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ABSTRACT In previous study, deep learning and autoencoder have been applied for data detection
of NOMA systems, rather than the resource allocation of OFDMA/NOMA systems. In previous work,
we proposed the use of non-deep-learning-based cross-layer resource allocation for OFDMA/NOMA video
communication systems. In this paper, we apply a deep neural network and supervised learning to an
OFDMA subcarrier assignment and NOMA user grouping problem in downlink video communication
systems. The resource allocation results from our previous work are used as training data at the training stage.
At the testing stage, we propose a conversion algorithm to map the result of the sigmoid activation function
(values between [0,1]) of the output layer of the DNN to either zero (unassigned) or one (assigned), in order
to meet two hard constraints. The PSNR performance is very close (within 0.2dB) to that but has lower
complexity, due to the non-iterative approach used in the testing stage of the DNN.

INDEX TERMS Deep neural network, supervised learning, multi-label classification, application layer,
physical layer, OFDMA, NOMA, multimedia communications.

I. INTRODUCTION
In recent years, non-orthogonal multiple access (NOMA) has
emerged [1], [2] and is now used in the 3GPP standard [3] and
the digital television standard ATSC 3.0 [4]. NOMA adds an
additional power dimension and thus allows multiple users
to occupy one orthogonal multiple access (OMA) resource
block. The bandwidth efficiency is thus increased [5].
NOMA is one of the key enabling technologies for
5G ultra-reliable low-latency communications [6], [7] since
it decreases latency by supporting many more users than
OMA [8]. Since IP video traffic is expected to account for
82%of all IP traffic (both business and consumer) by 2022, up
from 75% in 2017 according to a recent Cisco report [9], it is
important to improve the performance of NOMAmultimedia
transmissions.

NOMA systems can be divided into uplink (UL) and down-
link (DL) systems. DL NOMA systems include [10], [11].
In [10], the performance and complexity tradeoff are
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considered in the resource allocation for DL NOMA sys-
tems. The NP hardness is proven, and Lagrangian dual-
ity and dynamic programming are proposed. The authors
of [11] propose a resource allocation algorithm combining
CoMP and NOMA to improve the data rate of edge cells.
UL NOMA systems include [12], [13]. In [12], a greedy-
based resource allocation was proposed for UL NOMA
systems in order to maximize the total capacity. In [13],
an optimal power allocation algorithm and a less complex
sub-optimal clustering method are proposed to maximize the
throughput. However, the above references only focus on
the physical layer (Layer 1), and consider the allocation of
resources from a single point of view.

Additionally, orthogonal frequency division multiple
access (OFDMA) is used in Wi-Fi, 4G and 5G New
Radio Phase I [6] due to its increased bandwidth effi-
ciency, inter-symbol interference tolerance, and flexible
resource allocation. In [14]–[16], the resources are allo-
cated according to the channel state information (CSI) in
the physical layer. On the other hand, [17]–[21] allocate
the resources according to the rate distortion (RD) function
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in the application layer. Different users have different
RD functions, and thus the total average video quality
can be improved. In order to go beyond both the physical
and application layers, the work in [22] proposes a cross
physical/application layer resource assignment that jointly
considers the application layer RD function and the physi-
cal layer CSI to minimize the total video distortion (mean
square error, MSE) for UL OFDMA video transmission
systems. Its average peak signal-to-noise ratio (PSNR, the
video quality) outperforms prior schemes considering either
the physical or application layers. References [23]–[25]
extend [22] to Hybrid Automatic Repeat reQuest (HARQ),
anti-jamming and multi-user multiple-input multiple-output
(MU-MIMO) schemes, and maximize PSNR directly.
However, [22]–[25] do not consider NOMA.

In our recent work [2], we propose the cross-layer resource
allocation of DL OFDMA/NOMA video transmission sys-
tems to increase the average PSNR. Compared to [22], our
proposed scheme adds NOMA,with two users rather than one
on each subcarrier. Reference [2] first selects users according
to [13], and the subcarriers are then iteratively reassigned
to minimize the total video MSE of the application layer.
Conversely, the suboptimal user grouping in [13] considers
only the physical layer.

Deep learning is also widely used in many other areas,
including speech recognition [26] (the first major industrial
application), image classification [27], signal processing,
communications and networks [28]. The concept of deep
learning, a special type of algorithm in machine learn-
ing (ML), was proposed in 2006 [29]. Deep learning can
be seen as feature learning from the perspective of artifi-
cial intelligence (AI) and a function approximation from
a math or non-AI perspective. Deep learning is a part of
machine learning and can handle big data and solve complex
nonlinear optimization problems. It can be divided into three
main categories: reinforcement learning, supervised learning,
and unsupervised learning [30]. Reinforcement learning does
not need a correct input-output pair (i.e. a right answer) but
use a reward function to quantify its performance. Supervised
learning exploits the labeled data and can overcome the above
problems, while unsupervised learning tasks find patterns
where the right answers are not known. A common example
in communications is an auto-encoder, in which the unsuper-
vised learning input to the network is the same as the output
from the network. Deep learning uses a deep neural network
(DNN) architecture, a computational model composed of
more than one hidden layer, to learn to represent data with
multiple abstraction levels, in a similar way to human brains.
Deep learning can discover complicated structures in large
training datasets by using the backpropagation algorithm to
modify the internal neuron weights, which compute the rep-
resentation in each layer from that in the previous layer [28].

The other deep learning architectures, the convolutional
neural network (CNN) and the recurrent neural network
(RNN), are special cases of DNN. CNN [31], [32] was
developed to realize spatial correlations, and has shone

light on the processing of images, video, speech and audio.
Reference [27] represents a breakthrough by using CNN to
halve the image classification error rate. RNN [33] was devel-
oped to realize temporal correlations, and has allowed for
advances in sequential data such as machine translation [34].
Long short-term memory (LSTM), introduced in [35], is a
special case of RNN that was designed to remember informa-
tion for a longer period than RNN and to solve the vanishing
gradient problem of RNN [30]. In the proposed resource
allocation of OFDMA/NOMA video transmission systems,
there are neither the spatial correlation addressed by CNN
nor the temporal correlations assumed by RNN, and thus
the fully connected DNN model is the most appropriate.
The role of DNN is a tool to solve the classification task
in resource allocation. For example, the resource allocation
of an OFDMA system is to assign each OFDMA subcarrier
(resource) to a user, and this is a classification task (either
assigned or unassigned for each subcarrier/user pair).

II. RELATED WORK
Applications of deep learning in error correction codes and
signal processing include the decoding of polar codes [36],
an auto-encoder in the physical layer [37], an auto-encoder
for the coding and decoding of sparse code multiple
access (SCMA) [38], channel estimation and signal detection
in OFDM [39], and an auto-encoder for data detection in
NOMA [1]. After training, the computation time of the deep
learning-based approach is between five and 11 times lower
than that of non-deep learning approaches [38]. For radio
resource allocation (time, subcarrier, power resource etc.),
the focus of this paper is on a comparison of the existing
works in this area using deep learning, as summarized in
detail in Table 1 [40]–[42]. Note that unsupervised learn-
ing, such as an auto-encoder in the physical layer [37],
SCMA [38], and data detection inNOMA [1], where the input
to the network is same as the output from the network, is not
applicable to radio resource allocation.

Previous studies of radio resource allocation (subcar-
rier/time slot assignment) have all addressed single-label
classification problems, in which one subcarrier (channel)
can be assigned (labeled) to only one user. With NOMA,
however, one subcarrier (channel) can be assigned (labeled)
to two users. Standard DNNs are not suitable for multi-label
classification. One way to get around this is to consider
all combinations of classes as separate classes. This causes
combinatorial growth in the number of classes. In a limited
training dataset, training many parameters causes over-fitting
and thus poor results [43]. New methodologies must there-
fore be proposed for specific applications. Related papers
include studies of smart meters [43], multi-speaker direction
of arrival estimation [44], and offloading for mobile edge
computing [45]. However, they do not use deep-learning-
based multi-label classification for radio resource allocation
in NOMA systems.

In this work, we apply deep-learning-based multi-label
classification to OFDMA/NOMA systems to tackle the user
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TABLE 1. Existing works on radio resource allocation using deep learning.

grouping/subcarrier assignment in a cross-physical/ appli-
cation layer fashion. We meet two of the 10 challenges of
future research trends in deep learning for intelligent wireless
networks: deep learning -based cross-layer design and deep
learning -based application layer enhancement (QoS param-
eter PSNR) [40].

In this paper, we propose the cross-layer resource alloca-
tion of the DL OFDMA/NOMA video transmission system
using DNN-based user grouping/subcarrier assignment. Our
contributions are as follows:

1. We extend our previous work [2], an iterative cross-
layer user grouping/subcarrier assignment/power allocation

of the DL OFDMA/NOMA video transmission system,
to the proposed DNN-based scheme by using deep learning-
based cross-layer user grouping/subcarrier assignment (train-
ing set taken from [2]) and the same power allocation
as in [2]. Following the training stage of DNN, the user
grouping/subcarrier assignment is a direct mapping without
iterations. This could decrease the complexity of resource
allocation.

2. We replace only the building block with the most com-
plexity, the cross-layer user grouping/subcarrier assignment,
with a DNN-based one. To learn end-to-end communication
systems, e.g. the auto-encoder in [1], [37], [38], the training

157732 VOLUME 7, 2019



S.-M. Tseng et al.: Deep-Learning-Aided Cross-Layer Resource Allocation of OFDMA/NOMA Video Communication Systems

FIGURE 1. DL OFDMA/NOMA video transmission system.

complexity is prohibitive for long messages, because the
auto-encoder needs to see each message (a total of 2^100 if
the message length is 100) at least once [37]. This problem
is serious for video communication, since the number of bits
for one user in one GOP is often 10,000 or higher [22]–[24].
Augmenting only specific sub-task, cross-layer user group-
ing/subcarrier assignments in this paper is therefore more
practical [37].

3. We formalize the OFDMA subcarrier assignment and
NOMA user grouping tasks as a multi-label classification
problem. This has been dealt with in other areas, such as smart
meters, multi-speaker DOA, offloading for mobile edge com-
puting, and image recognition [43–45], [58]. At the testing
stage, we propose a conversion algorithm at the output layer
to guarantee that the two hard constraints on the proposed
DNN-based resource allocation algorithm are satisfied.

III. SYSTEM MODEL
A. OFDMA/NOMA SYSTEM BLOCK DIAGRAM
The OFDMA/NOMA video transmission system is shown
in Fig. 1. The video transmission system is similar to that
in [22], except for two gray boxes. The first of these is
the OFDMA/NOMA resource allocation block, including
NOMA user pairing, OFDMA subcarrier assignment, and
power allocation among users sharing the same subcarrier,
while the second is the successive interference cancella-
tion (SIC). In the OFDMA/NOMA video transmission sys-
tem, we have K users and M orthogonal subcarriers. The
user index is k = {1,2,3. . .K}, and the subcarrier index
is m = {1,2,3. . .M}.

B. NOMA SYSTEM MODEL FOR EACH SUBCARRIER
Fig. 2 shows the NOMA downlink system model for subcar-
rier m. We assume two users on one subcarrier.

The received signal is given by:

yDLm,k = HDL
m,k

∑2

i=1
xDLm,i + n

DL
m,k, k = 1, 2, (1)

where nDLm,k denotes the additive white complex Gaussian
noise (AWGN) for subcarrier m, user k . HDL

m,1 and HDL
m,2 are

the channel vectors for strong and weak users, respectively.
xDLm,1 =

√
αDLm,1s

DL
m,1 and x

DL
m,2 =

√
αDLm,2s

DL
m,2 are the transmitted

signals for strong users and weak users, respectively; sDLm,1 and
sDLm,2 are the strong and weak user’s signals, respectively;
αDLm,1 and α

DL
m,2 are the power assignment factors, and αDLm,1 +

αDLm,2 = 1. According to Equation (1), the signal received
from the strong user on the m-th carrier is given by:

yDLm,1 = HDL
m,1x

DL
m,1 + H

DL
m,2x

DL
m,2 + n

DL
m,1. (2)

The strong user uses SIC to cancel out HDL
m,2x

DL
m,2, the inter-

ference from the weak user. The strong user’s signals can
therefore be written as:

yDLm,1 = HDL
m,1x

DL
m,1 + n

DL
m,1. (3)

Conversely, the weak user’s received signal can be expressed
as:

yDLm,2 = HDL
m,2x

DL
m,2 + H

DL
m,2x

DL
m,1 + n

DL
m,2. (4)

C. VIDEO MSE DISTORTION MODEL UNDER NOMA
For simplicity and accuracy, we use an empirical video dis-
tortion model like that in [22], [59], in the OMA systems. The
difference is that ours has an interference term due to NOMA,

specifically PmaxαDLm,1

∣∣∣HDL
m,1

∣∣∣2 in (6), which affects the

RDLk,m term in the video distortion expression (7).
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FIGURE 2. DL NOMA system model for subcarrier m.

We obtain a strong user information rate on the
m-th subcarrier:

RDLm,1
(
αDLm,1

)
= BW∗log2

1+ ηPmaxαDLm,1
∣∣∣HDL

m,1

∣∣∣2
PDLN0

 , (5)

where BW is the bandwidth of each subcarrier, η =

3
[
Q−1

(
SERt
4

)]−2
, SERt denotes the target symbol error

rate, and we bring SERt into the Q-function. PDLN0
denotes

the noise power, and Pmax denotes the maximum power
allowed per subcarrier. The weak user information rate on the
m-th subcarrier is given by:

RDLm,2
(
αDLm,2

)
=BW ∗ log2

1+ ηPmax
(
αDLm,2

) ∣∣∣HDL
m,2

∣∣∣2
PmaxαDLm,1

∣∣∣HDL
m,1

∣∣∣2+PDLN0

 .
(6)

Unlike in [22], the weak user information rate experiences
interference from the strong user. Let MSEDLk be the rate
distortion function for user k and

∑M
m=1 R

DL
m,k be the encoder

rates in bits/s. Thus, for each group of pictures (GOP),
the mean square error (MSE) video distortion can be modeled
as [59]:

MSEDLk = aDLk +
bDLk∑M

m=1 R
DL
m,k + c

DL
k

, (7)

where aDLk , bDLk and cDLk are constants depending on the
video. The video encoder rates are discrete values. These
parameters are obtained by fitting the RD function by non-
linear regression using operational points [22], [59].

D. AVERAGE PSNR
In the downlink the OFDMA/NOMA video transmission sys-
tem, we need to maximize the average PSNR. The user k’

PSNR is defined as 10log10
255∗255
MSEk

[22] and the average
PSNR is the average of all users’ PSNR. The video signal
processing community has long been using mean squared
error (MSE) and PSNR as fidelity metric (PSNR is defined
a logarithmic representation of MSE, as described above).
PSNR is a very good measure to evaluate and compare the
video quality differences and are widely used because it is
easy to calculate, has clear physical meanings, and is tractable
for optimization purposes. The average SNR is no suited
for the primary metric of video communications because the
video distortion is video content dependent and different from
a user to another but the noise is irrelevant of the video content
of the different users.

E. OPTIMIZATION OF TOTAL VIDEO DISTORTION:
PROBLEM FORMULATION
We want to maximize the total MSE, that is:

minP
=

∑K

k=1
MSEDLk , (8)

where P
=
is the K-by-M power allocation matrix whose ele-

ment Pk,m is the power assigned for user k on subcarrier m.
The BS has a total power constraint P for all downlink
users (conversely, each uplink user has a separate power
constraint P). Each user must have at least one subcarrier,
and each subcarrier is shared by two NOMA users. Thus,
the optimization in (8) has the following constraints:

Constraint 1: Each user has at least one subcarrier.
Constraint 2: For m ∈ {1, 2, . . . ,M}, Sm= {k

′

|Pk ′ ,m 6= 0},
||Sm|| = 2, where ||Sm|| denotes the set size of of Sm. That is,
two users are assigned to subcarrier m.

Constraint 3:
∑K

k=1

M∑
m=1

Pk,m = P for all k

Constraint 2 is nonconvex, meaning that the above opti-
mization in (8) is NP hard.We proposed a suboptimal iterative
algorithm in [2], as briefly described in Section IV.
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IV. ITERATIVE CROSS-LAYER OFDMA/NOMA RESOURCE
ALLOCATION ALGORITHM
Here, we briefly describe our previous work [2]. In this
scheme, the subcarrier assignment/NOMA user grouping
results are used as training data for deep-learning-based sub-
carrier assignment/NOMA user grouping in the next section.
For details, readers are referred to [2].
1) Initial Subcarrier Allocation: First, the channel

responses of all users on each subcarrier are sorted in

descending order. The largest and smallest
∣∣∣HDL

m,k

∣∣∣2 values
are found, and then this subcarrier m is assigned to these
two users. In this step, only the physical layer channel state
information (CSI) is considered.
2) Power Allocation And RD Function Slope Calculation:

The power allocation on subcarrier m aims to decide the
power assignment factors ( αDLm,1 and αDLm,2) to minimize the
sum of video distortion ( MSEDLm,1+ MSEDLm,2 ) subject to the
constraints that NOMA has a lower MSE than OMA.

The Karush Kuhn Tucker (KKT) result [2] is shown in (9)
at the bottom of this page.

Dαf
(
αDLm,1

)

= −bDL1

1
ln 2

ηPmax
∣∣∣HDL

m,1

∣∣∣2
PDLN0
+ηPmaxαDLm,1

∣∣∣HDL
m,1

∣∣∣2(
log2

(
1+

ηPmaxαDLm,1

∣∣∣HDL
m,1

∣∣∣2
PDLN0

)
+ cDL1

)2

−bDL2

1
ln 2

η

∣∣∣HDL
m,2

∣∣∣2Pmax∣∣∣HDL
m,2

∣∣∣2αDLm,1Pmax+η∣∣∣HDL
m,2

∣∣∣2(1−αDLm,1)Pmax(
log2

(
1+

η

∣∣∣HDL
m,2

∣∣∣2(1−αDLm,1)Pmax∣∣∣HDL
m,2

∣∣∣2αDLm,1Pmax+PDLN0
)
+ cDL2

)2 = 0,

(9)

A(i),DLk denotes the set of subcarriers assigned to user k at
the i-th iteration. It is assumed that r∗,DLk denotes the sum
of all subcarriers information rates after power allocation.
From the subcarriers allocated by user k , the aggregated
information rate is:

r∗,DLk =

∑
A(i),DLk

RDLm,k , (10)

We can obtain the slope by computing the k-th user:

SDLk =
d

bDLk
rDLk +c

DL
k

drDLk

∣∣∣∣∣∣∣
rDLk =rk∗,DL

= −
bDLk(

r∗,DLk + cDLk
)2 , (11)

If the user’s slope is steeper, this means that the MSE
decreases more when one additional subcarrier is obtained.
We then select the user k∗,DL with the minimal (steep-
est) slope, which is k∗,DL = argmin

{
SDLk

}
to obtain the

subcarrier.
3) Iterative Subcarrier Reassignment: After power alloca-

tion and calculation of the RD function slope, we consider the

video MSE to reassign the subcarrier in the application layer.
We try to reassign each subcarrier m to user k∗,DL .
It is assumed that�DL is the set of users with the potential

to improve the video quality by receiving extra subcarriers.
We initialize the set�DL

= {1, 2, 3 . . .K }. It is also assumed
that ρ(i),DLm,1 (strong user) and ρ(i),DLm,2 (weak user) are the users
assigned to subcarrier m at the i-th iteration.

We define −1DL
ρ
(i),DL
m,n ,m,n

as the MSE performance change

for the user ρ(i),DLm,n losing the subcarrier. k∗(i),DL is the
user with the steepest slope in the i-th iteration. We define
1DL
k∗(i),DLn ,m

as the MSE performance gain of the subcarrier

for the user k∗(i),UL which replaces the user ρ(i),DLm,n . It is
calculated that −1DL

ρm,n(i),DL ,m,n < 0, and 1DL
k∗(i),DLn ,m

> 0.

If (1DL
k∗(i),DLn ,m∗

− 1DL
ρ
(i),DL
m,n ,m,n∗

) > 0,∀n= {1, 2, 3 . . .N },

we will find the largest one and reassign the largest pairing’s
subcarrier m∗ to user k∗(i),DL in the i + 1 th iteration, i.e.
ρ
(i+1),DL
m,n = k∗(i),DL . We then recalculate the slope with the

new allocation and return to Step (3) with the new slope to
update the user k∗(i+1),DL with the lowest slope.

If all the (1DL
k∗(i),DLn ,m∗

−1DL
ρ
(i),DL
m,n ,m,n∗

) < 0, n= {1, 2, 3 . . .N },

we find that reassigning any subcarrier to the user k∗,DL

will not improve the overall performance. We then return
to Step (2) to update user k∗(i+1),DL with the second steep-
est slope. At the same time, the user k∗(i),DL used in the
i-th iteration will not be included in the i + 1th iteration of
the exchange, i.e. we remove k∗(i),DL from�DL until no user
k∗,DL can be allocated (i.e. the �DL set becomes empty).

A. COMPUTATIONAL COMPLEXITY OF THE SUBCARRIER
ALLOCATION AND USER GROUPING
The above subcarrier allocation and user grouping algorithm
has the following computational complexity. In step (1),
the sorting of the channel responses of K users on each of
M subcarrier has the complexity O(M∗Klog2K). The user k
with the steepest slope tries to replace two users of all
M subcarriers, so the complexity is O(2M). Denote the num-
ber of iterations among step (2) and step (3) is L. L is many
times of K because one user with steepest RD slope tries
to rob a subcarrier from the other users at each iteration
and often one user can gain subcarrier many times. Finally,
the sum computational complexity of the subcarrier alloca-
tion and user grouping algorithm is O(M∗Klog2K+2M∗L).
Due to the high complexity of the iterative nature of the
previous scheme [2] (large L), we are motivated to pro-
pose deep neural network-based subcarrier assignment/user
grouping in the next section which is non-iterative and
the iterative part of the computational complexity can be
saved.

V. PROPOSED DEEP NEURAL NETWORK-BASED
SUBCARRIER ASSIGNMENT/USER GROUPING
The subcarrier assignment/NOMA user grouping results in
the previous section are used as training (labeled) data in this
section.
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A. TRAINING PROCESS
The channel gains HDL

m,k are normalized to give zero mean
and unit variance, as in [50]. The normalized channel gains
ĤDL
m,k can be written as:

ĤDL
m,k =

log10H
DL
m,k − E[log10H

DL
m,k ]√

E[(log10H
DL
m,k − E[log10H

DL
m,k ])

2]
(12)

We employ the normalized channel gain as the
input to the DNN. The input data can be denoted as
X =

[
ĤDL
1,1 , . . . , Ĥ

DL
M ,K

]
, and the output of the DNN is the

assignment of the users to the subcarriers, which can be
denoted as Y = [u1,1, u1,2, . . . , u1,K , u2,1, u2,2, . . . , u2,K ,
. . . , uM ,K ], where each element is 0 or 1 s.
We use θ to denote the set of all the parameters of the

network, θ = {θ1, θ2, . . . , θL}. The set of the parameters of
the l-th layer is denoted θl = {Wl , bl }.The l-th layer can be
written as:

Yl= σ (WlXl + bl) (13)

where σ (·) is an activation function. At each layer except
the last, we use the rectified linear unit (ReLU) function with
σ (x) = max(0, x) as the activation function, as this keeps
the gradient at one; in this way, the size of the gradients is
not exponentially reduced aswe backpropagate throughmany
layers. ReLU usually learns more quickly in DNN, allowing
training of a deep supervised network without unsupervised
pre-training [60].

In the last layer, a sigmoid function σ (x) = 1
1+e−x is

used to map the output to the interval [0,1]. The input and
output mapping of the L-layer DNN is the series of functions
expressed in (14) at the bottom of the previous page.

YL
= σ (WL . . .K (σ (W2σ (W1 + X1 + b1))+ b2) . . .K + bL

(14)

Loss (W , b)

=
1
MK

∑MK

i
−[Y (i) ln (YL (i))+(1−Y (i)) ln (1− YL(i))]

(15)

We use binary cross entropy (BCE) between the DNN out-
put YL and desired output Y∗ as the cost function expressed
in (9) at the bottom of the previous page..

B. ADAM OPTIMIZER
We use a first-order gradient-based optimization algorithm
for stochastic objective functions, such as the Adam opti-
mizer, to gradually adjust the W and b according to the cost
function. To adjust W (b is adjusted similarly),

ut = β1ut−1 + (1− β1)
∂Losst
∂Wt

(16)

vt = β1vt−1 + (1− β2)
(
∂Losst
∂Wt

)2

(17)

FIGURE 3. DNN output before the conversion algorithm (rows represent
users, and columns subcarriers).

ût =
ut

1− β t1
(18)

v̂t =
vt

1− β t2
(19)

Wt+1 = Wt − γ
ût√
v̂t+ ∈

. (20)

We update the biased first moment estimate ut and
biased second moment estimate vt . β1 is the exponential
decay rate for the first moment and β2 is the exponential
decay rate for the second moment. ut is then initialized to
zero. The bias correction of the gradient mean ut is denoted
as ût , and similarly for v̂t . γ is the learning rate, and ∈ is a
small value to avoid the denominator being zero, often 10−8.

C. DROPOUT
Dropout is a technique for reducing the overfitting problem
in neural networks. The primary purpose is to randomly drop
units from the neural networks in either the hidden or visi-
ble layers during training. This can prevent the over-fitting
problem.

D. DNN OUTPUT LAYER CONVERSION ALGORITHM TO
MEET CONSTRAINTS
During the testing stage (following the training stage),
we need to convert the sigmoid probability (a value
between [0,1]) learned by DNN into zero or one (i.e. unas-
signed or assigned). The subcarrier allocation/NOMA user
grouping needs to meet two constraints: (i) there must be at
least one subcarrier for each user; and (ii) there must be two
users on each subcarrier. We therefore propose the following
conversion algorithm, and use Figs. 3–6 to give an example
of the post-processing, showing how the actual subcarrier
assignment takes place.

Step 1. We sort the DNN output in Fig. 3 (values between
[0,1] due to the sigmoid activation function) in descending
order, as shown in Fig. 4. There are circles around the rank
numbers. For example, ¬ (rank 1) is (4,1), indicating the
element in row 4 and column 1 of Fig. 3, i.e. 0.98139.

Step 2. According to Constraint 1, each user has one
subcarrier. The subcarrier allocation matrix Fig. 5 whose all
components are all zeros initially shows the process and the
result of step 2. In Fig. 5, 1 at (i,j) component indicates
subcarrier j is assigned to user i and the number with a circle
around it indicate the rank number (also step number).
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FIGURE 4. Sorting of Fig. 3 in descending order. The rank is shown as a
number within a circle. For example, The DNN output of User 4 and
Subcarrier 1 is ¬ (ranked first).

FIGURE 5. The subcarrier allocation matrix (rows represent users, and
columns represent subcarriers) after step 2. Each user has one subcarrier
to satisfy constraint 1.

We start with ¬ (user 4 subcarrier 1 in Fig. 4), let
user 4 have subcarrier 1, and thus the (4,1) component of
Fig. 5 becomes 1. We then move to (user 4 subcarrier 4 in
Fig. 4), but user 4 already has subcarrier 1, so we skip ­,
and thus we mark (4,4) component of Fig. 5 with a cross. The
process continues until all users have one subcarrier. Note that
¯-(4,2) component is crossed out (skipped) since this user
already has one subcarrier.

Step 3. To satisfy Constraint 2, we also choose from ¬ to
16© of Fig. 4, but skip those already chosen in Step 2 (¬, ®, °,
and ±). If this does not meet Constraint 2, we skip to the next
one. The process continues until each subcarrier has two users
(i.e. Constraint 2 is satisfied). Fig. 6 shows the process and
the result of step 3. We see that ², ³, µ, 11©, and are crossed
out (skipped) since Constraint 2 is violated. Specifically, the
²- (4,3) component is crossed out because subcarrier 3
already has two users: user 3 (®) and user 1 (±).

FIGURE 6. The subcarrier allocation matrix (rows represent users, and
columns represent subcarriers) after step 3. Each subcarrier has two users
to satisfy Constraint 2.

TABLE 2. DNN parameters.

VI. SIMULATION RESULTS
The parameters for the DNN are listed in Table 2. The num-
ber of epochs is equal to 2,000, since the model converges
within 2,000 epochs. We compare the following schemes:

Scheme A [22] OFDMA (OMA) cross-layer resource
allocation.

Scheme B [13] OFDMA/NOMA physical layer only
resource allocation. Suboptimal user grouping (physical layer
only), optimal power allocation (sum rate).

Scheme C ([2], described in Sec. IV in this paper): our pre-
vious work, non-DNN-based, iterative cross-layer subcarrier
assignment/user grouping for OFDMA/NOMA video com-
munication systems, optimal power allocation (sum video
distortion).

Scheme D (Sec. V in this paper): the proposed DNN-based
subcarrier assignment/user grouping plus optimal power allo-
cation (sum video distortion) from [2] for OFDMA/NOMA
video communication systems. The DNN uses Scheme C’s
subcarrier assignment/ user grouping results as training data.

For Scheme D, the volume of the used training data
is 20000 since larger data volume does not improve the
performance. The training data do not have the data
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TABLE 3. Average PSNR (video quality) of schemes A-D, four users, four
subcarriers, SNR = 15 DB.

imbalance problem in [61] because we randomly generated
the channel coefficients of users at subcarriers as the DNN
input, and apply Scheme C’s subcarrier assignment/ user
grouping results as the DNN desired output.

The video quality PSNR comparison, including mean and
standard deviation) is shown in Table 3. Scheme A is better
than Scheme B, since it considers both the application layer
and the physical layer. Scheme C is better than Scheme A
due to the use of NOMA. The performance loss of the pro-
posed DNN-based Scheme D with respect to Scheme C is
only 0.2 dB in PSNR. The complexity is lower due to the
non-iterative approach used in Scheme D. For comparison,
Scheme C has iterative steps – 3) iterative subcarrier reas-
signment in Sec. IV. In all schemes, the standard deviation is
not significant.
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VII. CONCLUSION
This paper has applied a DNN and supervised learning
to a subcarrier assignment and user grouping problem in
an OFDMA/NOMA downlink video transmission system.
By replacing the original iterative method, we have shown
that the proposed deep learning technique can achieve a
similar (although slightly poorer) result, with low complexity.

ABBREVIATIONS

3GPP Third-generation partnership project
4G Fourth-generation mobile system
5G Fifth-generation mobile system
ADC Analogue-to-digital conversion
ATSC Advanced television systems committee
BCE Binary cross entropy
BS Base station
BW Bandwidth of each subcarrier
CNN Convolutional neural network
CoMP Coordinated multipoint
CP Cyclic prefix
CSI Channel state information
DAC Digital-to-analogue conversion
DL Downlink
D2D Device-to-device
DNN Deep neural network
FFT Fast Fourier transform
GOP Group of pictures
IFFT Inverse fast Fourier transform

IP Internet protocol
LSTM Long short-term memory
LTE-U Long term evolution-unlicensed
ML Machine learning
MSE Mean square error
NOMA Non-orthogonal multiple access
NP Non-deterministic polynomial time
OFDMA Orthogonal frequency division multiple

access
OMA Orthogonal multiple access
PSNR Peak signal-to-noise ratio
QoS Quality of service
RBM Restricted Boltzmann machine
RD Rate distortion
ReLU Rectified linear unit
RNN Recurrent neural network
SE Spectrum efficiency
SERt Target symbol error rate
SIC Successive interference cancellation
SINR Signal-to-noise plus interference ratio
UL Uplink
WMMSE Weighted minimum mean square error
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