform ultimate
boundedness) is theoretically analyzed by using Lyapunov
method. In Section 4, an example of simplified two-wheeled
self-balancing robot is given to demonstrate the effective-
ness of the control. Finally, the “Conclusion” section is
given.
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Il. PRELIMINARY OF MIOORE-PENROSE

GENERALIZED INVERSE

For a given matrix ¢ € R™" (i.e., ¢ = A(a, t)H (e, 1)B),

the rank of ¢ is R(p) > 1, the eigenvalues are A1 > Ay >
> Ar > 0. Assume the singular value decomposi-

tion (SVD) of ¢ is [26]

p=UY V= Xr:kiuiviT 1)
i=1

where Y = diag[Ailyxr, U = [ui,ua, -+ ,u] € R™
and V = [vi,v2,---,v] € R™ are unitary matrixes.
Furthermore, [u1, uz, - -+ ,u,] € R™"and [vy,v2, -+ ,v,] €
R™7" are orthonormal sets over R™ and R". Then the
Moore-Penrose generalized inverse [27]-[29] of ¢ is

pr=vy vt @

where the sign of the superscript “+” represents the
Moore-Penrose generalized inverse.

Lemma 1 (See [26]): ¢ satisfies  the  following
characteristics
¢ o =(9Te)
pot = ()"
¢ opt ="
o e =¢ 3)
T always exists for any given @. When ¢ is full

rank, in particular, ¢ is with linearly independent columns
(i.e., pT ¢ is invertible), then ¢+ can be found by

ot ="’ “)
This special case is so-called left inverse, since here ¢ = I.

In contrast, when the rows of ¢ are linearly independent and
@eT is invertible, then we have

ot =9 (@) )
This is called right inverse for pp™ = 1.

Lemma 2 (See [30]): For any given matrix ¢ € R™",
there always exists a Moore-Penrose generalized inverse
@t e R"™"™ and the Moore-Penrose generalized inverse is
unique.

Lemma 3 (See [26]): Consider a matrix ¢ € R™" with
R(¢) = r > 1, the following properties hold:

R(p") = R(¢™) = R(p™ ) (©6)
N(p) = RU — ¢T9) @)

where R(-) denotes the range space of matrix, N(-) denotes
the null space of matrix.

Remark 1: The Moore-Penrose generalized inverse was
initially reported in [27], [28]. The common application of
using Moore-Penrose generalized inverse is to find a “best
fit” (least squares) solution to linear equations which lack
unique solution. Furthermore, it can be used to compute
the minimum norm solution to linear equations which have
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multiple solutions. Besides, the Moore-Penrose generalized
inverse is extensively applied in inverse dynamics, such
as [31]-[34].

IIl. DYNAMIC MODEL AND SERVO CONSTRAINTS
The dynamic model of constrained UMSs with uncertainty
can be described as follows [35]

H(a(t), §(t), t)a = Q(a(t), a(t), 8(t), t) + Bt ®)

where ¢ € Ristime, @ € R" is generalized coordinate, & € R"
represents the velocity, @ € R" represents the acceleration,
H(a,68,t) € R™" is the inertia matrix, Q(«, ¢, §,¢) € R"
represents the known force imposed on the system whose
constraints are released, T € R™ is constraint force, B €
R™™ is the matrix of control coefficients, § € Y. C R
is the (possible fast time-varying) uncertain parameter. Fur-
thermore, the set > C RP, which stands for the possible
bound of §, is compact but unknown. Notice that the vector
o can also chosen based on the specifies of the problem
and the matrices/vectors H(«, 8, t), Q(a, &, §, t) and B are of
appropriate dimensions.

Assumption 1: The functions H(-) and Q(-) are contin-
uous (this can be generalized to be Lebesgue measurable
in t).

In Eq. (8), the T € R™ is provided by active servo controls
under some legitimate pre-specified servo constraints. Now,
we assume that the system is subjected to following servo
constraints [18], [19], [36]

n
Y A, e =ci(e, ), I=1,2-,m (9

i=1

where «; is the ith component of & and Aj;(-) and ¢;(+) are both
Clinagants, 1 <m<n.

These constraints are the first-order form and may be
nonintegrable and thus is nonholonomic in general. They can
be put in the matrix form

Ale, é = c(a, 1) (10)

where A = [Ajilmxn and ¢ = [c1, ¢2, -+, em]” ..

We assume that these constraint equations are differen-
tiable. Differentiating the constraints Eq. (9) with respect to ¢
yields

anAn(a, D& + Zn}iAz,(a, i = L@ (1)
P dt dt

i=1
where

n

d 0Aji(a, t) . 0Ai(a, t
_Ali(a, l) _ Z ll( )Olk + 1i( )

dt P ooy at
d Z" deilot) . deilat)
— , 1) =

dtcl(a ) P ooy e+ Jt
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Then, the Eq. (11) can be rewritten as

. N — d . d
gfxﬁ(a, né; = — E(EAH(% D)di + —cie, 1)
=: bi(o, &, t) (12)
which, in matrix form, is
Ao, 1)d = b(w, @, t) (13)

where b = [by, ba, -+, by]T, which is the second-order
form [37].

Remark 2: For a given configuration, the forms of
Egs. (10) and (13) are interpreted as follows: the Eq. (10)
governs the velocity &, and the Eq. (13) governs the accelera-
tion &. From [17], a large variety of control problems, such as
optimality, trajectory following and stabilization, could apply
the forms of Egs. (10) and (13).

Remark 3: A constrained underactuated mechanical sys-
tem (UMS) could be described by Eq. (8) with Newtonian
or Lagrangian mechanics, which is a second-order equa-
tion of motion. In this paper, the focus is to let an UMS,
equipped with servo controls follow a set of constraints
(Egs. (10) and (13),) by generating the required constraint
forces through servo controls, which is a control problem
in reality. For pre-specified servo constraints, which can be
the pre-given trajectory and set-point, we combine holonomic
and nonholonomic constraints in Eq. (10) and further convert
them to second-order form [Eq. (13)]. The conversion can
acquire the mathematical conformity between the system
model and constraints, which is very suitable to further design
the constraint forces in the next section.

IV. ADAPTIVE ROBUST CONTROL DESIGN

The uncertainty existing in UMSs should be considered
in reality. Therefore, we decompose the matrices H, Q as
follows [38]:

H(w,8,1) = H(a, 1)+ AH(w, 8, 1) (14)

O, &, 8,1) = Qe &, 1) + AQ(er, &, 8, 1) (15)

where H and Q denote the “nominal” portions, while AH
and AQ are the corresponding uncertain ones. We assume that

H > 0. Here, the functions H(-), AH(-), O(-), AQ(-) are all
continuous.

Let
E(a,t) = H Y(a, 1) (16)
AE(a,8,1) := H Na,8,1) — H (o, 1) (17)
F(a,8,t) := Ha,)H Yo, 8,1) — I (18)

Combining Egs. (16) to (18), we get

H Ya,8,1) = E(a, 1) + AE(e, 8, 1) (19)
AE(a,8,1) = E(a, )F(, 8, 1) (20)

Assumption 2: For each («, t) € R" x R, rank A(w, t) > 1.
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Assumption 3: Based on the provision of Assumption. 2,
for given P € R™*™ P > 0, let

Y(«,§,t) := PA(a, )E(a, t)F («, §, t)B
x [A(e, H)H Yo, )BITP™!  (21)
There exists a constant 'y > —1 such that for all («, t) €
R" x R,
1
— min A, (Y(a, 8, 1)+ Y (e, 8,1)) > T (22)
2 sey”

Let
bla,q, 1) = bla, &, 1) — Ale, DH Y, DO, &, 1) (23)

Assumption 4: There is (A(e, DH (o, 1)B) € R™" x
R x R™ for all b(a,d,t) and P in Assumption. 3,
we assume
bla. &, 1) = (A(er, OH (ot HB)(A(et, 1)

x H Yo, )B)Th(a, &, 1)  (24)

and
P~ = (A(e, HH (e, ) 'B)A(e, HH Y, )BT P! (25)

Assumption 5:

1) There exists an unknown constant vector x € (0, c0)¥
and a known function W(-) : (0, 00)* x R" x R" x R —
Ry such that, for all (o, &, 1) € R" x R" xR, § € ),

1+Tp)~! mz%[HPA(a, HE(a, HAQ(a, &, 8, t)
se
+ PA(a, )AE(a, 8, )Q(a, &, 8, 1)
+ PA(a, 1)AE(a, 8, 1)B(p1 + p2)ll]

2) For each (x, «, &, t), the function ¥(yx, «, &, t) can be
linearly factorized with respect to x; there exists a func-
tion W(-) : R" x R" x R — R, such that

W(x. o, i 1) =x" "V 1) 27)
Now, we propose the adaptive robust control
t(t) = pi(a, @, 1)+ pale, &, t) + p3(X, a, @, 1) (28)
with
pie. &, 1) = (Ale, )H (o, OB) [b(er, @, 1)

— Ao, HH Y, 1)O(et, &, 1)] (29)

pae, &, 1) = —k(Ale, DH (o, )B) P e(et, 1, 1)
(30

p3(R. a6 1) = —(A(e, DH (o, )B) P!

X V()%’ «a, da t)U()z» o, dv t)‘l"()A(a o, d7 t)

€1y}

where
ela,a,t) = Aa, Ha — c(a, t) (32)
o(x,a,a,1) = ela, &, )V (Y, a, &, 1) (33)
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S, o) = e
o lo"1+]o||"2e+---+|o|le"2 + ]
(34)
Here k,¢ > 0,x,¢ € Randn = 2,3,--- are scalar

constants.
The parameter x is governed by the following adaptive
law:

o JhV@dnllel kg if Ve dnllel>e oo
A ey it U(or, @, nlle]) < e

Xi(to) > 0 (where x; is the ith component of the vector ¥,
i=1,...,k), ki, ko >0,k;,kp € R.

Remark 4: Because of the uncertainty (that may be initial
condition deviation or modeling error) existing in UMSs,
the e(a,@,t) # O is possible. Therefore, from the view
of approximate constraint-following, the proposed adaptive
robust control based on Moore-Penros generalized inverse is
designed as three portions: p1, p2 and p3. p1 is designed as the
nominal portion. p; is designed to suppress initial condition
deviation. p3 is designed to suppress uncertainty. Suppose the
uncertainty is time-varying and bounded. However, the bound
is unknown. Therefore, an adaptive law shown in Eq. (35),
which combines leakage type and dead-zone type, is designed
to estimate the bound of the uncertainty. The leakage term
can adjust the value of the adaptive parameter according to
the system performance, which further helps to regulate the
control effort. The dead-zone term helps to simplify the adap-
tive law calculation, which further speeds up the algorithm
practice. The resulting adaptive robust control guarantees
deterministic system performance and regulates the control
effort.

Remark 5: y(n,€,0) is designed as the robust con-
trol gain, which is fractional and performance-based one.
If the system performance gradually decreases, that is, ||o ||
increases, then y(n, €,0) will increase to augment p3 to
enhance system performance. On the contrary, if the system
performance gradually gets better, that is, ||o || decreases, then
y(n, €, 0) will decrease to reduce p3 and thus reduce the
control cost.

Theorem 1 (See [39]): Let B = [l (x —x)T1T e Rk,
Consider the underactuated mechanical system of Eq. (8),
and suppose that Eq. Assumption. 2 to 5 are met. The adaptive
robust control Eq. (28) renders the following performance:

1) Uniform boundedness: For any r > 0, there is a d(r) <
oo, such that if ||B(to)|| < r, then ||B(t)|| < d(r) for all
t> 1.
2) Uniform ultimate boundedness: For any r > 0 with
|B(to)|| < r, there exists ad > 0, such that | f(t)|| < d
for any d > dast > 1o+ T{d,r), where T(d, r) < oo.
Proof: A legitimate Lyapunov function candidate is
given [40]:

Ve R —x)=e Pe+ k' A+Te)% — 0T R —x)
(36)
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For a given uncertainty §(-) and the corresponding trajec-
tory a(-), @(-) and x(-) of the control system. In the proof,
arguments of functions are largely omitted except for a few
critical ones. The derivative of V is given by

V=2e"Pe+ 2k A+ TE)Z — 0T % 37)
We’ll analyze each term of Eq. (37) separately. For the first
term of the right hand side (RHS) of Eq. (37), we can obtain
2¢T Pé
= 2¢" P[AG — b]
= 2¢" PIAH™'Q + AH'Bt — b]
=2e"PIAH™'Q+AH'B(p1 +p2+p3) —b]  (38)

By Egs. (14), (15) and (19), we have

AH'Q+AH 'B(p1 + p2+p3) — b
= A(E + AE)(Q + AQ) + A(E + AE)B(p:
+p2+p3)—b
— AEQ + AEAQ + AAEQ + AEBp, + AEBp>
L AAEB(p) +p2) + AE + AE)Bps — b (39)

Based on Eq. (24) in Assumption. 4 and Eq. (29), we have
AEQ + AEBp; —b =0 (40)
By Eq. (30) and Eq. (25) in Assumption. 4,

2¢" PAEBp,
= 2¢" PAEB{—k(AH'B)T P~ ¢}
= —2kele = —2«|e||? (41)

Next, based on Assumption. 5 (1), we have

2¢" PIAEAQ + AAEQ + AAEB(p1 + po)]
< 2|lellIPAEAQ + PAAEQ + PAAEB(p; + p>)||
< 2llel(1 +Tp)W(x,a,d,t) (42)
By Egs. (20), (31) and (33) and Eq. (30) and Eq. (25) in
Assumption. 4,
2¢" PACE + AE)Bp;
= 2¢" PAEB{—(AH 'B)Y P 'y (%, 0, &, 1)
x U(X, o, &, 1))+ 2¢ PANEB{—(AH™'B)T
x P lyo (%, o, &, DV(R, a, i, 1)}
= —2y|lo|? + 2¢" PAEFB{—(AH™'B)*
x P~ lyo(R, e, 6, DW(R, o, &, 1)) (43)
Based on Assumption. 3 and Rayleigh’s principle [30],
we have
2¢" PAEFB{—(AH'B)* P~ lyo W (%, a, &, 1)}
= —2yo{PAEFB(AH'B)*P )0

1 _
= —ZVJTE{PAEFB(AH*IB)J“P*I
+ [PAEFBAH'By* P 1T})o
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1

A

1
—2y S hm(X + T |?

IA

—2yTgllo|? (44)
Combining Eq. (43) and Eq. (44)

2¢" PACE + AE)Bps < =2y(1+Tp)llo > (45)
Combing Egs. (34), (38), (40) to (42) and (45), we have

2¢T pé
< —2«lell* + 2llell(1 + Tp)¥(x, o, &, 1)
—2y(1 +Tp)|o|?
—2«clell® + 2llell(1 + Te)W(x, o, &, 1)
, lo 1"~

lol"=T+ lo"2€ + - + [o]le"2 + 1
x (1+Tp)llo)?
= —2«llell* +2[lell (1 + Tp)W(x, o, &, 1)
, o]l

lolI"=1 + llo "2 + - + [lo|le"2 + en!
x(1+TE)
—2«|lell® 4+ 2llell(1 + Tp)¥(x, a, &, 1)

o] — "

-2

lolI"=1 + llo|"~2€ + - + [lo|le"2 + en!
x (1+Tg)
—2«clell® + 2llell(1 + Te)W(x, o, &, 1)
_Uel=aio " +lo |2t +lolle e

lolI"=1 + flo["=2€ + - - + [lo|len~2 + e~

x(14+Tg)
—2«llel|* + 2llell(1 + Tp)¥(x, o, &, 1)
2|1 +TEg)+2e(1 +Tg)
—2«cllel|? + 2llel| (1 + Te)[W(x, o, &, 1)
—W(R. . &, 1)] +2¢(1 +Tg)
—2icllell® + 2llell(1 + Te)(x — 1) ¥(a, &, 1)
+2¢(1 +T) (46)

IA

IA

For the second term of the RHS of Eq. (37), by using
adaptive law Eq. (39), if W(«, &, t)]|e|| > &, we can obtain
267 A+ Te)K — 07 X

=2k "1+ TE)R — 0 (1 ¥ (e, &, 1))le]
—k2x)

=2(1+Te)X — )" V(e &, )e]|
— 2k k(1 + TE)R — 0T (X — %)
— 2k (1 + TR — 0" x

<21+ Te)R — ) V(. &, el
— 2k (1 +TR)I% — X1
+ 2k k(1 +TRIE — x x|
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<20+ Te)x — ) V(e &, 1)lel
— k(1 + TR — xI?
k7 o (1+ Tl 112 (47)

Combing Egs. (37), (46) and (47) we get

V < —2«llell® +2€(1 + Tg) — k; 'ka(1 + T)
X IZ = x I + k7 (L + TR)llxI?  (48)

If \f/(oz, a, t)|le|| < e, we can obtain

27+ TR — 0" %
= =2k k(1 +TE)R — 0" %
= 2k k(1 + TE)R — 0T (X = X)
— 2%k (1 +TE)R — 0" x
2k k(L + TR — xII?
+2k (L + TR — x x|
< —k k(L + TR — xII?
+k (1 + TRl 12 (49)

IA

Combing Egs. (37), (46) and (49), we have

V < =2kllel* +2llell(1 + Te)(x — )" W(a, &, 1)
+2e(1+Tp) =k k(1 + TR — x I
+ k7 o (1+ Te)llx 112
< —2«llel* +2(1 + Tp)llx — R lle
+2e(1 4+ Tp) =k (1 + TR)IIR — x 112
+k k(14 Te)llx |1 (50)
_ Based on Eqs. (48) and (50), we have that for all
(e, &, 1)le]]
V < —2icllel® +2(1 + Te)llx — zlle
+26(1+Tg) =k (L + TE)IR — x I
+ k7 (14 Te)ll 112
—plBI* + < 1)
where p := min{2kc, k; 'ka(1 4+ Te)}, 1812 = llell® + 1% —
xI% Q=21 +Tp)lx — Rlle +2e(1 + Tp) + k; k(1 +
re)llx|?
Upon invoking the standard arguments as in Chen [39] and

Khalil [40], we conclude that the solution of the controlled
UMS:s satisfies uniform boundedness with

A2R if r<R
d(r) = (52)

r if r>R
R=|— (53)
,0

min{Amin(P), k; (1 + Tg)} and Ay =
"1+ e

where A1 =
max{Amqax(P), kl_
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Top Plate

Control Box

Pllld'

Base Plate

FIGURE 1. Three dimensions diagram of the TWSBR.

Furthermore, uniform ultimate boundedness also follows
with
d= _[—R (54)
N

0, ifr<d.| A—l

_ 2
Aar? = (A2/Ap)d? 53)

pd*(A1/Az) —

Td,r) =

, otherwise.

V. AN ILLUSTRATIVE EXAMPLE

We choose a typical UMS to verify the effectiveness of the
proposed control, which is the two-wheeled self-balancing
robot (TWSBR) shown in FIGURE. 1. This robot has been
widely used as a test bed for nonlinear controls of UMSs, such
as [11], [41]-[43]. In this paper, in order to highlight the char-
acteristic of underactuation of the TWSBR and simplify the
operation, we simplify the robot to a two-dimensional plane
as shown in FIGURE. 2. The simplified TWSBR consists of
a wheel and a pendulum, and it has two degrees of freedom
but only one drive. The symbol definition of parameters and
variables of the simplified TWSBR are detailedly listed in
TABLE. 1. Choosing o = [0, Gp]T as the generalized coor-
dinate of the simplified TWSBR, by Lagrangian mechanics,
the dynamic model of the simplified TWSBR is given as
follows:

(Gmyr? + mpr?)y, + mylr sin(8,)8,
—}—mplrél% cos(bp) =1

%mpﬂép + mylr sin(8,)8,, + mylr6,,0, cos(6))
—mplréwép2 cos(6,) + myglb, cos(8,) = 0

(56)

which can be expressed in Eq. (8) as

H(a(t), §(t), t)a = Q(a(t), a(t), 8(t), t) + Bt (57)

where

3myr? 2 Ir sin(f

H— ST~ + mpr mylr sin(6))

mplr sin(6),) %mpﬂ ’
01 1
= s B = N
o= (&) 7=
Q1 = —mplré; cos(6))
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FIGURE 2. Two dimensions digram of the simplified TWSBR.

TABLE 1. The parameters and variables of the simplified TWSBR.

Parameters

and Variables Physical Significance Unite
M mass of the wheel Kg
mp mass of the pendulum Kg

l length of pendulum m

r radius of wheel m

0w rotational angle of the wheel rad
0p rotational angle of the pendulum rad

g acceleration of gravity m/s?
T control torque actuating the pendulum arm N - m

= —m,,lréwép cos(6) + mplréwélz cos(6))
— myglé, cos(6,)

To verify the robustness of the control for the system, m,,,
my, are considered as uncertain parameters (hence, m,, =
my, + Am,y,, my, = m, + Amy,). We choose m,, = 1Kg,
Am,, = 0.1cos(1)Kg, m, = 1Kg, Am, = 0.1sin(t)Kg,
r=01m1 =02m g =98m/s?>and P = I}. Thus,
Assumption. 2 to 4 can be easily verified. Assumption. 5 is
met by choosing

W(x,a,&,1) = xillall® + xalal + x3

l@?
=(x1 x2 x3)| lall | =x" V(a0
1
(58)

where x1 2,3 are unknown constant parameters. It is inter-
esting to note that we can also satisfy Assumption. 5 by an
alternative choice of W(-) as

xillal? + xallell + x5 < x(lall + D* = x"¥(e, &, 1)
(59)

where y = max{x1, %, x3}.
We assume that the simplified TWSBR is constrained by
following nonholonomic servo constraint

by — 6, cos(6,) = cos(t) (60)
Differentiating Eq. (60) respect to time ¢ once, we get

by — 0, cos(62) + 9'13 sin(6,) = — sin(t) (61)

157142

02 L I I I I
0 2 4 6 8 10 12 14 16 18 20

time/s

I
0 2 4 6 8 10 12 14 16 18 20
time/s

4 6 s 10 12 14 16 18 20
time/s

FIGURE 5. Time history of e.

Then, constraints Egs. (60), and (61) can respectively be
cast into the form of Egs. (10) and (13) with

Ay = (1 —cos(Bp)), c2=cos(t)),
by = (—67 sin(6,) — sin(r) )

FIGURE. 3 to 9 show the simulations by choosing k¥ = 1,
n =95¢€¢ = 00Lk =1k = 05 ¢ = 0.001
The initial values of the simplified TWSBR are given as
a(0) = [-0.1 0217, &(0) = [-0.2 0.1]7, x(0) = O.1.
The simulation results are obtained through odel5i algo-
rithm in MATLAB. FIGURE. 3 shows the time history of
the 6,. FIGURE. 4 shows the time history of the adaptive
parameter x. Initially, the ¥ quickly increases, because of
initial condition deviation. After a while, the initial condition
deviation is gradually suppressed and the system perform
is met, resulting in the x decline and stability. The error
between desired trajectory and actual that is e is shown in
FIGURE. 5. As a comparison, by almost the same compu-
tational technique, the control in [23] is utilized, and whose
time history of error is also shown in FIGURE. 5. This com-
parison denotes that the control we designed can get a good
system performance under the influence of uncertainty. The
time history of the control t acted on the wheel is shown in
FIGURE. 6. FIGURE. 3 to 6 verify that the proposed control
can solve both uncertainties existing in simplified TWSBR
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FIGURE 6. Time history of 7.

FIGURE 9. The max value of 7 VS k; and k,.

and its nonholonomic servo constraint. FIGURE. 7 shows the
influence of the adaptive law parameters k1 and k> on the max
value of x. FIGURE. 8 shows the influence of the adaptive
law parameters k1 and k» on the max value of e. FIGURE. 9
shows the influence of the adaptive law parameters k; and k;
on the max value of 7.

VI. CONCLUSION

In this paper, we propose a novel adaptive robust control
based on Moore-Penrose generalized inverse with adaptive
law to address uncertainty existing in UMSs and its non-
holonomic servo constraints, which is deterministic and can
guarantee the deterministic performance. Theoretical analy-
sis and numerical simulation demonstrate the effectiveness of
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the proposed control. Furthermore, for a practical engineering
problem, based on this paper, we can easily acquire the
constraint forces by following three steps: first step, establish
the dynamic model of a constrained UMS with uncertainty
by Newtonian or Lagrangian mechanics. Second step, give
legitimate pre-specified servo constraints based on actual
engineering requirement and then convert them to Eqgs. (10)
and (13). Third step, check the Assumption. 2 to 5, and then
the constraint forces can be solved by Eq. (28), which makes
the system subject to the servo constraints.
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