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ABSTRACT A new compact Cylindrical Dielectric Resonator Antenna (CDRA) with a defected ground
for ultra-wideband applications is presented. The structure is based on two cylindrical dielectric resonators
asymmetrically located with respect to the center of an offset rectangular coupling aperture, with consider-
ation of three and four Dielectric Resonators (DR). The resonant modes generated by the defected ground
are studied and investigated. A parametric optimization study of the antenna design has been carried out
to determine the optimal dimensions of the defected ground plane, resulting in an impedance bandwidth of
over 133% that covers the frequency band from 3.6 GHz to 18.0 GHz. A power gain of about 7.9 dBi has
been achieved. Design details and measured and simulated results are presented and discussed.

INDEX TERMS Cylindrical dielectric resonators antenna, ultra-wideband, defected ground structure.

I. INTRODUCTION
Recently, the Defected Ground Structure (DGS) technique
has received much attention in the design of microwave and
millimeter wave sub-systems. It consists of etching variously
shaped apertures in the ground plane to create a disturbance
in the current distribution [1], [2]. For more than a decade,
frequency-selective properties of DGSs have been widely
used in printed circuits and antenna applications. DGS were
first proposed for antenna applications in 2005 [3]. Among
other benefits, the technique can reduce cross-polarization,
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which constitutes a major drawback for some wideband
antennas [4].

In recent studies, the DGS technique is mainly employed
to improve the impedance bandwidth of patch antenna struc-
tures [1]. Similar topics were treated in [2], [4], [5]. This
technique can also be used to reduce coupling [6], minimize
the structure size, and excite additional resonance modes
using simple and compact DGSs configurations [7], [8].
It can be used to achieve single-feed multi-frequency
microstrip antennas, including multiband functions using
various DGSs [9], [10]. Moreover, the use of DGS can also
enhance the antenna gain [2], [11], [12]. In this context,
DGSs of many shapes have been investigated, such as circles,
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spirals, concentric rings, elliptical dumbbells and U and V
slots [2]–[4]. Shapes such as rectangular, square, or semi-
circular arcs [1] with varying dimensions can provide partic-
ular improvements in DGS-based antenna performances [4].
DGS has been used in controlling active microstrip anten-
nas [4]. In [13] and [14], DGSs were used to design
desired dual and triple band-notched UWB antennas. In [15],
a shovel-shaped DGS was used in a simple and compact
UWB planar monopole antenna with filtering characteris-
tics. In [16], a simple CPW-fed monopole patch antenna
surrounded with a coplanar ground plane was presented.
Further modifications of the DGS was made to enhance the
gain and impedance bandwidth [16]. This technique was
extended to Dielectric Resonator Antennas (DRAs), where
the mutual coupling between two circular microstrip patches
was suppressed making use of the stop-band property of the
proposed DGS.

DRAs have emerged as a novel radiation technology,
with the advantage of having high efficiency. Conse-
quently, special DRA shapes and multi-segment DRAs
have been reviewed extensively. Rectangular [17], Coni-
cal [18], asymmetrical E [19], Stair-Shaped [20], Inverted
L-shaped [21], elliptical [22], asymmetrical T-shaped [23],
tetrahedral [24] with triangular slot [25], ring-shaped [4]
cylindrical [2], [26]–[28], and hybrid hemispherical-conical-
shaped [29] configurations have all been suggested for
antenna bandwidth enhancement. Gain and bandwidth
enhancement configurations were presented in [2] and [30],
where two cylindrical dielectric resonators were asymmet-
rically placed around the center of the rectangular coupling
aperture, and fed through this defected ground plane aperture.
In [30], a parametric optimization study was carried out and
a bandwidth of about 57% was achieved, covering 8.02 to
14.55 GHz with a 10 dBi power gain. These results are quite
comparable to those found in [2], namely a bandwidth of
about 54%, a frequency band from 8.5 to 14.7 GHz and a
12 dBi gain.

Currently, the operating bandwidth of antennas using
DRAs has been further improved for ultra-wideband appli-
cations [29]–[31]. In [32], a mono-cylindrical Dielectric
Resonator (DR) was fed using two crossed slots centered at
different locations. The slot modes were considered partially
independent from the DR mode; in consequence, a wide
bandwidth is attained. In [2], [26] and [30], wideband
slot-fed asymmetric DRAs analyses were presented, where
two adjacent cylindrical dielectric resonators were placed
asymmetrically around the rectangular feeding aperture. The
asymmetrical locations provide a further optimization param-
eter in the DRA design. As a result, the proposed antenna
parameters are significantly improved: a 29% impedance
bandwidth, a 9.62 to 12.9 GHz frequency band and an 8 dBi
realized gain were achieved [26].

The present paper extends our recent work [27], which pre-
sented a compact ultra-wideband DRA using two cylindrical
dielectric resonators asymmetrically placed near the center
of an offset rectangular coupling aperture; this resulted in a

62% bandwidth, covering the two bands 5.9 to 7.32 GHz and
8.72 to 16.57 GHz, with a gain of 8 dBi. Herein, using the
same aperture concept, the relative bandwidth is increased
up to 133.33% covering the frequency range from 3.6 to
18 GHz. This range covers C band (4 to 8 GHz), X band
(8 to 12.4 GHz) and Ku band (12.4 to 18 GHz), comprising
services such as earth-to-satellite bands at 5.9 to 6.4 GHz,
12.25 to 13.25 GHz and 14 to 14.5 GHz, connections for
satellite-earth at 10.7 to 11.7 GHz, 10.5 GHz for police radar
and, for commercial use, 10.7 to 13.2 GHz.

The current basic design is a defected ground plane
microstrip-fed DRA obtained by modifying the initial design
in [27] achieving further enhancements in impedance band-
width and gain. Experimental and simulation results of the
resulting novel antenna are presented and discussed. The
present work mainly intended to improve our recently pub-
lished work [27], where the bandwidth is improved twice by
use of DGS technique. The novelty of this work, hence, lies
in the combination of the DGS with the DRA structures.

II. PROPOSED ANTENNA GEOMETRY AND
SUMMARIZED RESULTS
The geometry of the basic monopole antenna design
is shown in Fig. 1. A microstrip feed is used due to
its impedance matching simplicity and other useful fea-
tures [27]. The proposed asymmetric ultra-wideband antenna
with a defected ground plane is designed and realized on
an FR4 30×25×0.8 mm3 substrate with relative permittivity
εrs = 4.4 and 0.017 loss tangent. Two identical alumina-
96%-DRs of radius D = 6 mm and height h = 9 mm have
been used. A feeding microstrip line of length lf = 20.5 mm
and width wf = 1.5 mm is located symmetrically around
the coupling aperture. Its dimensions were calculated using
empirical formulas [2], [26], [27], [30], [32].

Simulations for this geometry were carried out using HFSS
software. Two identical rectangular apertures (slots) of length
ls and width ws are etched on the ground plane, shifted from
the center by a distance d . Based on the experimental results
obtained in [27], a stub length close to λg/4 is also used in this
design, although this differs from that of [27] by including
the ground plane apertures. The final antenna dimensions
(Fig. 1) are wf = 1.5 mm, lf = 20.5 mm, ws = 3.5 mm,
ls = 6.6 mm, ds = 3.1 mm and d = 0.2 mm are optimized in
our previous work [27], and the dimensions of the defected
antenna are wg = 16.25 mm, lg = 16.5 mm, x1 = 6.5 mm,
x2 = 13.5 mm,x3 = 1.5 mm, y1 = 8.75 mm, y2 = 8.75 mm
and y3 = 3.15 mm.

III. CHARACTERISTIC MODES DESCRIPTIONS
Building on previous works [2], [26], [30], [27], modifica-
tions are applied to the basic antenna according to the real-
ization steps of our model shown in Fig. 2(a). The originality
of this work lies in the creation of a defected ground plane
for exciting further modes [2] and enhancing the bandwidth
and gain. The segmentation of the ground plane improves the
return loss S11 as illustrated in Fig.2(b).
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FIGURE 1. Design parameters of two aperture-coupled DRAs with
non-uniform defected ground plane, (a) top view and (b) side view.

TABLE 1. Bandwidth of the five designs shown in Fig. (2.a).

As shown in Table 1, all four proposed designs (ii) to (v),
presented in Fig. 2(a), have a bandwidth greater than that of
antenna (i) presented in [27]. The application of the DGS
technique has led to a single band extending from 3.6 to
18GHz, i.e. a 133.33% relative bandwidth. It should be noted
that themajor improvement achieved by this technique occurs
below 10GHz (3.6-10 GHz). The introduction of the defected
ground to the slotted structure (Antenna (i) [27]) led to the
appearance of other resonance frequencies between 3.6 and
6 GHz, and from 6 to 10 GHz due to the combined effect of
the DRA and the slotted defected ground.

Although the existing literature clearly favors probe exci-
tation at lower frequencies where coupling apertures are not
often used due to their large size [33], [34], in our case, large

FIGURE 2. (a) Evolution of the proposed antenna, (i) the design of [27],
(ii), (iii), (iv), (v) steps of design optimization. (b) simulated S11 of the five
designs shown in (a).

slots, when combined with the DGS technique, has shown
better excitation performances for a two DR structure. This
combination is considered as the main novelty of this work.

Generally, isolated cylindrical DRAs support TE, TM and
hybrid resonant modes [28], [35], [36], in a widely adopted
designation. Amongst multiple cylindrical DRA modes, the
TE01δ , TM01δ , and hybrid HEM11δ (with dominant Ez com-
ponent) modes are the most commonly considered radiat-
ing modes. The subscript numbers in the mode designation
express the field variation in the azimuth, radial and axial
directions, respectively. The index δ, lying between 0 and 1,
indicates the resonant behavior along the dielectric cylinder
height (z axis). The TE01δ mode, TM01δ mode and HEM11δ
mode radiate similarly to the short vertical magnetic dipole,
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short vertical electric dipole and short horizontal magnetic
dipole, respectively [36].

In our case, a large double slot is etched in the ground
plane, resulting in multiple magnetic/electric modes over fre-
quency. The slot has more effect depending on the frequency;
it resonates at low frequencies exciting the DRA at 10 and 12,
and up to 16 GHz, (Fig. 2).

Much research has focused on cylindrical DRAs [28],
[37]–[40]. In [38] and [39], the DRA device is used as
sensors for wireless networks and liquid chemical detection
applications, respectively. In these structures, the TM and
quasi-TMmodes can be excited by placing the dielectric disk
on the ground plane [41]. Little attention has been paid to the
TE and quasi-TE modes, which cannot be excited when the
base of the DRA is placed on the ground plane [42]. In [42],
some DRA HEM11δ and HEM12δ mode features, compared
to the most widely studied TM01δ and TE01δ modes, are
briefly discussed. The resonant frequency fo of the TE01δ
mode, TM01δ mode, and HEM11δ are respectively given by
the following empirical equations [36], [43], [44]:

f0/TE01δ =
2.327c

2π · a ·
√
εr + 1

×

(
1+ 0.2123

a
h
− 0.00898

(a
h

)2)
(1)

f0/TM01δ =
c

2π · a ·
√
εr + 2

√
3.832 +

(π · a
2 · h

)2
(2)

f0/HEM11δ =
6.324c

2π
√
εr + 2

(
0.27+ 0.36

a
2h
+ 0.02

( a
2h

)2)
(3)

where εr is the DR relative permittivity, a is the radius and h is
the height of the dielectric cylinder. Note that there are neither
exact mathematical expressions for the resonant frequencies
of higher order modes nor exact solutions for their internal
fields and radiation patterns [36]. An approximate solution
for the cylindrical DRAs field pattern has been obtained
by considering a magnetic wall boundary condition on the
surfaces parallel to the z axis [45].
The slot length is calculated using the following [44]:

L =
c
2f0

√
2

εr + εrs
(4)

where εr and εrs are the relative dielectric constant of the
DR and substrate, respectively. In [46], measurements of
the cylindrical dielectric resonator HEM11δ mode radiation
efficiency for εr = 38 show values better than 98%.
The slot in our case (with wide zigzag) has changed

the shape of the magnetic current (magnetic dipole), and
excited other modes at low frequencies (less than 10 GHz)
(Fig. 2(b)). Equations (1-7) of the resonant frequency modes
were derived from the calculations of the cylindrical dielec-
tric resonator by considering perfect electric and/or magnetic
walls on the resonator faces. The perfect magnetic wall con-
dition was shown to be accurate for higher εr values [47], but
remains fairly valid for lower values.

The three first modesTE01δ , TM01δ , and HEM11δ resonant
frequencies of the cylindrical resonator are given by the
following empirical expressions [33]:

f0/TE01δ =
c · 2.921

2π · a · ε0.456r

×

(
0.691+ 0.319

a
2h
− 0.035

( a
2h

)2)
(5)

f0/TM01δ =
c · 2.933

2π · a · ε0.468r

×

(
1−

(
0.075− 0.05

a
2h

)(εr − 10
28

))
×

(
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)
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( a
2h

)2)
(6)

f0/HEM11δ =
c · 2.735

2π · a · ε0.436r

×

(
0.543+ 0.589

a
2h
− 0.050

( a
2h

)2)
(7)

where a and h arethe DR radius and height, respectively.
The differences between these equations are clarified by

an example in Table 2, as these equations do not include any
information about the coupling factor or the quality factor
of CDRA and the approximation is given with respect to
ratio (a/h).

TABLE 2. Bandwidth of the five designs shown in Fig. (2.a).

The DRA resonant frequency can be controlled by varying
the length of the slot, which may also help in reconfiguring
the radiation patterns.

When a single shaped DRA operates in the fundamental
mode, its bandwidth typically does not exceed 10% [48].
Experimental work on wide-band DRAs was described
in 1989 by Kishk et al. [48] who proposed using two separate
DRAs stacked end to end to achieve a dual-resonance band.
Other wideband configurations using this technique have
since been reported [49]–[51].

An alumina-96% based DRA (εr = 9.4) has been designed
with a diameter D = 6 mm and a height h = 9mm. The
resonant frequency of a single segment CDRA excited in
HEM11δ mode is given by [26], [27]

f0 (GHz)=
c

2π · a ·
√
εr

(
1.71+

a
h
+0.1578

( a
2h

)2)
(8)

where a = D/2 (in cm), c is the free space light velocity. For
these dim ensions, the calculated frequency is 10.63 GHz.
The DRs are asymmetrically placed around the asymmetrical
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slots, hence, the DRA modes depend on the DR geometrical
parameters, the permittivity and the feeding mechanism.
The asymmetric DR pair configuration and the dimensions
and shape of the defected ground give designers more
scope for functional optimization. In this study, a 133%
impedance bandwidth, covering 3.6 GHz to 18.0 GHz, has
been achieved.

Table 2 compares the results of the 7 equations mentioned
above for a = 3 mm, h = 9 mm and εr = 9.4. The
resonant frequencies of dielectric resonators are determined
using rigorous numerical methods [43].

According to εr and a/h, closed-form expressions for
different modes are obtained. The accuracy of the formulas
presented above (Equations 1-8) is demonstrated for the same
resonator parameters for which the results of rigorous numer-
ical methods available in the literature are very close [43].
Let us conclude this part with a comparison of the size of
our antenna with those realized or simulated available in the
literature.

It is clear from Table 3 that our proposed structure presents
a good compromise between miniaturization and the signifi-
cant gain obtained compared to the reported studies.

TABLE 3. Antenna dimensions and properties comparison
with published data.

Fig. 3(a) shows the ground plane length effect on the reflec-
tion coefficient. It is clearly seen that it acts most strongly
on frequencies below 10 GHz. In this case, the optimal
value for x1 is 6.5 mm. The width of the second trunca-
tion (y1) is in the y-direction. It is noted that the effect is
clearly visible in the frequency band 3-10 GHz. In this case,
the impedance matching is better at y1 = 8.75 mm, where
the mismatch between 7 and 10 GHz decreases with respect
to y1 and is optimal for y1 = 8.75 mm for frequencies beyond
10 GHz, which are less affected by the truncation of the
ground plane.

Fig. 3(b) shows that increasing x2 up to 13.5 mm improves
the bandwidth. Beyond 17 mm, a mismatch is observed
for lower frequencies. From Fig. 3(c), we note that for
x2 = 13.5 mmwith varying y2, a further bandwidth improve-
ment is obtained for y2 = 8.75 mm. In Fig. 3(d), the effect

FIGURE 3. Effect of different slit lengths on S11 of the aperture-coupled
asymmetric DRA with DGS, compared with the proposed antenna and
with the antenna in [27]. (a) Effect of slit length x1 (y1 = 0mm) and the
effect of the slit length y1 (x1 = 6.5mm), (b) Effect of the slit length x2
(x1 = 6.5mm and y1 =y2 = 8.75mm), (c) Effect of the slit length y2 with
x1 = 6.5mm, y1 = 8.75mm and x2 = 13.5mm, (d) Effect of the slit x3×y3
with x1 = 6.5mm, y1 = 8.75mm and x2 = 13.5mm.

of the truncation x3× y3 is not clearly visible, but in real-
ity, a slight increase of 1% in bandwidth for x3 × y3 =
1.5mm×3.15mm is obtained.
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FIGURE 4. Proposed antenna. (a) antenna faces photograph without DR,
(b) Measured and simulated reflection coefficient of the antenna without
DR (c) our proposed antenna photograph with two DRs, (d) Measured and
simulated reflection coefficient of the proposed antenna with DR (with
glue of various thicknesses t).

To validate the simulated results, an antenna proto-
type is constructed as shown in Fig. 4(a), and its param-
eters were measured using a vector network analyzer.

FIGURE 5. (a) Simulated S11 of 2-cylindrical DRA compared to a single
rectangular DRA with the same overall dimensions, (b) Simulated input
impedance of 2-cylindrical DRA compared to a single rectangular DRA.

The measurement of the proposed antenna with and without
DRs results are also compared and are in good agreement
with the simulation ones.

Fig. 4(b) shows good agreement between measurements
and simulations of the antenna without DR. We can notice
that this antenna works in the frequency bands 3.9-6GHz
and 11.1-12.8GHZ only by the application of the DGS
and the slot techniques without the introduction of the DR.
Figs. 4 (c) and (d) present the prototype of the antenna with
DR and the simulated and measured S11 without and with
consideration of the glue thickness, respectively. It is remark-
able with confirmation that the glue has a considerable effect
on S11, especially at high frequencies. In general, the obtained
results are in good agreement.

Figs. 5(a) and (b) show the benefit of the introduction of
the cylindrical DR to excite more hybrid modes than with a
rectangular DR, as was previously reported in [27].

According to [33], the frequencies of the three lowest
modes HEM01δ , TE01δ and TM01δ of a single cylindrical
DRA are 10.484, 12.188 and 18.164 GHz, respectively, while
in [43], [53] the resonant frequencies for HE11δ , EH11δ ,
TE11δ and TM01δ modes are 9.8469, 10.2358, 12.2768 and
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FIGURE 6. Magnitude of electric field distribution for 7.0 GHz and (TEδ11,
quasi-HE11δ) 9.4 GHz, 10.5GHz (HEM01δ, EH11δ, TE1δ1, and TE11δ)
12.4 GHz (TE01δ), 16.0 GHz (TE102 and TEδ21) and 17.5 GHz (TM01δ).
( xz plane, yz plane).

FIGURE 7. Measured and simulated gains of the proposed antennas.

18.2089 GHz, respectively. These modes are only excited by
a single DRA, so it is possible for other modes to be excited
at low frequencies by the two DRAs (the same effect as for
the rectangular DRA in [27]).

It should be noted that in this study, the ground plane used
is defected while a full sized plane is used in [27].

FIGURE 8. Measured and simulated efficiency of the proposed antenna.

FIGURE 9. Simulated and measured group delay of the proposed antenna.

The presented results give an additional proof to the equiv-
alence between the two cylindrical DR’s with a single rectan-
gular DR having the same overall dimensions.

For the case of a single rectangular DR, according to [54]
and [27], the frequencies of TEδ11, TE1δ1 and TE11δ modes
are 7.19, 10.23 and 10.51 GHz, respectively. In total,
the excited modes are TEδ11 at 7 GHz, HE11δ at 9.85 GHz,
and around 10GHz, we have excitedmodes (HEM01δ , EH11δ ,
TE1δ1, and TE11δ), as shown in Fig. 6. The TE102 and TEδ21
modes are excited at 12.4 and 16 GHz [27], and finally the
mode TM01δ at 17.5 GHz (Fig. 6).
Figs. 7 and 8 illustrate respectively the measured and

simulated gains in the broadside direction and efficiency
of the presented antenna. The simulated gain assumes an
ideal feeding network, whereas the measurements include the
actual feeding network insertion loss, hence there are local
discrepancies. The plot shows the calculated gain varying
between 4.30 and 9.98 dBi with a maximum of 9.98 dBi
at 15GHz, while the measured gain varies between 5.65 and
7.9 dBi in the band from 6 to17.5GHz, with a maximum
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FIGURE 10. Measured radiation patterns of the proposed antenna. Left:
xy-plane, middle: xz-plane and right: yz-plane.

of 7.9 dBi at 17.5 GHz. Additionally, the measured radiation
efficiencies are over 75 % from 3.6 to18 GHz.

Form Fig. 9, the antenna provides linear S21 response and
non-varying group delay response in the 3.6-18GHz, where
maximum and minimum values of simulated group delay
are 1.19 and 0.7 ns, respectively, whereas the measured are
1.19 and 0.66 ns, which shows an acceptable performance in
time-domain.

Fig. 10 shows radiation patterns measured at frequen-
cies 4.1, 7, 9.4, 10.5 and 17.5 GHz. This shows that the
antenna has a wide radiation pattern with a maximum
along the normal to the substrate, covering a half-space.
In some cases, an almost omnidirectional radiation pattern is
observed.

IV. EFFECT OF DRS NUMBER
The proposed arrangement of two slots feeding the two
DRs gives an extra degree of freedom in the design pro-
cedure. The achieved higher bandwidth can be interpreted
as the result of merging many resonating frequencies bands
of the different parts constituting the antenna. Obviously,
adding a second slot has resulted in increased bandwidth.

FIGURE 11. (a) Proposed antenna with three DRs (1st configuration).
(b) Simulated and measured S11 of 3-DR antenna.

FIGURE 12. (a) Proposed antenna with three DRs (2nd configuration).
(b) Simulated and measured S11 of 3-DR antenna.

Wherever each resonant frequency can be attributed to a
relevant part of the antenna, the designer will have a wider
scope to tailor the required extension of the bandwidth.
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FIGURE 13. (a) Proposed antenna with four DRs (3rd configuration)
(b) Simulated and measured S11 of 4-DR antenna.

While the resonating parts of the antenna: DRs, slots and
feed line/stub are the most influential factors on the antenna
characteristics, the effect of the DR number with a wide slot
on S11 is also investigated.
The DR number effect is very important compared to the

slot, as is well illustrated by Figs. 11, 12 and 13.
For the first case (3-DR antenna configuration), we could

theoretically have a bandwidth of 3.4-8.05 and
9.25-16.85GHz and experimentally 3.35-13.45 and
14.45-16.5GHz (Fig. 11). In the second configuration,
the bandwidth is shifted to 3.05-7.85GHz and 9.15-12.3GHz;
a slight variation between the theoretical and the experimental
results is observed (Fig. 12).

For the third case (4-DR antenna configuration, Fig.13),
the frequency is shifted down to 3GHz; but in this case the
antenna bandwidth becomes relatively narrower.

The advantage of having a wide slot is to excite the lower
frequencies and this can, with an adequate number of DRs,
control the usable frequency band.

V. CONCLUSION
In this work, a compact dielectric resonator antenna for ultra-
wideband applications has been studied. It has been shown
that the use of dielectric resonators enhances the antenna per-
formance. The asymmetric placement of the DR pair (three
and four), the defected ground technique, the dimensions
and the shape of the aperture together give designers more
scope for the optimization process. More resonances can be
generated and the bandwidth has thereby been improved.
The obtained results show that an impedance bandwidth

of 133.33%, covering the UWB 3.6 GHz to 18.0 GHz, and
a maximum simulated and measured power gain of 9.9dBi
and 7.9 dBi, respectively, have been achieved. The mea-
sured results of the prototype gave two bands extending
from 3.55 to 13.05 GHz (114.46%) and from 14.3 to
16 GHz (11%).
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