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ABSTRACT The security of sensitive information is vital in many aspects of multimedia applications such
as Intelligent Transportation Systems (ITSs), where traffic data collection, analysis and manipulations is
essential. In ITS, the images captured by roadside units form the basis of many traffic rerouting and
management techniques, and hence, we should take all precautions necessary to deter unwanted traffic
actions caused by malicious adversaries. Moreover, the collected traffic images might reveal critical private
information. Consequently, this paper presents a new image encryption algorithm, denoted as ChaosNet,
using chaotic key controlled neural networks for integration with the roadside units of ITSs. The encryption
algorithm is based on the Lorenz chaotic system and the novel key controlled finite field neural network.
The obtained cryptanalysis show that the proposed encryption scheme has substantial mixing properties, and
thus cryptographic strength with up to 5% increase in information entropy compared to other algorithms.
Moreover, it offers consistent resistance to common attacks demonstrated by nearly ideal number of changing
pixel rate (NPCR), unified averaged changed intensity (UACI), pixel correlation coefficient values, and
robustness to cropped attacks. Furthermore, it has less than 0.002% difference in the NPCR and 0.3% in
the UACI metrics for different test images.

INDEX TERMS Neural network encryption, image encryption, cryptography, finite fields, chaotic systems,

intelligent transportation systems, smart city, [oT, Internet of Things.

I. INTRODUCTION

Advanced intelligent transportation systems (ITSs) are one
of the main driving technologies of smart city development,
becoming a pillar of city infrastructure as population and
autonomous vehicle developments continue to grow [1]. The
objectives of an ITS can vary widely, and may include traf-
fic detection, control and analysis. Public data collection,
traffic management, localized alerts and real-time traffic
management are major services that are being developed
and have mission critical functions. Therefore, security and
safety aspects of an ITS become a main concern. A safe
ITS must prevent malicious attackers from altering sensitive
traffic data that could produce unwanted traffic actions, and
must keep the collected information secured at all stages.
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In this sequel, this paper presents the development of an
image encryption algorithm, ChaosNet, utilizing chaotic sys-
tems and key-controlled neural networks for use in the Scal-
able Enhanced Roadside Unit (SERSU) [2] and other ITS
applications.

For several years, chaotic maps have been an attrac-
tive basis for cryptographic applications, due to the
hyper-sensitivity to initial conditions and input parame-
ters, producing pseudorandom and unpredictable behav-
ior [3]. The generation of these new chaos-based encryption
schemes mainly focus on an image as the input, since many
chaotic maps provide thorough topologically mixing proper-
ties which are well suited for the two-dimensional nature of
images [4]-[20].

Chaotic encryption schemes can generally be split into
three main categories. Firstly they can employ chaos as a
mean of performing complex permutations of coordinates
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with repeated iterations. Early adopters of chaos theory in
encryption schemes utilized this method of chaotic coordi-
nate transformation to topologically mix the image as much
as possible, as in the case of the baker map [21]. The Baker
map exploits a ‘kneeling’ and ‘folding’ of two dimensional
data iterated several times. This map is discretized for digital
images and generalized to incorporate a secret key for the
encryption process. Furthermore the map is extended into
three dimensions to increase mixing of grey levels to produce
an adequate encryption scheme.

Secondly, chaotic systems can employ complex value
substitutions within the plaintext, needed for the confusion
component of the algorithm. In [15], the authors utilize
the Colpitts system with chaos inducing parameters and the
Duffing chaotic system. With these systems they produce a
pseudo-random two dimensional chaotic map with the same
dimensions as the plainimage. Each plaintext pixel is then
mapped 1-to-1 to the chaotic substitution lattice and iterated
several times.

Recently, chaotic maps are designed by combining the
two previous methods. That is, chaotic maps are exercised
as complex substitutions and permutations in a combined
encryption algorithm to achieve adequate diffusion and con-
fusion properties for optimal cipher security. In [22], the
authors utilize multiple logistic maps as their anchor of
chaos. The first logistic map is utilized as a pixel permut-
ing scheme, while the other logistic map handles the pixel
value transformation, or the substitution scheme. In [23],
there are distinct sections for chaotic permutation and sub-
stitution in the cipher. The authors utilize the Arnold cat
map as a complex iterative permutation element with the
use of two secret keys. The data is then fed to multiple
cascaded discrete duffing equations with associated keys for
pixel value substitution. Furthermore, chaotic coordinate and
pixel transformation can also be infused with other complex
functions. Such as in [3], the chaotic tent-map is modified to
incorporate the rectangular transform. This is used as a plain-
text permutation section, while the chaotic tent map itself
generates a sequence for use in the pixel value substitution
section. In [24], the authors combine image encryption with
an image compression scheme based on compressive sensing
with the Walsh-Hadamard transform along with two chaotic
maps each created from a combination of the Logistic map,
Tent map, and Sine map. The compressed image is then per-
muted according to a pseudorandom sequence and undergoes
complex substitution based on DNA sequence operations
to produce the final encrypted image. In [25], the authors
introduce a phase-truncated short-time fractional Fourier
Transform within an encryption unit along with wave-based
image permutation and complex substitution through Chen’s
hyper-chaotic system.

This paper develops an image encryption algorithm based
on the Lorenz chaotic system and chained finite field trans-
formation layers to form a neural-network-like structure,
which in conjunction with a novel full-image permutation
scheme will produce an encryption algorithm that makes
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cipherimages unintelligible and highly secure. The algorithm,
analyzed in terms of cryptographic strength through various
metrics and tests, and the obtained results show to be a
suitable image encryption scheme for an ITS.

The remainder of this paper is organized as fol-
lows. Section II outlines necessary background components
involved in ChaosNet, including the Lorenz system, Galois
Field 28, the neural network Hill cipher. In Section III, the
details of the ChaosNet image encryption scheme are out-
lined. In Section IV, the security of ChaosNet is analyzed
through various relevant tests and compared to previous
image encryption algorithms, and finally the findings are
summarized and concluded in Section VI.

Il. CHAOSNET COMPONENTS

A. CHAOTIC SYSTEMS

Chaotic systems exhibit emergence over scale, however, they
do so in an unpredictable yet deterministic manner. Where
common patterns may emerge, exact positions are highly
unpredictable which are caused by hypersensitive depen-
dence to the systems initial conditions. Chaotic systems are
suitable for image encryption due to high initial condition
sensitivity, randomness, unpredictability and are topologi-
cally mixing [26].

Chaos can also be measured quantitatively, through means
of the Lyapunov characteristic exponent(s) (LCE) of a given
dynamic system, which describe the trajectory evolution of a
dynamic (discrete) system,

n—1
1 .
y(o) = lim ;glnv (x| M

where f(x;) gives the subsequent point x;11, producing the
Lyapunov exponent for the dynamic variable x. A spectrum
of Lyapunov exponents is produced depending on the size of
the phase space, i.e. a system with three dynamic equations
will yield three Lyapunov exponents. The most important
indicator for a system to be chaotic is to have at least one
positive exponent within the set of resulting Lyapunov expo-
nents, which indicates trajectory divergence and quantifies
dependence on initial conditions by showing the rate at which
two close points diverge over time [27].

B. LORENZ SYSTEM

The Lorenz strange (chaotic) attractor is a set of first order
differential equations that describe a three dimensional point,

dx ( )

— =a(y—x

dt 4

dy

o =X =9y

d

=~ xy— B2 @)
dt

using real parameters «, p, and B. The Lorenz system is
extremely sensitive to initial coordinate positions, serving
unpredictable yet bounded behaviour. The Lyapunov expo-
nents of the Lorenz system for « = 10, 8 = % and
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FIGURE 1. Plot of the Lorenz attractor given that « = 10, § = 8, p = 28.

p = 28 is shown in Fig. 1 using the parameters {0.9056, 0,
-14.5723} [28].

C. FINITE FIELD

A finite field is a finite set with definitions for addition,
subtraction, multiplication and division. The number of ele-
ments in a field defines thw field’s order, which in this
paper must be prime p to the n' degree, known as a Galois
Field GF(p™) [29]. The finite fields GF(p") and its associ-
ated operations provide the necessary methods for combining
two integers in the range O, 1, ..., p" — 1, to form a unique
irreducible integer in that field, while also being able to
calculate its inverse. Elements in GF(p") represent the powers
of a polynomial, as polynomial arithmetic defines the the
operations within GF(p™).

The proposed chaotic weight matrix will be generated in
GF(2%), thus each element of the weight matrix will repre-
sent a polynomial within GF(2%). This choice is convenient
because the grayscale images used for encryption use 8-bit
gray levels. By representing the elements of the weight matrix
and input in GF(2%), the weight matrix will be irreducible
with the irreducible polynomial that defines the field. These
polynomials are represented as 8-bit integers such that each
bit position corresponds to a term within the polynomial. For
example the decimal number 157 represents the polynomial
in GF(28) as,

156190 = 9C16 = 100111015 = x7 +x* +x3 + x> + 1.

The normal addition/subtraction and multiplication/
division operations of real numbers follow the field rules of
GF(2%) [29]. Addition and subtraction of two elements result
in the same operation, a bitwise XOR of those two elements.
For example the addition or subtraction of the elements 3F¢
and A5 in GF(28) is,

3F16 @ AS16 = 9Ajs.
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Multiplication of two elements becomes a polynomial
multiplication of those two elements modulo an irreducible
polynomial in GF(2%). Division is the same as multiplication
however the first factor is multiplied by the multiplicative
inverse of the second factor modulo the irreducible polyno-
mial. The irreducible polynomial in GF(2®) used in this algo-
rithm is the one used by the Advanced Encryption Standard
(AES) [30],

11B16=28319=10001101 12=x8+x4+x3+x—|—], (3)

For example, the multiplication, denoted as -, of 3F¢ and
A516 in GE(28) is shown below,

3F6-AS16
= 00111111, 10100101,
= <x5 +xt P+ + 1)
. (x7 +x0 + 2+ 1)
— 12 10y 10 4 59 4 o8
+3x7+2x0 43 4+ 2x 23 22 x4 1 “4)
since addition in GF(2%) is an XOR, the terms with even
coefficients can be eliminated,
3F16-A516 = x2 +x X7 + X0 +x+1
= 1100010100011, &)

this subsequently must be modded by the irreducible polyno-
mial (3), which can be done by long division with XOR in
place of subtraction,

= 1100010100011
@100011011
100100010011
@ 100011011
111001011
® 100011011
11010000 = DO0q¢.

mod 10011101

Therefore in GF(2%), 3F ;6 - A516 = D0jg.

D. NEURAL NETWORK HILL CIPHER

The complex substitution sub-algorithm incorporates chained
hill ciphers that resemble a fully connected neural network
structure given by the equation,

N

However the weights and inputs, w;; and x;;, will be treated
as elements of GF(2%) as described in Section II-C. Thus,
addition and multiplication operations shown in (6) are in
GF(2%). The matrix form of (6) is given by

y = Wx

158699



IEEE Access

G. R. W. Thoms et al.: Chaotic Encryption Algorithm With Key Controlled Neural Networks

y =Wx

[ 85 7 bl 83 06 81 0c 02 €9 12 13
8c cf ed f1 5f ed 39 80 35 8a
60 a3 9d 78 07 50 62 27 44 27
27 e8 09 2b e0 €7 e6 8a 9f d4
e3 93 al 3a 81 ed 44 7f 5d al
b2 0f 62 49 0f 25 7c 49 f8 1f
46 ef ab 4d Ta 35 Tc f8 70 €7
cd _ | ef b9 04 15 45 68 7 45 &b
bl | 4f 9e 65 91 94 2f a6 06 d9
ch 03 be 3¢ 64 €7 97 ac 3b a0l
8f de d8 cd b5 06 33 9 2 3¢
d4 ed 47 af 57 a8 Of ea 13 0d
2e 87 82 a2 58 de 07 80 bd 35
04 91 4d 71 50 fb db 70 31 a8
48 2f 2e 12 fd 65 77 5e 57 eb

L 22 14 L f1 f3 26 fa 66 03 f2 ec db

8¢
0f
Oc
Oe
6d

a3 30 3a ed ab 3c 7 [ 1d 7
3b 05 41 0d 95 ca 8f
ba a3 3¢ 37 b5d 84 ed
02 ad 90 cf ed 83 2d
85 bb 37 d9 fe €T bf
2f Te 6c 0d 89 15 cb
a2 8 07 8 0e 71 b0
e0 91 01 6¢ el da bf
dd cf al 54 76 46 9f
ef 2d 5b 83 2e b fa
08 16 fb 4f 12 83 fe
48 60 b9 88 31 Ge b
6b ed 80 4f ca b8 le
8 89 e0 0a 40 92 fa
d8 ¢5 36 06 58 87 bd
15 ¢ 23 02 13 €8 ef J

- 16 = 16

FIGURE 2. An example of a weight matrix in ChaosNet with a 128-bit input x, and output y through matrix

multiplication by W in GF(28).

where
Y1 w11 w12 WIN X1
y2 w21 w22 WON X2
M wM1  WMm2 WMN XN

wii, x; € {0, 1,2, .., 255}, @)

which can be cascaded to act as individual layers of an L-layer
network within ChaosNet,

Yo = W (Wr_1(WL_2...(Wp(x))))

with an example of a single layer weight matrix shown in
Fig. 2.

lIl. CHAOSNET ALGORITHM

The proposed ChaosNet algorithm shown in Fig. 3 introduces
the chained Hill cipher matrices that form a neural-network-
like structure used as a complex substitution sub-algorithm,
combined with a novel pixel permutation sub-algorithm. The
elements of the weight matrices reside in a finite field, namely
GF(ZS), which are constructed from the secret key and chaotic
sequence generator, thus the weight matrix operations will be
in GF(2%). Both sub-algorithms are iterated for the desired
number of rounds across equally sized blocks of the image to
form the cipher image.

A. ENCRYPTION ALGORITHM

1) Choose a secret key with values
{dw, d,m dg, hkey} with,

of the set
do,dy, dg € {0,1,..,2'0 — 1}
ey € {0, 1,.., 28V — 1),
where N is the number of bytes in an input block
of the image. The values dy, d,, dg give the decimal

place numbers for the parameters «, p, 8 of the Lorenz
system (2), respectively. The value fy., provides a
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3)

4)

hash value with a length proportional to the block size
length.
Iterate equation (2) using parameters,

o = 10+ (dy x 107%)
8

B =3+ x107)

p =28+ (d, x 107%),

for S + N? times with S € {1000, .., oo}. At each
iteration i between S + 1 and N2, take the coordinate
outputs (xj, yi,zi) € R of (2) and produce a chaotic
integer sequence Wy,

Wr = [wi, wa, o, Wiy ooy W2y, wy2]

where each index of Wy, namely w;, is computed
with (2) such that,

wi = (10° x Z Xotis Yoti» Zs4i) mod 28
Vi=1,2,.,N?
Thus Wy is an array of length N 2 containing chaotically
generated integers in GF(2%).

Reshape Wy into a N x N square matrix W with left-
to-right wrapping such that,

Wr = (w1, w2, .., Wi, .., Wy2_1, Wy2)
wi w2 WN
WN+1 WN 42 WoN
W =
WN2_N+1  WN2-N+2 Wy2

Use /ey to XOR the top row of W and consecutively
XOR each row with the row directly above such that,

Wrow(l) = Wrow(l) @ hkeya

VOLUME 7, 2019
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Secret Key: {d,, dﬂ, dp, hkgy}

v

Build Neural .
2 Plain Image PT

Network Iterate the Lorenz System with
{dq dp, d,} to produce a N*-long

chaotically generated sequence of
GF(28) integers starting at S,
W= [wa, -, wyz]
Encrypt a
¢ 5| Permute PT with 10 iterations
Reshape array into 2D-matrix. of Unrollstack to produce PT
Repeat for L times for L- Wy =[wy,..,wy] ¢
layer neural network with l Iterate
different § for each layer wy v Wy for 8 F Split PT into K blocks
W= [ ’ : } rounds
7y WNz-N+1 T Wp? 7'y ¢
. ¢ n Run each block through CN
4 . N
XOR hey, with top row of W, where calcu\atéons arein
with every subsequent row XORed » GF(2%)
with row directly above.
A 4
Construct CN with each W; v
giving the weight matrix of layer i.
Cipher Image €T

(a) ChaosNet Encryption

Secret Key: {d, dﬁ, dp, hkey)

v

Build Neural 2 Cipher Image CT
Iterate the Lorenz System with
{da, dg, d,} to produce a NZ2-long
chaotically generated sequence of
GF(2%) integers starting at S,

Wi = [wy,..,wye] Decrypt A

Network

A 4

¢ Split CT/CT into K blocks
Reshape array into 2D-matrix. l
i - — 7
IREPEHt fDV‘L times LUF 'Lh Wi = [wy,..,wyel Iterate 7] Run each block through
Zﬁr neul::fnetwog IWlt w { - w for 8 CN~! where calculations are
ifferent S for each layer i . N rounds in GF(2%)
w= . : 7'y
WNZ-N+1 T WP l

A
n ) Permute CT with 10 iterations
XOR hyeey with top row of W, | of Unrolistack™ to produce CT
with every subsequent row XORed i
with row directly above.

Invert each W; in GF(28) resulting Wi’i.
Construct CN~1 with each W{l giving the
weight matrix of layer L — i + 1.

Plain Image PT

(b) ChaosNet Decryption

FIGURE 3. Overview of proposed ChaosNet (a) encryption and (b) decryption scheme.

5) For a L-layer fully connected neural network, iterate

with every subsequent row,
steps 2-4 L times with each layer / using a unique S

Wrow(i) = Wrow(i) ® Wrow(ifl) Vi= 2, 37 . N.

VOLUME 7, 2019 158701
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6)

7

8)

9)

such that,

S; = 1000
Si41 =S8 +N?* vi=1,2,.. L.

This will result in a set ® of unique chaotically gener-
ated N x N weight matrices,

S ={W,Wa, .., Wi, .., Wp_1, W}

Assemble the L-layer neural network CN with & such
that each W; of ® gives the weight matrices of layer
i in the neural network. The matrix multiplication of
IN with each subsequent weight matrix follows the
multiplication described in Section II-C to generate the
output OUT.

CN

IN-> (W | > | W|—>...> [|W, | - OUT

Unrollstack: Permute the 8-bit grayscale plain image
PT by ’unrolling’ it’s pixels starting from the outer
right column working inwards, and then ’stacking’
them from top to bottom. For example a single iteration
of Unrolistack would transform a 3 x 3 image I into I
shown below,

1 |2 ]3]
I=| 14 35 36
| 17 «~8 <« 9]

Unrollstack |}
(3> 6—> 9]
I=|8> 7> 4-
1 22— 5-—>

Permute PT in this fashion through 10 iterations of
Unrollstack to produce PT .

Splitﬁiﬂto blocks B = {bo, bl, cey bi, vy bK_z, b[(_l}
for K = w where each block b; is N bytes.
Feed each block b; through the CN from step 5. All ele-
ments of each weight matrix in CN are in GF(ZS), thus
perform each weight matrix multiplication in GF(2%).
An example weight matrix multiplication in GF(23) is
shown in Fig. 2.

Repeat steps 6-8 for 8 rounds to produce the final
cipherimage CT .

B. DECRYPTION ALGORITHM

1)
2)

Receive the secret keys, i.e. the set {dy, d, dg, hyey}
Iterate equation (2) using parameters,

o =104 (dy x 107%)
8

B =3+ x107)

p=28+4(d, x107%),

for § + N? times with S € {1000, .., o0}. At each
iteration i between S + 1 and N2, take the coordinate

158702

3)

4)

)

outputs (xj, yi,zi) € R of (2) and produce a chaotic
integer sequence Wy,

Wr = [wi, wa, .., Wi, .., wya_, wy2]

where each index of Wy, namely w;, is computed
with (2) such that,

wi = (10° x sz+ivys+i7 Zs4i) mod 28
Vi=1,2,.,N*

Reshape Wy into a N x N square matrix W with left-
to-right wrapping such that,

Wf = (w1, w2, .., Wi, .., WnN2_1> WNz)

[l
wi wp oL WN
. WoN

WN+1 WN+2
WNZ—N+1 WNZ_N+2 coe W2
Use hyey to XOR the top row of W and consecutively
XOR each row with the row directly above such that,
Wrow(l) = Wrow(l) @ hkeys
with every subsequent row,

Wrow(i) = Wrow(i) ® Wrow(i—l) Vi= 27 3a .. N.

For a L-layer fully connected neural network, iterate
steps 2-4 L times with each layer / using a unique S
such that,

S; = 1000
Sy =8 +N?> vi=1,2,.. L.

This will result in a set ® of unique chaotically gener-
ated N x N weight matrices,

S =W, Wa, ., W, ., W1, W}.

Produce a new set ®~! by taking the inverse of each
W; in GF(2%),

ot =qw hwy owo w

Assemble the L-layer neural network CN~! with ®~!
such that each Wl._1 of ®~! gives the weight matrices of
layer L — i + 1 in the neural network. The matrix mul-
tiplication of IN with each subsequent weight matrix
follows the multiplication described in Section II-C to
generate the output OUT.

cN!

IN—> (W || Wiy | —>...— | Wi | - OUT

Split CT into blocks B = {by, b1, .., bi, .., bx—2, bg_1}
for K = %, where each block b; is N bytes.
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7) Feed each block b; through the CN~! from step 5.
All elements of each weight matrix in CN~! are in
GF(2%), thus perform each weight matrix multiplica-
tion in GF(2%).

8) Unrollstack™: Reverse the permutation transform of
Unrollstack of the entire 8-bit grayscale image CT.
For example a single iteration of Unrollstack™" would
transform a 3 x 3 image I into 1 shown below,

(3> 6> 9]
I=|(8— T7— 4-—>
_1—> 2—> 5

Unrollstack ™! |

-1 |2 |37
I=|14 |5 |6
| 17 <8 <« 9]

Permute CT in this fashion through 10 iterations of
Unrollstack™ to produce CT .

9) Repeat steps 6-8 for 8 rounds to produce the original
plainimage PT.

IV. EXPERIMENTAL RESULTS

This Section provides the results of ChaosNet and its applica-
tionin an ITS. It also provides the necessary image encryption
tests for ChaosNet that prove its prototypical cryptographic
strength. Such tests are typically used in such scenar-
ios [31], [32]. Initial tests of encryption with ChaosNet
are performed on highway traffic images taken from the
SERSU [2] are shown in Table 2, where the distinct his-
tograms of the plainimages become unintelligible cipherim-
ages with flat histograms, increasing security.

A. INFORMATION ENTROPY
A term often used in image encryption and in cryptography is
information entropy. Information entropy H (x) is the average
amount of information contained in a set of data, expressed
as the average logarithm of a variable X with a probability
distribution P(X),
n
H(X)= =) p(x;)log, p(xi) 8)
i=1

where P(X) = p(x1), .., p(x,,). Information entropy (8) relates
the probability of a variable to the amount of information in
the variable, which can be thought of as a measure of random-
ness. The entropy of an image can be directly calculated from
its histogram, since the histogram directly related to the prob-
ability distribution of the image. For a cryptic image scheme,
extremely high information entropy is needed,bounded by
codeword length. since high entropy will likely produce pat-
ternless data. In [33], it is stated that the uniform distribution
produces the maximum entropy for a discrete random vari-
able X. For example, the maximum information entropy of a
variable with an 8 bitrange (0, 1, 2, .., 255) is 8 bits. A normal
image will have an unbalanced distribution of pixel values,
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TABLE 1. Entropy comparison of other chaos-based encryption
algorithms.

Algorithm Lena Lena Cameraman Baboon
256x256  512x512 256256 256256
[11] 7.997
[34] 7.997
[35] - 7.997
[36] - 7.997
[15] - 7.996
[22] - 7.9993 -
[37] - - 7.571
[38] - - 7.9972
[39] - 7.9994
[40] - 7.9874
[41] - 7.9952
[42] - 7.9717
[43] - - - 7.9968
ChaosNet 7.997 7.9993 7.997 7.9972

allowing for image encoding with fewer bits. This is due to the
redundancy of pixel values, since adjacent pixels are likely to
be similar. Shown in Table 1, ChaosNet is on par or better than
other chaotic image encryption algorithms for the specified
images.

B. KEY SENSITIVITY

A good encryption algorithm that employs proper confusion
and diffusion of information will be highly sensitive to the
given parameters, namely the secret key. Thus a small differ-
ence between keys will yield completely different encrypted
outputs and only the exact secret key will be able to decrypt
correctly. In Fig. 4, the 256 x 256 ‘Lena’ has a 99.62%
change in pixels of the encrypted output when a 1-bit change
is made in the least significant bit of the secret key. In Table 3,
the least significant bit of each sub-value of the secret key
are changed between encryption and decryption, and show a
consistent change in percentage of pixel values. This shows
that ChaosNet is highly sensitive to even the smallest change
in any of the parameters of the secret key, and show the
decrypted image and statistics remain unintelligible with
even a marginally incorrect key, proving strong cryptographic
properties.

C. LOW ENTROPY ENCRYPTION ANALYSIS

In order to evaluate the algorithm effectiveness at edge cases,
the use of an extremely low entropy 256x256 white dot
input. Fig. 5.a and Fig. 5.b, and a 1-layer ChaosNet is used
to represent the worst case scenario. As can be noted from
the figure, the output of ChaosNet is visually and statistically
independent of the input. Therefore the algorithm will yield
unintelligible encrypted output and flattened histogram and
high entropy as depicted in Fig. 5.c and Fig. 5.d, respectively,
even with a highly redundant input.
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TABLE 2. ITS highway images from the SERSU [2] device using ChaosNet image encryption. Columns 1 and 2 show the plainimage and its 8-bit grayscale
histogram respectively. Columns 3 and 4 show the encrypted plainimage using ChaosNet and its associated 8-bit grayscale histogram, respectively.
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D. KEY SPACE ANALYSIS

Every viable encryption scheme should nullify brute force
attacks by using a large key space for their algorithms.
By having a large key space, the processing time required
for a brute force attack increases exponentially for every bit
added to the size of the key. For a sufficient level of security
the key space should be greater than 2?8 [30], i.e., the key
size should be greater than 128 bits.

A typical block length for block cipher algorithms
is 128 bits, thus a 128-bit block will be used as input. Since
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the input is a 8-bit grayscale image, the input will technically
be 128/8 = 16 pixels. Using N = 16 bytes of inputs, fixed
10-bit lengths Iy, [,, lg of the Lorenz attractor parameters
o, p, B respectively, the worst case scenario of ChaosNet
results in a key length of,

Key Length = (Iy + 1, +1lg) +8 x n
=10+ 10+ 10+ 8 x 16 = 158 bits.

This worst case scenario shows the key length to be 158 bits
implying the key space has 2'°% possible keys. This shows
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TABLE 3. Percent change in pixel values of encrypted image with a 1-bit
change in different areas of secret key [dy, d,,, dg, hgey]--

Secret Key Sub-Value ‘ A Pixel Values (%)

99.617
99.620
99.609
99.615

(b) ©

Lena 256x256 - Encrypted with K,

300 A

2504

200 A

150

# of Occurences

100 A
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100 150
8-Bit Grayscale

(@

Lena 256x256 - Decrypted with Kg

300 A

2501

200 -

150

# of Occurences

100 4

50 A

100 150
8-Bit Grayscale

(e)
FIGURE 4. Histogram comparison between encryption with K, and
decryption with Kg (K4 with one bit error), where |K; — Kg| = 0x1.
(a) Original image. (b) Encrypted image using K. (c) Decrypted image
using Kpg. (d) Histogram of encrypted image using K. (e) Histogram of
decrypted image using Kp.

sufficient security in terms of brute force attacks since the
key space is greater than the aforementioned 2'?%, and will
linearly increase with block size.

E. DIFFERENTIAL ATTACK ANALYSIS

A useful tool for detecting weaknesses from differential
attacks is the use of the NPCR and UACI. These metrics
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FIGURE 5. Histogram and information of a low entropy image with
associated encrypted output using a 1-layer ChaosNet. (a) Original Dot.
(b) Dot encrypted with ChaosNet. (c) Original dot histogram. (d) Encrypted
dot histogram.

attempt to find a pattern in the encryption algorithm by com-
paring two cipherimages. A NPCR (9) measure is optimal
when it is closest to one, meaning the encryption algorithm
has a higher sensitivity to the plainimage. Furthermore the
optimal values for UACI (10) is 0.33, which implies that the
average change in pixel intensity between encrypted images
is 33%,

> DG )
x
L, CG.j#C'aG))

PED= N0, e = i) ®

NPCR = x 100%
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TABLE 4. Comparisons NPCR of other chaos-based encryption algorithms.

NPCR
Algorithm Lena Lena Cameraman
256x256 512x512 256x256

[11] 0.9960 - -

[34] 0.9960 - -

[35] - 0.996094 -

[36] - 0.996036 -

[15] - 0.9957 -

[37] - - 0.9953
ChaosNet 0.99631 0.99630 0.99622

TABLE 5. UACI of several chaos-based encryption algorithms.

UACI
Algorithm Lena Lena Cameraman
256x256 512x512 256x256
[11] 0.3357 - -
[34] 0.3343 - -
[35] - 0.306605 -
[36] - 0.330615 -
[15] - 0.35082 -
[37] - - 0.2688
ChaosNet 0.33337 0.33334 0.33309
1 IC(G,j) = C'(G, )
UACI = —— W(Z 3 ) x 100% (10)

ij

where H and W are the image height and width respectively,
C(i, j) and C'(i, j) are the values of the different cipherimages
at position (i, j), and b is the range of intensities of the image
(for an 8-bit grayscale b = 255). In Table 4, the NPCR
of the cipherimages is comparable to other algorithms with
high NPCR, however it is consistent for each test image,
less than 0.002% difference. This adds strength to ChaosNet
being resilient to differential analysis attacks. In Table 5,
ChaosNet performs the best for each test image (closest to
33.33%) while also remaining consistent through each test
image encryption (less than 0.3% difference). Similarly in
Table 6, the worst case images i.e. low-resolution grayscale
images are encrypted using ChaosNet and show that the
NPCR, UACI, and image entropy metrics stay consistently
high regardless of the input image.

F. PIXEL CORRELATION

Normal images typically exhibit a certain level of pixel
redundancy, since a non-edge segment of an image will be
highly correlated to adjacent pixels. A good image encryption
algorithm should convincingly decorrelate the pixels’ values
to improve security, and hence, the correlation should be close
to zero. To evaluate the ChaosNet in this regard, 2000 random
adjacent pixel positions are used in a horizontal, vertical, and
diagonal direction, Fig. 6. The equations used to calculate
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TABLE 6. NPCR, UACI, and image entropy of various 256 x 256 8-bit
grayscale test images using ChaosNet encryption.

Test Image NPCR UACI Entropy
Baboon 0.99643 0.33500 7.9968
Pepper 0.99620 0.33410 7.9975
Barbara 0.99614 0.33455 7.9975
Castle 0.99648 0.33497 7.9971
Airplane 0.99632 0.33445 7.9974
Monarch 0.99648 0.33313 7.9972
Boat 0.99622 0.33475 7.9975
adjacent pixel (x and y) correlations ry, are,
N2cov(x, y)
'y = &N N
Z,’Zl(xi - Ex)2 Z,’:l(}’i - Ey)2
N N
E. — M E. = M
! N N
cov(x,y) = E[(x — Ex)(y — Ey)]. (11)

Fig. 6 (a), (c) and (e) show the adjacent pixel correla-
tions of the normal image ‘Lena’. As can be noted from
the figure, the relationship is linear, which implies that a
pixel value at a certain position will have the same or similar
pixel value at an adjacent position. Fig. 6. (b), (d) and (f)
show the encrypted output of the normal image results in
a uniformly scattered pixel correlation, demonstrating that
no evidence of leaking information in terms of pixel value
patterns and correlation. Table 7 compares the correlation
of adjacent pixels to other chaos based algorithms for the
specified images, with ChaosNet showing the best results
for many of the criteria. It is important to note that in
Table 8, encrypting the worst case images i.e. low-resolution
test images consistently give very low pixel correlation
regardless of the input image, which show the robustness of
ChaosNet.

V. OCCLUSION ATTACK ANALYSIS

An occlusion/cropped attack attempts to slightly change the
intercepted cipher image by occluding parts of the cipher
image in order to render decryption impossible even with
the correct key. With the correct key, decryption should still
produce recognizable images, though skewed, even with parts
of the cipher image gone. In Fig. 7, an occlusion of var-
ied size is applied to a cipherimage, and then is decrypted
with the correct secret key. This figure shows that the
decrypted image is still recognizable even with 1/9™ of the
cipherimage gone, showing robustness to cropped attacks.
This is also shown in Fig. 8, where different images are
still recognizable across different cropped out parts of the
cipherimage.

VOLUME 7, 2019



G. R. W. Thoms et al.: Chaotic Encryption Algorithm With Key Controlled Neural Networks

IEEE Access

Original - Horizontal Pixel Correlation

250 4

200 -

1501

100 1

Adjacent Pixel Value (8-bit grayscale)

50
0 T T T T T
0 50 100 150 200 250
Pixel Value (8-bit grayscale)
(@)
Original - Vertical Pixel Correlation
250 4
)
E
£.200
o
)
=
2
© 150
o
S
g
S 100
2
T
oy
=
8 50
s
s
<
0 T T T T T
0 50 100 150 200 250
Pixel Value (8-bit grayscale)
©
Original - Diagonal Pixel Correlation
250 4
o)
©
2
> 200
o
o
o
2
@ 150
13
E}
s
3 100
X
T
o
I
3 50
3
£
<
0 T T T T T
0 50 100 150 200 250
Pixel Value (8-bit grayscale)
©

FIGURE 6. Pixel correlation graphs of 2000 random adjacent pixel is specified directions. (a) Horizontal correlation of
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plain image. (b) Horizontal correlation of cipher image. (c) Vertical correlation of plain image. (d) Vertical correlation
of cipher image. (e) Diagonal correlation of plain image. (f) Diagonal correlation of cipher image.

TABLE 7. Comparison of pixel correlation coefficients with other chaotic encryption schemes, using 2000 adjacent pixels in the vertical, horizontal and
diagonal directions of the cipherimage.
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Correlation Coefficients

Algorithm Lena 256 X256 Lena 512x512
Horizontal Vertical Diagonal Horizontal Vertical Diagonal
[15] 0.0014 0.0023 0.0002 - - -
[36] 0.0722 0.0099 0.0201 - - -
[23] 0.0008 0.0031 0.0014 0.0072 0.0045 0.0033
[10] - - - 0.0055 0.0064 0.0072
[34] - - - 0.0027 0.0152 0.0071
ChaosNet | -0.008131  -0.001382  -0.001016 | -0.007393  -0.005329  0.000608
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TABLE 8. Pixel correlation of various 256x256 8-bit grayscale test images
using ChaosNet encryption.

Test Image Horizontal Vertical Diagonal
Baboon -0.000577 0.009803 -0.000764
Pepper -0.004315 -0.007271 -0.000843
Barbara -0.007070 0.000548 -0.005944
Castle 0.002124 0.000479 0.005367

Airplane 0.009703 -0.008704 -0.004715
Monarch 0.004336 0.000496 0.000835

Boat 0.009503 -0.002979 -0.000418

(a) (b) (© (@

(e) ® (€3] ()

FIGURE 7. Shows the robustness to occlusion/cropped attacks with
occlusions of varied sizes. (a) Encrypted image with 1/36t" occlusion.
(b) Encrypted image with 1/25t occlusion. (c) Encrypted image with
1/16'™" occlusion. (d) Encrypted image with 1/9th occlusion.

(e) Decrypted image of 7(a). (f) Decrypted image of 7(b). (g) Decrypted
image of 7(c). (h) Decrypted image of 7(d).

(a) () (©) (@

(e ® (2 ()

FIGURE 8. Shows the robustness to occlusion/cropped attacks with
various images. (a) Occlusion area in encrypted image. (b) Decrypted
baboon with 8(a) occlusion. (c) Decrypted castle with 8(a) occlusion.

(d) Decrypted peppers with 8(a) occlusion. (e) Occlusion area in
encrypted image. (f) Decrypted baboon with 8(e) occlusion. (g) Decrypted
castle with 8(e) occlusion. (h) Decrypted peppers with 8(e) occlusion.

VI. CONCLUSION

This paper has presented an image encryption scheme for ITS
applications, ChaosNet, based on the Lorenz chaotic system
and key controlled neural networks with finite field weight
matrices. The obtained results show that the proposed Chaos-
Net system has superior cryptographic properties, where it
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outperformed the other considered chaotic image encryption
algorithms in most tests, which included information entropy,
key sensitivity, low entropy encryption analysis, differen-
tial attack analysis, pixel correlation, and occlusion attack
analysis. Therefore, the proposed system can be considered
attractive for applications with sensitive data such as ITSs.
Future work includes algorithm optimization and hardware
implementation for increased performance.
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