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ABSTRACT Direct aperture optimization (DAO) is an effective method to generate high-quality intensity-
modulated radiation therapy treatment plans. In generic DAO, the direction of negative gradient descent
is generally used to determine the aperture shape. However, this strategy can reduce the convergence
rate, especially near the optimal value. We propose aperture shape generation based on the direction of
gradient descent with momentum, where column generation is implemented as carrier. During aperture shape
generation of column generation, the current aperture gradient map is first calculated. Then, the gradient
with momentum is calculated based on the existing gradient information. Finally, the direction of gradient
descent with momentum is constructed for obtaining the deliverable aperture shape by solving the pricing
problem. To verify the effectiveness of the proposed method, we conducted comparative experiments on
two head and neck and two prostate tumor cases. Compared with generic column generation, the proposed
method can effectively protect the organs at risk while ensuring the required dose distribution to the target.
Using the proposed method, the number of apertures and optimization time can be reduced by up to 30.95
and 32.96%, respectively, compared to the conventional approach. The experimental results suggest that the
proposed method can accelerate the search speed and improve the quality of treatment plans.

INDEX TERMS Aperture shape, column generation, direct aperture optimization, gradient descent direction,
gradient descent with momentum.

I. INTRODUCTION
Direct aperture optimization (DAO) [1]–[4] usually con-
siders three approaches: stochastic search [5]–[8], local
gradient-based method [9], and column generation
[10]–[13]. Although the optimization strategies of these
three approaches differ, aperture shape generation consists
of selecting an appropriate gradient descent direction for
the improvement of the objective function. Many studies are
available on aperture shape generation. The genetic algorithm
to optimize aperture shape has been proposed in [7], [8].
In addition, simulated annealing based on the gradient has
been employed for optimization [14], and subsequently, aper-
ture shape optimizations based on fuzzy enhancement [15]
and region growth [16] have been proposed. To generate
the aperture shape, these methods directly use the aperture
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gradient map, that is, they determine the aperture shape
by constructing the negative gradient descent direction.
The negative gradient descent method enables optimiza-
tion with an inexpensive computation and can converge
to a local minimum from any initial solution. However,
when approaching the minimum, the method is prone to
the sawtooth phenomenon, that is, both the step length per
iteration and the convergence speed reduce. To overcome
slow convergence, we propose an improved aperture shape
generation method based on the idea of gradient descent
with momentum [17], [18] to accelerate optimization and
improve the quality of the treatment plan. During aperture
shape generation, as the gradient vectors across iterations do
not always point in the same direction, the aperture gradients
can be regarded as noisy. Consequently, search may fall into
a local optimum. The momentum method in deep learning
resembles momentum properties in physics for accelerating

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 157623

https://orcid.org/0000-0002-1356-8995
https://orcid.org/0000-0003-3560-1167
https://orcid.org/0000-0003-1086-9255
https://orcid.org/0000-0002-8991-9907


L. ZHANG et al.: Aperture Shape Generation Based on Gradient Descent With Momentum

convergence speed and leaving local optima [19]. Gradient
descent with momentum accelerates the search progress by
accumulating the existing gradient information and continu-
ing to move along the leading direction.

DAO based on stochastic search can avoid local min-
ima with a certain probability. However, as the search is
based on local gradient information, it cannot guarantee that
the optimization result is the global optimum. In addition,
the local gradient-based method only optimizes the aperture
shape according to this local information and depends on a
good initial solution, thus not guaranteeing global optimal-
ity. Unlike these methods, column generation starts with an
empty aperture set, and there is no initial solution. Then,
it constructs a network flow with global gradient information
to obtain the deliverable aperture shape by solving the pricing
problem. Hence, column generation provides a strict theoreti-
cal derivation and adopts a complete search strategy to ensure
global optimality, being the most accurate method compared
to stochastic search and local gradient-based methods.

We propose aperture shape generation based on the direc-
tion of gradient descent with momentum, where column gen-
eration is used as carrier for implementation. During column
generation, the proposed method first calculates the aperture
gradient map. Then, according to the momentum and current
gradient, the direction of gradient descent with momentum
is determined. Finally, the pricing problem uses the direction
of gradient descent with momentum to obtain the deliverable
aperture shape. We evaluate the proposed method in two
head and neck and two prostate tumor cases, and compare
the results with those obtained from generic column genera-
tion to verify the effectiveness and performance of the pro-
posed method. The rest of this study is organized as follows.
Section II introduces the proposed method. The experimental
settings, evaluation criteria, objective function and results
are detailed in section III. Section IV discusses the results.
Finally, we draw conclusions in section V.

II. METHODS
In this section, we introduce the proposed aperture shape
generation. Section II-A details the calculation of the dose
received from the aperture. Section II-B summarizes generic
column generation, and section II-C details the gradient
descent with momentum. Finally, section II-D discusses the
proposed aperture shape generation based on gradient descent
with momentum.

A. DOSE CALCULATION
Each beam applied to the patient can be decomposed into a set
of beamlets labeled as B in a rectangular grid ofm rows and n
columns, where the size of a beamlet is 1× 1 cm2. The set of
all deliverable apertures is denoted as K , where the aperture
weight is yk (k ∈ K ). Ak represents the set of beamlets
exposed by multi-leaf collimator (MLC) in aperture k , S rep-
resents the total number of organs and tissues of the current
patient, and vs represents the number of voxels in structure
s (s ⊂ S). The dose received by voxel j (j = 1, · · · , vs) in

structure s at unit intensity from beamlet i of aperture Ak is
the corresponding element,Wijs, in the depositionmatrix (i.e.,
deposition coefficient). Thus, dose Djs received by voxel j in
structure s (s ⊂ S) can be expressed as

Djs =
∑
k∈K

∑
i∈Ak

Wijs

yk , j = 1, · · · , vs, s = 1, · · · , S.

(1)

B. COLUMN GENERATION
During plan optimization for step-and-shoot intensity-
modulated radiation therapy (IMRT), the optimization prob-
lem is expressed as

minmize F(D) = minmize
S∑
s=1

Ns∑
ξ=1

Fξs(Ds), (2)

subject to ∑
k∈K

∑
i∈Ak

Wijs

yk = Djs,

j = 1, · · · , vs, s = 1, · · · , S, (3)

yk > 0, k ∈ K , (4)

where, in objective function F(D), Fξs(Ds) is the ξ -th sub-
objective function of structure s, and Ds is the dose distribu-
tion of that structure. Ns subobjective functions are used to
control the dose distribution received by structure s. In each
iteration of column generation to generate the treatment plan,
the pricing problem is firstly solved to obtain the deliver-
able aperture. Then, in the master problem, a gradient-based
method optimizes the weights of all the obtained apertures.
The iterative process continues until the optimization result
meets the clinical requirements or the number of iterations
reaches its limit, and the treatment plan is retrieved.

Column generation can generate aperture by solving the
pricing problem,which is derived from the optimization prob-
lem of IMRT plan optimization. Under inequality constraints,
the Lagrange function is first constructed for optimization,
and then the KKT (Karush–Kuhn–Tucker) conditions are
obtained to finally determine the optimal solution. The
Lagrange function considering (2)–(4) is given by

L(Djs, yk , πjs, ρk ) =
S∑
s=1

vs∑
j=1

Fjs(Djs)

+

K∑
k=1

ρk (−yk )+
S∑
s=1

vs∑
j=1

πjs

×

∑
k∈K

∑
i∈Ak

Wijs

yk − Djs
 , (5)

where, ρk and πjs are Lagrange multipliers.When the optimal
solution is obtained, the KKT conditions to be satisfied are

∇Djs,ykL
(
Djs, yk , πjs, ρk

)
= 0, (6)
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−yk ≤ 0, k ∈ K , (7)∑
k∈K

∑
i∈Ak

Wijs

yk − Djs=0, j=1, · · · , vs, s=1, · · · , S,

(8)

ρk ≥ 0, k ∈ K , (9)

−ρkyk = 0, k ∈ K . (10)

The Lagrange multipliers can be obtained from the above
KKT conditions as

πjs =
∂Fjs(Djs)
∂Djs

, (11)

ρk =

S∑
s=1

vs∑
j=1

∑
i∈Ak

Wijs

πjs. (12)

From (9) and (12), we obtain

S∑
s=1

vs∑
j=1

∑
i∈Ak

Wijs

πjs > 0, (13)

that is, the optimal solution should satisfy

min
k∈K

∑
i∈Ak

 S∑
s=1

vs∑
j=1

Wijsπjs

 > 0. (14)

If the current solution satisfies (14), it is the optimal one
for the corresponding plan. The current generated aperture
is not added to the plan. Therefore, column generation to
obtain the treatment plan should determine the pricing of each
deliverable aperture:

min
k∈K

∑
i∈Ak

 S∑
s=1

vs∑
j=1

Wijsπjs

. (15)

Then, the pricing problem can be converted into a shortest
path problem by using the network flow constructed accord-
ing to the aperture gradient map [20].

C. GRADIENT DESCENT WITH MOMENTUM
In this study, the mechanical constraints of the MLC sys-
tem for step-and-shoot IMRT involved do not allow inter-
digitation. To determine the aperture shape during column
generation with that MLC mechanical constraint, we use the
network flow to solve the pricing problem [20]. In generic
column generation, the gradients corresponding to the beam-
lets is directly used to determine the aperture shape and select
the optimal descent direction for the objective function. This
descent direction is similar to that selected by the steepest
descent method. In the steepest descent method, the update
step of the method is xk+1 = xk − dk , where dk is the
update from independent variable xk to xk+1 (i.e., dk =
αk ∗ ∇fk ), αk is the step length, and ∇fk is the first derivative
of objective function f (x) at xk . From any initial solution,
the steepest descent method can find the local minimum of
the objective function. However, when the vertical variation

is faster than the horizontal one in the contour of the objective
function, that is, the vertical gradient of two consecutive
instants is reversed, the steepest descent method changes
the search direction frequently and can produce oscillation
while approaching the local minimum. In deep learning [21],
the method of gradient descent with momentum considers the
previous descent directions and accumulates the velocity of
the gradient motion. When the gradient direction is consis-
tent in an update, it moves faster in this direction, reducing
oscillations during search.

In gradient descent with momentum, the update step of the
method is also xk+1 = xk−dMk , but update dMk of independent
variable xk to xk+1 is the weighted vector sum of the current
gradient descent and the last update, that is, the sum of dk =
αk ∗ ∇fk , and the update dMk−1 from xk−1 to xk is multiplied
by coefficient βk in [0, 1]:

dMk = dk + dMk−1 ∗ βk = αk ∗ ∇fk + d
M
k−1 ∗ βk , (16)

where current gradient descent direction dk is the basic
search direction, and last update dMk−1 is the auxiliary search
direction.

If the vector angle is θk ∈
[
0, π

/
2
)
between gradient

descent direction dk and last update dMk−1 (Fig. 1(a)), dMk−1
contributes a positive acceleration to search direction dk .
In contrast (Fig.1(b)), if the vector angle is θk ∈

(
π
/
2, π

]
,

dMk−1 decelerates dk . When dMk−1 is orthogonal to dk , we con-
sider dMk−1 to have no effect on dk . The influence of dMk−1
on dk can be adjusted by parameter βk . Compared with the
steepest descent method, the method of gradient descent with
momentum not only reduces oscillations, but also preserves
the general search direction aiming to ensure efficiency and
a correct convergence to the optimal solution.

FIGURE 1. The effect of momentum gradient descent direction to original
gradient descent direction (a) acceleration effect; (b) deceleration effect.

D. PROPOSED APERTURE SHAPE GENERATION
Gradient descent withmomentum is specially suited for noisy
gradients. To solve the pricing problem, the gradient in the
aperture gradient map, which is used to construct the network
flow and generate the aperture, can be regarded as noisy.
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Therefore, we adopt gradient descent with momentum to
modulate the aperture gradient map and efficiently generate
the deliverable treatment plan. In an iteration of column
generation to obtain the treatment plan, the aperture shape
generation updates gradient sequence gk to construct gradient
map Gk (m, n) according to the current information, and then
it constructs the network flow to solve the pricing prob-
lem and generate the deliverable aperture shape [16], [20].
If gradient sequence gk is directly used to solve the pricing
problem, the aperture shape generation uses the negative gra-
dient descent direction to determine the shape. If the pricing
problem is solved by using the gradient sequence considering
gradient descent with momentum, the aperture shape is deter-
mined correspondingly. Inspired by the gradient descent with
momentum, when calculating the gradient sequence accord-
ing to the available information, the accumulated gradient
information, gMk−1, from the previous iterations is introduced
into the calculation of current gradient information gk with a
certain weight, and the coefficients are normalized to obtain
gradient sequence gMk containing the accumulated gradient
information gMk−1 and current gradient information gk , obtain-
ing (17), as shown at the bottom of this page. Variable gk (i)
is the i-th gradient element of the gradient sequence obtained
from the information of the objective function and generated
aperture during the k-th iteration. Gradient element gMk (i)
corresponding to gk (i) is modulated considering the momen-
tum, and gMk−1 (i) is the modulated gradient element during
the (k−1)-th iteration. If angle θk ∈

[
0, π

/
2
)
exists between

gk (i) and gMk−1 (i) (i.e., gk (i) · g
M
k−1 (i) > 0), gMk−1 (i) is

introduced into gMk (i) with a larger weight α for gMk−1 (i)
to accelerate gk (i) in the positive direction. Otherwise (i.e.,
gk (i) · gMk−1 (i) < 0), gMk−1 (i) is introduced into gMk (i)
with a small weight (1− α) to exert a deceleration on gk (i).
If gk (i) is orthogonal to gMk−1 (i) (i.e., gk (i) · g

M
k−1 (i) = 0),

gk (i) remains unchanged. In particular, at the optimal value,
gk (i) = 0 for any i, and (6) holds. Therefore, at the optimal
value obtained by the proposed method, according to (17),
there is gMk (i) = gk (i) = 0 for any i, and (6) still holds.
Hence, the proposed method does not change the optimal
solution. The above strategy is adopted to modulate the gra-
dient sequence, and then the network flow is constructed to
solve the pricing problem [20] while speeding up the search
and improving the plan quality.

III. EXPERIMENTS AND RESULTS
We evaluated two cases of head and neck tumors and two
cases of prostate tumors to experimentally verify the pro-

posed aperture shape generation based on gradient descent
with momentum in comparison to generic column gener-
ation. The dose deposition matrix, W , to obtain the dose
was obtained by the classical pencil beam dose calcula-
tion method [22] in the Computational Environment for
Radiological Research open-source software [23]. Different
types of subobjective functions were used to form the total
objective function, includingminimum dose, maximum dose,
mean dose, and dose-volume (DV) criterion subobjective
functions [24], to control the dose coverage on each
structure. During master problem solving of the proposed
and comparison methods, the limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm for bound constrained
optimization [25]–[27] was used to optimize the weight of
each aperture. We denote the proposed aperture shape opti-
mization based on gradient descent with momentum as M,
and generic column generation as CG.

A. EXPERIMENTAL SETTINGS
As mentioned above, two cases of head and neck tumors
and two cases of prostate tumors were used to verify the
effectiveness of the proposed method compared with generic
column generation.
For the head and neck tumor cases shown in Fig. 2(a), nine

6 MeV co-irradiated photon fields at intervals of 40◦ were
used to irradiate the target. Three targets were considered,
labeled as planning target volume (PTV), PTV 70 Gy, PTV
63 Gy, and PTV 56 Gy. In addition, two parotid glands
(ipsilateral parotid gland—IL-PG and contralateral parotid
gland—CL-PG), brain stem, and spinal cord were selected
as the organs at risk (OARs) [28]. The remaining tissue is
denoted as Tissue. As shown in Fig. 2(b), for the prostate
tumor cases, five 6 MeV co-irradiated photon fields were
used to irradiate the target at frame angles of 36, 100, 180,
260, and 324◦. For these cases, only one target was labeled
as PTV. The bladder and rectum were selected as the OARs,
and the rest of tissues were denoted as Tissue. Among the four
tumor cases, the two head and neck tumor cases were labeled
as H1 and H2, and the two prostate tumor cases were labeled
as P1 and P2.

B. EVALUATION CRITERIA
To evaluate the quality of the optimized plans obtained by the
two evaluated methods, the dose-volume histogram (DVH) of
the OARs were first evaluated according to the clinical guide-
lines by Marks et al. [29] on the premise of ensuring dose
distribution to the target (see Table 1). Then, the conformity

gMk (i) =



(
(2− α) gk (i)+ αgMk−1 (i)

)
2

if
(
gk (i) · gMk−1 (i) > 0

)
gk (i) if

(
gk (i) · gMk−1 (i) = 0

)
, α ∈ (0.5, 1).(

(1+ α) gk (i)+ (1− α) gMk−1 (i)
)

2
if
(
gk (i) · gMk−1 (i) < 0

) (17)
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FIGURE 2. Structural distribution of various organs (a) the head and neck tumor case; (b) the
prostate tumor case.

TABLE 1. DV constraint conditions of OARs.

number (CN) [30] and homogeneity index (HI) [31] of the
target were respectively calculated as

CN =
TVri
TV
×
TVri
Vri

, (18)

HI =
D5%

D95%
, (19)

where TV is the total volume of the target, TVri is the volume
of the target within the 95% isodose line, Vri is the volume
of all tissues within the 95% isodose line, and D5% and D95%
are the radiation doses received by 5% and 95% of the target
volume, respectively. Values of CN and HI close to 1 indicate
a more suitable dose distribution to the target.

The generalized equivalent uniform dose (gEUD) and nor-
mal tissue complication probability (NTCP) were calculated
to evaluate the protective effect of the optimization method
to the OARs. In the head and neck tumor cases, the radiobio-
logical parameters of the NTCP model for the parotid gland
were retrieved from [32], and those for the spinal cord and
brain stem from [33]. In the prostate tumor cases, the radio-
biological parameters of the NTCP model for the bladder
wall were retrieved from [34], and those for the rectum wall
from [35]. In addition, as there is no uniform international
standard for biological evaluation criteria such as NTCP and
gEUD, we considered that lower NTCP and gEUD values
indicate higher protection to the OARs. Finally, the running

time and number of apertures of the evaluated methods were
determined.

C. OBJECTIVE FUNCTION
The objective function was a linear combination of weighted
subobjective functions [36] and expressed as

f (D (x)) =
I∑
i=1

ξifType
(
DStructure (x)

)
, (20)

where the dose distributionD (x) is a linear function ofW and
the fluence matrix x; that is, D (x) = Wx. I is the number of
subobjective functions, ξi is the weight factor corresponding
to the i-th subobjective function, DStructure (x) is the dose dis-
tribution of each structure, and fType

(
DStructure (x)

)
denotes

the different types subobjective functions. For the head and
neck tumor cases, the DV criterion subobjective function [24]
was used to constrain dose distribution of the parotid gland,
the maximum dose subobjective function was used to pun-
ish the dose in the spinal cord and brain stem that exceeds
the maximum dose of the clinical guideline [29], the mean
dose and minimum dose subobjective functions were used
to constrain the dose distribution of the three targets, and
the maximum dose subobjective function to constraint the
dose distribution of Tissue. For the prostate tumor cases,
the DV criterion subobjective function proposed by Wu and
Mohan [24] was used to constrain the dose distribution of the
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TABLE 2. The optimization information of head and neck tumor cases.

bladder and rectum, themean dose andminimum dose subob-
jective functions were used to constrain the dose distribution
of the target, and the DV criterion subobjective function to
constrain the dose distribution of Tissue.

D. RESULTS
We first verified the proposed method for cases H1 and
H2. Generic column generation for comparison considered a
maximum number of apertures of 100. The proposed method
was varied to obtain similar optimization results as the com-
parison method, and we registered the number of required
apertures. The corresponding results are shown in Fig. 3 and
Table 2. Compared to generic column generation, the pro-
posed method can reduce the dose on the OARs, as shown
by the reduced NTCP, and ensure the dose distribution to
multiple targets. In addition, the proposed method can gen-
erate similar quality plans with fewer apertures. Moreover,
the proposed method can accelerate the DAO convergence
by using gradient descent with momentum to determine the
aperture shape.

When using generic column generation to optimize the
plans for cases P1 and P2, the maximum number of apertures
was set to 60. Like for cases H1 and H2, we aimed to obtain
similar results for both methods and registered the number
of required apertures from the proposed method. The corre-
sponding results are shown in Fig. 4 and Table 3. Compared
to generic column generation, the dose distribution to that
target from the proposed method is guaranteed, and both
the NTCP and gEUD of the OARs decrease. Therefore, the

optimization results from the two prostate tumor cases further
verify that the proposed method can retrieve similar or better
treatment plans with fewer apertures compared to generic
column generation.

IV. DISCUSSION
To evaluate the experimental results, the curves of the target
in the DVH should be similar for the compared methods,
even the target DVH obtained by the proposed method out-
performs that obtained by generic column generation. On this
basis, the curves of the OARs in the DVH obtained from
the compared methods were further evaluated. The DVHs
of case H1 are shown in Figs. 3(a) and (b). The DVH
of multiple targets in Fig. 3(b) and the dose distribution
in Table 2 show that compared with generic column gen-
eration, the proposed method ensures a consistent and even
improved dose distribution to the targets. These results show
that the curves of the OARs in the DVH obtained by the pro-
posed method in Fig. 3(a) are substantially lower than those
obtained by generic column generation. According to clinical
guidelines [29], the mean dose in the parotid gland should
be below 25 Gy, and the dose of the spinal cord and brain
stem should not exceed 50 and 54 Gy, respectively. From
the optimization results for H1 in Table 2, we can conclude
that, compared to generic column generation, the mean doses
on the two parotid glands obtained by the proposed method
notably reduce, as can be confirmed from the dose distribu-
tion in Figs. 3(e) and (f). Furthermore, the maximum doses
at the spinal cord and brain stem obtained by the proposed
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FIGURE 3. Comparison of optimization results of head and neck tumor cases (a) DVH of OARs in H1; (b) DVH of targets
in H1; (c) DVH of OARs in H2; (d) DVH of targets in H2; (e) the dose distribution of H1 optimized by generic column
generation; (f) the dose distribution of H1 optimized by the proposed method; (g) the dose distribution of
H2 optimized by generic column generation; (h) the dose distribution of H2 optimized by the proposed method.
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FIGURE 4. Comparison of optimization results of prostate tumor cases (a) DVH of P1; (b) DVH of P2; (c) the dose distribution of
P1 optimized by generic column generation; (d) the dose distribution of P1 optimized by the proposed method; (e) the dose
distribution of P2 optimized by generic column generation; (f) the dose distribution of P2 optimized by the proposed method.

method comply with clinical guidelines [29], being slightly
lower than those obtained from generic column generation.
In addition, the number of apertures of the proposed method
decreases by 23.33%, and the optimization time decreases by
32.96% with respect to generic column generation, showing
an improved optimization performance from the proposed
method.

The DVHs of case H2 are shown in Figs. 3(c) and (d).
Along with the information in Table 2, the curve of PTV
56 Gy in the DVH obtained from the proposed method is
slightly better than that obtained from generic column gen-
eration, whereas the curves of PTV 63 and 70 Gy in the
DVH meet the clinical requirements and are close to the
results obtained from generic column generation. On this
basis, the curve of the CL-PG in the DVH obtained from
the proposed method in Fig. 3(c) decreases compared with
that obtained from generic column generation, as seen in

the dose distributions of Figs. 3(g) and (h). The optimiza-
tion results for case H2 in Table 2 show that, compared
with the results obtained from generic column generation,
the mean dose on the CL-PG reduces in the proposed method.
In addition, the mean dose of IL-PG obtained by the two
methods comply with clinical guidelines [29]. The maximum
doses of the spinal cord and brain stem comply with the
dose constraint, and the gEUD and NTCP values are lower
in the proposed method than in generic column generation.
Moreover, the number of apertures from the proposedmethod
to generate similar optimization results compared to generic
column generation reduces by 30.95%, and the optimization
time reduces by 31.99%. Note that the locations and mor-
phology of the tumors substantially vary in the two cases
of head and neck tumors, as shown in Figs. 3(e) and (g).
Although the improved performance of the proposed method
compared to generic column generation is not substantial for
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TABLE 3. The optimization information of prostate tumor cases.

case H2, the results verify its suitability to achieve similar or
better optimization results with fewer apertures in a shorter
optimization time than the comparison method.

Figs. 4(c) and (e) show the locations and morphol-
ogy of organs for prostate tumor cases P1 and P2. In
Figs. 4(a) and (b), the curves of the target in the DVH in these
cases mostly coincide among the two evaluated methods. The
clinical guidelines in [29] specify that the DV constraints
of the OARs (i.e., bladder and rectum) in prostate tumor
cases are concentrated on the part of high dose. On this
basis, in Figs. 4(a) and (b), compared with generic column
generation, the high-dose part of DVH in the bladder and
rectum for cases P1 and P2 obtained from the proposed
method decreases. Considering the information in Table 3,
both the NTCP and gEUD of the bladder and rectum from
the proposed method are lower than those from generic
column generation. The number of apertures decreases by
14.55% (17.54%), and the optimization time decreases by
22.16% (29.72%) for case P1 (P2) when optimized by the
proposed method with respect to generic column generation.
Hence, the results for the prostate tumor cases verify that the
proposed method can achieve similar or better optimization
results with less apertures and in shorter time compared
to generic column generation. Overall, experimental results
show that the proposed method can generate treatment plans
meeting clinical guidelines [29].

During aperture modulation by gradient descent with
momentum, α can be adjusted to change the effect of the
cumulative momentum on the current gradient calculation.
Generally, the value of α in (17) is heuristically determined.
In this study, through several experiments, we determined that
when α = 0.99, the experimental effect is more notable.
When multiple targets are optimized, the proposed method

may not notably improve the HI of targets and cannot guar-
antee improvement in their CN. Hence, we will aim to
ensure such improvements in future work. In addition, as the
proposed method accelerates generic column generation via
software, we will aim to introduce the concept of gradient
descent with momentum into other DAO algorithms and
combine the proposed method with hardware acceleration
for faster generation of treatment plans complying clinical
requirements.

V. CONCLUSION
Generic aperture shape generation considers the negative
gradient descent direction to determine the aperture shape,
but convergence to the solution may be slow. To improve the
convergence speed, we generate the aperture shape based on
gradient descent with momentum, where column generation
is used as carrier. The proposed method leverages the concept
of gradient descent with momentum to modulate the gradient
information and weighs the previous gradient information
into the current gradient calculation to speed up search and
improve the plan quality. Experimental results show that the
proposedmethod can ensure the dose distribution to the target
while protecting the OARs, accelerating the optimization
process, and shortening the optimization time. The proposed
method was suitably applied to different tumor cases, sug-
gesting its feasibility for clinical application.
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