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ABSTRACT In machine-type communication (MTC) consisting high-mobility machines, such as vehicles,
aircrafts, robots, etc., there is a strong demand for fast wireless networking. With radars extensively applied
in these machines for environment awareness, radar assisted fast neighbor discovery (ND) for wireless ad
hoc networks is proposed to realize fast wireless networking for MTC. Four neighbor discovery algorithms
are designed according to the accuracy level of prior information provided by radar. Then, the performance of
neighbor discovery algorithms is analyzed theoretically. Simulation results are further provided to compare
neighbor discovery algorithms with and without the prior information from radar. The results demonstrate
that the time consumption of neighbor discovery is greatly reducedwith prior information of radar.Moreover,
the time consumption with prior information from radar increases with the number of nodes. However,
the increasing speed is much slower than the neighbor discovery without prior information from radar. This
paper proves the advantages of radar assisted neighbor discovery, which may motivate the study of radar
assisted wireless networking schemes in the future.

INDEX TERMS Neighbor discovery, wireless ad hoc networks, Radar-Communication Integration.

I. INTRODUCTION
Machine-type communication (MTC) is widely deployed in
the era of the 5th generation (5G) mobile networks [1].
In some MTC applications, such as vehicular networks and
flying ad-hoc networks (FANETs), due to their high mobility
and dynamic topology, there is a strong demand for fast
wireless networking to realize cooperation among machines.
Neighbor discovery, as a critical early step for wireless net-
working [2], has attracted wide attention in academia and
industry. Hence, the fast neighbor discovery plays an essential
role in the wireless networking for MTC.

Radars are extensively implemented in machines, such
as vehicles, unmanned aerial vehicles (UAVs), aircrafts,
robots, etc., to realize environment awareness. Even in wear-
able devices, mobile phones, smart speakers, etc., radars
are implemented to recognize hand gestures [3]. Machines
mounted with radars can collect prior information from envi-
ronment, which will boost wireless networking. For example,
Gonźalez-Prelcic et al. studied the radar assisted beam
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alignment for millimeter wave (mmWave) enabled vehicle-
to-infrastructure (V2I) communications, where the prior
information from radar improves the spectrum efficiency of
V2I communications [4]. In the perspective of wireless net-
working, prior information obtained from radar can acceler-
ate the speed of neighbor discovery. Burghal et al. [5] proved
that the prior information of the set of neighbors can accel-
erate the speed of neighbor discovery. Li et al. [6] proposed
a neighbor discovery algorithm called SBA-RA, where the
prior information of neighbors obtained from radar is applied
to reduce the time of neighbor discovery. Liu et al. [7] applied
the double-face phased array radar to improve the efficiency
of neighbor discovery.

However, neighbor discovery algorithms depending on the
accuracy of prior information obtained from radar have be
rarely studied in existing literatures. In this paper, the stop
and replymechanisms are applied in neighbor discovery algo-
rithms according to the accuracy of the number of neighbors
within the beam derived from radar detection. Firstly, we ana-
lyze the probability density function (PDF) of the number
of neighbors in each beam when the nodes follow uniform
distribution. Then, four neighbor discovery algorithms are
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designed according to the accuracy level of the prior infor-
mation provided by radar. Numerical results demonstrate that
compared with algorithms without prior information from
radar, time consumption of the proposed neighbor discovery
is significantly reduced with the prior information from radar.
Moreover, the neighbor discovery speed can be further accel-
erated with more accurate prior information. The neighbor
discovery schemes in this paper require the intergation of
radar and communication. With cooperation between radar
and communication, the prior information of radar can be
applied in accelerating neighbor discovery.

The remainder of this paper is organized as follows.
In Section II, the system model is introduced. In Section III,
the radar assisted neighbor discovery algorithms are
designed. In Section IV, the performance analysis for the
proposed neighbor discovery algorithms is provided. The
numerical results and analysis are revealed in Section V.
Finally, we summarize this paper in Section VI.

II. SYSTEM MODEL
An ad hoc network with nodes uniformly distributed in a two-
dimensional (2D) plane is considered. Each node has a unique
ID, such as its MAC address. The node adopts directional
transmission and directional reception (DTDR) mechanism.
A node can point its transmit beam to a number of fixed
directions. All nodes are in a clique that any two nodes
can mutually cover each other. Since the neighbor discovery
process occurs in a short time, the movement of nodes can be
ignored. For a typical node A, there are N neighboring nodes
uniformly distributed around it. The number of beams of node
A is B. The beam having i neighboring nodes is defined
by ‘‘i-node’’ beam. The probability that there are k i-node
beams with N neighboring nodes and B beams is defined by
P(k,B,N , i). The expectation of the number of i-node beams
is denoted as Ei. In Lemma 1, 2 and 3 of the appendixes, E0,
E1 and Ei (i ≥ 2) are derived.

With radar function implemented at nodes, the prior infor-
mation from radars can be applied to accelerate the process
of neighbor discovery. For example, the radar can detect the
existence of neighboring nodes in each beam. If the accuracy
of radar detection is sufficiently high, it is even possible to
accurately estimate the number of neighboring nodes in each
beam. According to the accuracy level of the prior informa-
tion, the neighbor discovery algorithms can be classified as
the following two cases.

1) If the radar has low accuracy performance that only
the existence of neighboring nodes in each beam can
be determined, the node can selectively communicate
in the beams with neighboring nodes to accelerate the
neighbor discovery.

2) If the radar has high accuracy performance that the
number of neighboring nodes in each beam can be
determined, the node can stop communicating in a
beam when all the neighboring nodes in this beam are
discovered.

Besides, if node A and node B have discovered each
other, the node B can choose not to reply the hello packet
from node A [9]. This mechanism can reduce the collision
probability, especially in the scenarios with a large number
of neighboring nodes. According to the accuracy of the prior
information and the reply mechanism, four radar assisted
neighbor discovery algorithms are proposed as follows.

1) Reply and non-stop (RnS) algorithm: The neighboring
nodes reply the hello packet of a node even though
it has been discovered. If the radar has low accuracy
performance, one node can not determine whether its
neighbors have been fully discovered or not. Hence,
the neighbor discovery process within a beam will
not stop even when the nodes in this beam are all
discovered.

2) Non-reply and non-stop (nRnS) algorithm: The neigh-
boring node does not reply the hello packet of a node
when it is discovered. Besides, the neighbor discovery
process within a beam will not stop even when the
nodes in this beam are all discovered.

3) Reply and stop (RS) algorithm: The neighboring node
reply to the hello packet of a node even though it is
discovered. If the radar has high performance, it is pos-
sible for one node to know whether the neighbors are
fully discovered or not. Hence, the neighbor discovery
process within a beam will stop when the nodes in this
beam are all discovered.

4) Non-reply and stop (nRS) algorithm: The neighboring
node does not reply the hello packet of a node when it
is discovered. Besides, the neighbor discovery process
within a beam will stop when the nodes in this beam
are all discovered.

Details for the above four algorithms are described in
Section III.

III. RADAR ASSISTED NEIGHBOR
DISCOVERY ALGORITHMS
In the ad hoc network, the node adopts synchronous and half-
duplex working mode. Time is divided into slots and each slot
is divided into 3 sub-slots. The length of each sub-slot is long
enough for the node to send its data package. The node adopts
3-way interactive mode to discover other nodes. The hand-
shake succeeds only if transmitter and receiver are mutually
covered without collision. However, a collision occurs when
more than one node sends hello message or feedbackmessage
to a certain node at the same time. Once collision occurs,
the handshake fails. All nodes obtain the prior information
of neighboring nodes via radars, which means that a node
knows the existence or the number of neighboring nodes in
each beam. In each time slot, nodes only select the beams that
have neighbors to communicate.

In a time slot, each node selects transmitting state or receiv-
ing state. Then the node selects a direction to communicate.
The node that selects transmitting state will send a hello
package in the first sub-slot and keep receiving in the second
sub-slot. If it receives a feedback package from the receiving
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node, it will send an acknowledgement packet in the third
sub-slot and update its neighbor list. Otherwise, it keeps
silent in the remaining time of this slot. The node that selects
receiving state will maintain receiving in the first sub-slot.
If it receives a hello packet from the transmitting node, it will
send a feedback packet in the second sub-slot and then keep
receiving in the third sub-slot. If the receiving node receives
the acknowledgement packet of the transmitting node in the
third sub-slot, it will update its neighbor list. Otherwise,
it keeps silent in the remaining time of this slot. When the
number of discovered neighbors reaches the total number of
neighbors, the neighbor discovery process stops.

FIGURE 1. RnS and nRnS algorithms.

As illustrated in Fig. 1, for RnS algorithm and nRnS
algorithm, in a new time slot, nodes select the beams with
neighbors to communicate regardless of whether the beams
are fully discovered or not. The difference between RnS
algorithm and nRnS algorithm is that if two nodes have
already discovered each other, when one node receives a hello
packet from the other node, the node usingRnS algorithmwill
still reply a feedback package, while the node using nRnS
algorithm will not reply a feedback package.

As illustrated in Fig. 2, for RS algorithm and nRS algo-
rithm, in a new time slot, nodes only select beams that have
not been fully discovered. The difference between RS algo-
rithm and nRS algorithm is the same as that of RnS and

FIGURE 2. RS and nRS algorithms.

nRnS algorithms. When a node receives a hello packet, the
node using RS algorithm will still reply a feedback package,
while the node using nRS algorithm will not reply a feedback
package.

IV. PERFORMANCE ANALYSIS
The prior information from radar can boost the neighbor
discovery algorithm. In this section, the performance of radar
assisted neighbor discovery algorithms is analyzed.

A. RnS ALGORITHM
In RnS algorithm, a node will select the beamswith neighbors
to communicate with equal probability. Hence, the 0-node
beams are removed in the derivation of the probability of i-
node beams Pi, which is

Pi =
Ei/B

1− E0/B
=

Ei
B− E0

, (1)

where i ≥ 1.
There are averagely M neighbors in one of the beams and

we have

M =
N∑
i=1

iPi. (2)
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The probability that node i discovers node j in a time
slot is [9]

PRnSd = 2Pt (1− Pt)
(

1
Bo

)2

×

(
1− (1− Pt)

1
Bo

)Mi−1(
1− Pt

1
Bo

)Mj−1

, (3)

where Mi and Mj are the numbers of neighboring nodes in
the beams of node i and node j, respectively. We replace Mi
and Mj with the average number of neighbors in a beam,
which means Mi ≈ Mj ≈ M . Pt is the probability of a node

choosing to be a transmitter. Bo =
N∑
i=1

Ei is the number of

beams with neighboring nodes. The expected number of time
slots to discover all nodes adopting RnS algorithm is

ERnS =
N∑
i=1

1

(N − i+ 1)PRnSd

. (4)

Comparing with [10], the derivation of PRnSd is modified.

FIGURE 3. The change of discovery probability in nRnS algorithm.

B. nRnS ALGORITHM
Comparing with RnS algorithm, nRnS algorithm avoids
repeated feedbacks. For example, if node i and node j are
mutually discovered, node j will not reply the hello packet of
node i. This mechanism was proposed in [9]. Fig. 3 depicts
the discovery process. Each beam has a unique time-varying
axis which represents the discovery probability. For instance,
PnRnS0 denotes the discovery probability when no neighbor
is discovered. The dot denotes that a neighbor in the beam
is discovered. Since the interference in this beam decreases,
the discovery probability increases from PnRnS0 to PnRnS1 .
With u(t) representing the number of discovered neighbors
of node i in the beam that covers node j until t-th time slot,
the probability that node i discovers node j in a time slot is

PnRnSu = 2Pt (1− Pt)
(

1
Bo

)2

×

(
1−(1−Pt)

1
Bo

)Mi−u(t)−1(
1−Pt

1
Bo

)Mj−1

. (5)

Comparing with the fixed Pdis in RnS algorithm, the Pu in
nRnS algorithm is time-varying since the term

t1 =
(
1− (1− Pt)

1
Bo

)Mi−u(t)−1

(6)

in (5) depends on time t . However, when the number of beams
is large, the term t1 is close to 1. Hence although PnRnSu
is time-varying, the average PnRnSu can be used to estimate
the expected number of time slots to discover all neighbors.
Taking an i-node beam as an example, during the process of
neighbor discovery, the average PnRnSu is as follows.

Pi =
1
T

∫ T

0
PnRnSu dt

=
1
T

i−1∑
u=0

∫ Tu+1

Tu
PnRnSu dt, (7)

where T is the total time to discover i nodes. Tu is the
time between discovering the u-th node and the (u + 1)-th
node. When u neighbors are discovered, the PnRnSu remains
unchanged until the next neighbor is discovered and the prob-
ability of discovering a node is (i− u)PnRnSu . The number of
time slots to discover a node follows geometric distribution
and its expectation is

Nu =
1

(i− u)PnRnSu
. (8)

Hence the Pi can be derived as

Pi =
1
T

i−1∑
u=0

Nu =
1
T

i−1∑
u=0

1
(i− u)PnRnSu

PnRnSu

=

i−1∑
u=0

1
i−u

i−1∑
u=0

1
(i−u)PnRnSu

. (9)

For the i-node beam, we have derived Pi. Then the average
Pi is derived as follows.

Pdis =
N∑
i=1

Pi · B · Ei. (10)

Then the expected time of neighbor discovery is

EnRnS =
N∑
i=1

1

(N − i+ 1)Pdis
. (11)

C. RS ALGORITHM
Define PRSd as the probability to discover a neighbor when
nodes have already discovered i beams. Then we have

PRSd = 2Pt (1− Pt)
(

1
BRSo

)2

×

(
1−(1− Pt)

1
BRSo

)Mi−1(
1− Pt

1
BRSo

)Mj−1

. (12)
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In RS algorithm, BRSo is the number of beams that still
have undiscovered neighbors and it will decrease over time.
The reduction of BRSo in (12) improves the probability of
discovering a neighbor. The upper and lower bounds for
the time of neighbor discovery are derived. The analysis is
discussed under two cases, where N ≥ B and N < B.

1) N ≥ B
In RS algorithm, the complete discovery of the neighbors in a
beam will accelerate the neighbor discovery. In the derivation
of the upper bound of the time for neighbor discovery, the
nodes are uniformly distributed in all beams and the neighbor
discovery consists of two stages. In the first stage, the neigh-
bors in all beams can not be discovered completely and there
is exactly one undiscovered neighbor in each beam in the
end of the first stage, as shown in Fig. 4. Since BRSo remains
unchanged in the first stage, the probability of discovering
a neighbor remains unchanged during the first stage. In the
second stage, the neighbors in each beam are discovered one
by one.

FIGURE 4. The change of discovery probability in RS algorithm: upper
bound.

There are averagely
⌊N
B

⌋
or
⌊N
B

⌋
+ 1 neighbors in each

beam since the nodes are uniformly distributed within the
beams. By the end of the first stage of neighbor discovery,
to achieve the upper bound of neighbor discovery, each beam
needs to remain one undiscovered neighbor and the remaining
N −B neighbors are discovered in this stage. The probability
that node i discovers node j in a time slot is

PRS0 = 2Pt (1− Pt)
(

1
BRSo

)2

×

(
1−(1−Pt)

1
BRSo

)M−1(
1− Pt

1
BRSo

)M−1
. (13)

The time for neighbor discovery in the first stage is

t1 =
N−B−1∑
i=0

1

(N − B− i)PRS0
. (14)

In the second stage, the probability of neighbor discovery is

PRSd = 2Pt (1− Pt )(
1

BRSo − i
)2

× (1− (1− Pt )
1

BRSo − i
)

(M−1) B
RS
o −i

BRSo︸ ︷︷ ︸
interference term

× (1− Pt
1

BRSo − i
)

(M−1) B
RS
o −i

BRSo︸ ︷︷ ︸
interference term

. (15)

Since N ≥ B and the nodes are uniformly distributed, we

have BRSo ≈ B.
(

1
BRSo −i

)2
due to the fact that the choice

of beams is reduced with i discovered beams. As to the
interference terms in (15), we have the following analysis.

FIGURE 5. The mechanism of RS algorithm.

Supposing that a node has not discovered any neighbor in a
certain beam, apparently there are M − 1 interference nodes
inside this beam. We assume that the progress of neighbor
discovery for each node is the same, which means that every
node has exactly discovered i of B0 beams in the i-th stage.
As a result, nodes will never choose these fully discovered
beams for transmission or reception in the remaining slots.
As shown in Fig. 5, node A attempts to communicate with
node B through beam 6. If another node C in beam 6 has
already fully discovered the beam which contains node A,
the node C will not become an interfering node with regard
to node A. The probability that a certain beam is not fully
discovered when i beams have been fully discovered can be
expressed as

PRSs =

(
i− 1
BRSo

)
(

i
BRSo

) = BRSo − i
BRSo

. (16)

Because there are (M − 1) interference nodes, the expres-
sion of the total interference term is (M − 1)PRSs .

In the second stage, the time for neighbor discovery is

t2 =
B−1∑
i=0

1

(B− i)PRSd
. (17)

176518 VOLUME 7, 2019



Z. Wei et al.: Radar Assisted Fast ND for Wireless Ad Hoc Networks

Hence, the upper bound of the time for neighbor discov-
ery is

ERSup = t1 + t2

=

N−B−1∑
i=0

1

(N − B− i)PRS0
+

B−1∑
i=0

1

(B− i)PRSd
. (18)

Then, we derive the expression of lower bound. For com-
parison, the distribution of nodes is the same as that in the
derivation of upper bound. It is known that to reduce the
neighbor discovery time, increasing the discovery probability
is of most importance. The earlier a beam is fully discovered,
the earlier the discovery probability will increase. Therefore,
the neighbor discovery process should be consecutive, which
means that nodes have to discover neighbors belonging to
the same beam until that beam is fully discovered, as shown
in Fig. 6. Besides, the beam that includes less neighbors
should be completely discovered earlier.

FIGURE 6. The change of discovery probability in RS algorithm: lower
bound.

Since the nodes are uniformly distributed, the average
number of nodes in each beam is

⌊
N
BRSo

⌋
or
⌊

N
BRSo

⌋
+1. Similar

to the derivation of upper bound, the lower bound of the time
for neighbor discovery is

ERSdown =
B−R−1∑
u=0

m−1∑
i=0

1
(N − i− mu)PRSu

+

B−1∑
u=B−R

×

m∑
i=0

1
(N−i−(B−R)m−(u−(B−R)(m+1)))PRSu

,

(19)

where R = N mod B.

2) N < B
In this scenario, the most representative node distribution is
selected, namely, every node is distributed in a different beam.
Hence, there areN beams containing 1 node and B−N beams
containing 0 node. Since each successful neighbor discov-
ery results in the change of neighbor discovery probability,
the analysis of upper bound and lower bound is the same
in this scenario. Similar to the condition where N ≥ B, the
average neighbor discovery time is

tRS =
N−1∑
i=0

1

(N − i)PRSd
, (20)

where PRSd = 2Pt (1− Pt)
(

1
N−i

)2
and N is the total number

of neighbors.

D. nRS ALGORITHM
Combining the advantages of non-reply and stop-discovery
mechanisms, we have nRS algorithm. Since the theoretical
analysis of this algorithm is too complicated, we only analyze
the simulation results in the next section.

V. SIMULATION RESULTS AND ANALYSIS
A. THE DISTRIBUTION OF NODES IN A BEAM
In order to verify Lemma 1, Lemma 2 and Lemma 3,
the simulation results of the node distribution are obtained.
As shown in Fig. 7, the figure illustrates how the number of
beams (ranging from 6 to 34) and the number of neighbors
(ranging from 5 to 83) affect the value of the probability that
a beam contains exactly one node (E1/B).

FIGURE 7. The probability that a beam contains one node.

Fig. 8 is the overlooking view of Fig. 7. By connecting
the largest values in the graph into a line, we can find that
when the number of beams and the number of neighbors
are the same, the largest probability can be achieved. This
is reasonable since the nodes are uniformly distributed. Simi-
larly, when the number of neighbors is 2 times the number of
beams, the probability that a beam contains exactly 2 nodes
reaches maximum value.

Then we verify Lemma 1, Lemma 2 and Lemma 3. Fig. 9
shows the relation between the probabilities of different types
of beams and the number of neighbors, where the beam
number is 15. The curves contain both simulation results and
theoretical results. For 0-node beam, its probability decreases
monotonically. For the probabilities of 1-node beam and
2-node beam, before sliding down to zero, they rise to peak
values when the numbers of neighbors are 15 and 30 respec-
tively, which is reasonable since the nodes follow uniform
distribution. The simulation curves fit well with the theo-
retical results, which verifies the correctness of Lemma 1,
Lemma 2 and Lemma 3. Fig. 9 only verifies the beams that
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FIGURE 8. The overlooking view of Fig. 7.

FIGURE 9. The probability of i -node beam.

contain 0, 1 and 2 nodes. However, the theory can also be
applied to the beams containing up to N nodes.
The curves in Fig. 9 are the cross-section of Fig. 7. Hence,

by adjusting the beam number, the theoretical results can
be obtained in three-dimensional (3D) diagram. As shown
in Fig. 10, the theoretical results fit well with the simulation
results.

B. RnS ALGORITHM
We first demonstrate the results of RnS algorithm. Fig. 11
shows the relation between the neighbor discovery time and
the number of neighbors (ranging from 5 to 14), where the
beam number is 10. Notice that the theoretical curve over-
laps with the simulation curve, which verifies the theoretical
results.

C. nRnS ALGORITHM
Fig. 12 compares the theoretical results and the simulation
results of nRnS algorithm. The beam number is 10. In order

FIGURE 10. The probability of 1-node beam in 3D space.

FIGURE 11. The time of complete neighbor discovery using RnS algorithm.

FIGURE 12. The time of complete neighbor discovery using nRnS
algorithm.

to reveal the differences between RnS algorithm and nRnS
algorithm, neighbor numbers are set within a high range
from 40 to 85. This is reasonable because the two algorithms
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FIGURE 13. The time of complete neighbor discovery using RS algorithm.

FIGURE 14. The time of neighbor discovery using RS algorithm when
N ≤ B.

have similar results if neighbor numbers are not large enough
compared with the beam number. Note that the theoretical
curve is slightly lower than the simulation curve, which is due
to the fact that we obtain a fixed expression of the discovery
probability Pdis. However, the actual Pdis is changing in the
process of neighbor discovery.

D. RS ALGORITHM
Fig. 13 shows the upper and lower bounds of RS algorithm,
where the beam number is 10 and the neighbor numbers range
from 40 to 300. The results show that the practical neighbor
discovery time is in the middle part between the theoretical
upper and lower bounds.

Fig. 14 is the verification of RS algorithm when N ≤ B.
The beam number is 10 and the neighbor numbers range from
5 to 10. It is shown that the theoretical curve is on the upper
side of the simulation curve, which is reasonable since there
may be more than one neighbor in a beam.

FIGURE 15. Comparison of four neighbor discovery algorithms.

FIGURE 16. Comparison of RnS algorithm and CRA algorithm.

E. nRS ALGORITHM
Since the theoretical analysis of nRS algorithm is too com-
plicated, we only give the simulation results here. According
to the previous analysis, different accuracy of radar leads to
different choices of neighbor discovery algorithms. Combin-
ing the four neighbor discovery algorithms, Fig. 15 plots the
time these algorithms take to complete neighbor discovery.

In Fig. 15, the four algorithms can be divided into two
categories according to one factor, namely, whether or not the
nodes apply stop-discovery mechanism. Then each category
can be classified into two sub-categories according towhether
or not the non-response mechanism is applied. We discover
that when the stop-discovery mechanism is applied, the time
to complete neighbor discovery is significantly reduced.
When the non-response mechanism is further applied, the
time for neighbor discovery reveals a slight decline. This
phenomenon shows that both the stop-discovery mechanism
and the non-response mechanism can speed up neighbor
discovery process. However, the effect of the stop-discovery
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mechanism is more significant for accelerating neighbor dis-
covery compared with the non-response mechanism.

Fig. 16 compares the discovery time of a traditional neigh-
bor discovery algorithm called completely random algorithm
(CRA) [6] and RnS algorithm.When the number of neighbors
is less than the number of beams, RnS algorithm has its
advantage of selecting non-empty beams. When the number
of neighbors is large, almost every beam has neighbors, hence
the advantage of RnS algorithm becomes smaller. Finally,
when every beam has neighbors, the performance of these two
algorithms is the same.

VI. CONCLUSION
This paper proposed the radar assisted fast neighbor discov-
ery algorithms for wireless ad hoc networks. According to the
feedback mechanism and the accuracy of the prior informa-
tion provided by radar, four neighbor discovery algorithms
are proposed in this paper. The performance of the neighbor
discovery algorithms is analyzed and simulated. It is verified
that the time consumption of neighbor discovery with the
prior information of radar decreases significantly.

APPENDIX A
LEMMA 1
Lemma 1: The expectation of the number of 0-node

beams is

E0 =



B−1∑
k=B−N

kP(k,B,N , 0), N < B,

B−1∑
k=0

kP(k,B,N , 0), N ≥ B,

(21)

where

P(k,B,N , 0) = (
B
k
)EB−k (N )/BN , (22)

E0
m(j)=


mj −

m−1∑
l=1

(
m
l
)E0

m−l(j), j ≥ m,

0, j < m or m = 1.

(23)

Proof: With N neighbors and B beams, we define
P(k,B,N , i) as the probability that there are k beams con-
sisting i neighbors. Then we have

Ei =
∑
k

k · P(k,B,N , i), (24)

where Ei is the expectation of the number of beams consisting
i neighbors. Define E im(j) as the number of situations that j
neighbors are placed into m beams without the beams con-
sisting i neighbors. Then we have

P(k,B,N , 0) = (
B
k
)E0

B−k (N )︸ ︷︷ ︸
T1

/BN , (25)

where (
B
k
) is the number of methods to select k vacant beams

from the total B beams. E0
B−k (N ) is the number of methods

to put the N neighbors into the remaining B − k beams
without vacant beams. BN is the number of methods to put
N neighbors into B beams. The term T1 divided by BN is the
probability P(k,B,N , 0).

In the derivation of E0
m(j), when j ≥ m, mj is the num-

ber of methods to place j neighbors into m beams. (
m
l
)

is the number of methods to select l vacant beams from
the m beams. E0

m−l(j) is the number of methods to put j
neighbors into the m − l beams and there are no vacant

beams. Hence (
m
l
)E0

m−l(j) is the number of methods to put

j neighbors into the m beams and there are l vacant beams.

mj−
m−1∑
l=1

(
m
l
)E0

m−l(j) is the number of methods to put j neigh-

bors into m beams and there are no vacant beams, namely,
the value of E0

m(j).

When j < m or m = 1, E0
m(j) = 0 because there are no

vacant beams in this situation.

APPENDIX B
LEMMA 2
Lemma 2: The expectation of the number of 1-node

beams is

E1=



B−1∑
k=1

kP(k,B,N , 1), N > B,

N−2∑
k=1

kP(k,B,N , 1)+

(
B
N
) · N · N !

BN
, N ≤ B,

(26)

where

P(k,B,N , 1) = (
N
k
)(
B
k
) (k!)E1

B−k (N − k)/B
N . (27)

And we have
• When j > m,

E1
m(j) = mj −

m−1∑
l=1

(
m
l
)(
j
l
)l!E1

m−l(j− l). (28)

• When j ≤ m,

E1
m(j) = mj −

j−2∑
l=1

(
m
l
)(
j
l
)l!E1

m−l(j− l)− (
m
j
)j!. (29)

Proof: When j > m, the derivation of E1
m(j) is similar to

the derivation of E0
m(j). There are three steps to derive E1

m(j).
• Step 1: Select l beams from the m beams and select l
neighbors from the j neighbors. Then place the l neigh-

bors into the l beams. There are (
m
l
)(
j
l
)l! methods of

placements.
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• Step 2: Place the remaining j − l neighbors into the
m − l beams and there are no 1-node beams. There are
E1
m−l(j− l) methods of placements.

• Step 3: E1
m(j) is the number of methods to place j neigh-

bors into m beams minus
m−1∑
l=1

(
m
l
)(
j
l
)l!E1

m−l(j− l).

When j ≤ m, if there are j−1 1-node beams, all the j beams
are 1-node beams. In the derivation of E1

m(j), when l = j− 1,
there are j 1-node beams. Hence we have

E1
m(j) = mj −

j−2∑
l=1

(
m
l
)(
j
l
)l!E1

m−l(j− l)− (
m
j
)j!. (30)

Notice that E1
1 (j) = 1 with j ≥ 2. With the results of E1

m(j),
the P(k,B,N , 1) can be derived by two steps.
• Step 1: Select k nodes from the totalN nodes and select k
beams from the total B beams. Then put the k nodes into
the k beams. The number of methods for this operation

is (
N
k
)(
B
k
)k!

• Step 2: Put the remainingN−k nodes into the remaining
B−k beams and there are no 1-node beams. The number
of methods for this operation is E1

B−k (N − k).
The P(k,B,N , 1) is derived as (27), where the denomi-

nator BN is the number of methods to put N neighbors into
B beams.
With P(k,B,N , 1), the E1 can be derived. Notice that when

N ≤ B and k = N − 1, the number of 1-node beams is N .
Hence the E1 when N ≤ B is

E1 =
N−2∑
k=1

kP(k,B,N , 1)+
(
B
N
) · N · N !

BN
. (31)

APPENDIX C
LEMMA 3
Lemma 3: The expectation of the number of i-node beams

with i ≥ 2 is

Ei=



B−1∑
k=1

k
B
P(k,B,N , i), N> iB,

B−2∑
k=1

k
B
P(k,B,N , i)+

N−1∏
w=0

(
N − iw

i
)

BN
, N= iB,

⌊
N
i

⌋∑
k=1

k
B
P(k,B,N , i), N< iB,

(32)

where i > 1 and

P(k,B,N , i)= (
B
k
)(
N
ik
)
k−1∏
w=0

(
i (k−w)

i

)
E iB−k (N−ik)/B

N .

(33)

And we have
• When j > im,

E im(j)=m
j
−

m−1∑
l=1

(
m
l
)(
j
il
)
l−1∏
h=0

(
i (l−h)

i

)
E im−l(j−il).

(34)

• When j = im,

E im(j) = mj −
m−2∑
l=1

(
m
l
)(
j
il
)
l−1∏
h=0

(
i (l − h)

i

)
E im−l(j− il)

−

j
i−1∏
h=0

(
j− ih
i

). (35)

• When j < im,

E im(j)=m
j
−

⌊
j
i

⌋∑
l=1

(
m
l
)(
j
il
)
l−1∏
h=0

(
i (l−h)

i

)
E im−l(j−il).

(36)

Proof: When analyzing E im(j), three cases need to be
considered.
• When j > im, there are at most m− 1 i-node beams.
• When j = im, if there are m− 1 i-node beams, all the m
beams are i-node beams.

• When j < im, there are at most
⌊
j
i

⌋
i-node beams.

The derivation of E im(j) needs three steps.
• Step 1: Select l beams from the total m beams and select
il nodes from the total j nodes.

• Step 2: Divide the il nodes into l bunches. There are i
nodes in each bunch. Then put the l bunches of nodes

into l beams. There are
l−1∏
h=0

(
i (l − h)

i

)
methods for this

operation.
• Step 3: Put the remaining j− il nodes into the remaining
m − l beams and there are no i-node beams. There are
E im−l(j− il) methods for this operation.

With E im(j), the P(k,B,N , i) can be derived, which is pro-
vided in (33). With P(k,B,N , i), Ei can be derived in (32).
Notice that Ei is a piecewise function of N .
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