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ABSTRACT This survey gives a comprehensive overview of tensor techniques and applications in machine
learning. Tensor represents higher order statistics. Nowadays, many applications based on machine learning
algorithms require a large amount of structured high-dimensional input data. As the set of data increases,
the complexity of these algorithms increases exponentially with the increase of vector size. Some scientists
found that using tensors instead of the original input vectors can effectively solve these high-dimensional
problems. This survey introduces the basic knowledge of tensor, including tensor operations, tensor decom-
position, some tensor-based algorithms, and some applications of tensor in machine learning and deep
learning for those who are interested in learning tensors. The tensor decomposition is highlighted because it
can effectively extract structural features of data and many algorithms and applications are based on tensor
decomposition. The organizational framework of this paper is as follows. In part one, we introduce some
tensor basic operations, including tensor decomposition. In part two, applications of tensor in machine learn-
ing and deep learning, including regression, supervised classification, data preprocessing, and unsupervised
classification based on low rank tensor approximation algorithms are introduced detailly. Finally, we briefly
discuss urgent challenges, opportunities and prospects for tensor.

INDEX TERMS Machine learning, tensor decomposition, higher order statistics, data preprocessing,
classification.

I. INTRODUCTION
‘‘Tensor’’ was first introduced by William Ron Hamilton
in 1846 and later became known to scientists through the
publication of Levi-Civita’s book The Absolute Differential
Calculus [72]. Because of its structured representation of data
format and ability to reduce the complexity of multidimen-
sional arrays, tensor has been gradually applied in various
fields, such as Dictionary Learning (Ghassemi et al.) [88],
Magnetic Resonance Imaging(MRI) (Xu et al.) [148], Spec-
tral data classification (Makantasis et al.) [69], and Image
deblurring (Geng et al.) [75].

When traditional vector value data is extended to tensor
value data, traditional vector value based algorithms will
no longer work. Thereupon, some scientists extend the tra-
ditional vector-based machine learning algorithms to ten-
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sors, such as Support tensor machine(STM) (Tao et al. [27];
Biswas and Milanfar [121]; Hao et al. [164]), tensor
fisher discriminant analysis (Lechuga) [38], tensor regression
(Hoa et al.) [89], tensor completion (Du et al.) [150], and
so on. Recently, a series of new algorithms based on tensor
have been widely used in biomedicine and image processing.
Compared with traditional vector-based algorithms, tensor-
based algorithms can achieve lower computational com-
plexity and better accuracy. Through these tensor-based
algorithms, high-dimensional problems can be solved effec-
tively, and accuracy can be improved without destroying the
data structure.

The key references for this survey are (Cichocki et al.) [3]
and (Kolda and Bader) [127]. Themain purpose of this survey
is to introduce basic machine learning applications related
to tensor decomposition and tensor network model. Similar
to matrix decomposition, tensor decomposition is used to
decompose complex high-dimensional tensor into the form
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FIGURE 1. A general block diagram of the survey.

of the sum of products of factor tensor or factor vector.
Tensor network decomposes the high-dimensional tensor into
sparse factor matrices and low-order core tensor, which we
call factors or blocks. In this way, we set the compression (that
is, distributed) representation of large-size data, enhancing
the advantage of interpretation and calculation.

Tensor decomposition is regarded as a sub-tensor network
in this survey. That is to say, the decomposition of tensor
can be used in the same way as the tensor network. We can
divide the data into related and irrelevant parts by using
tensor decomposition. High-dimensional big data can be
compressed several times without breaking data correlation
by using tensor decomposition (tensor network). Moreover,
tensor decomposition can be used to reduce unknown param-
eters, and then the exact solution can be obtained by alternate
iterative algorithms.

We provide a general block diagram of the survey (see
figure 1). The survey consists of two parts. In part one,
we first give the basic definition and notations of tensor
in Chapter A. Then we introduce the basic operation of
tensor, and the block diagram of the network structure of
tensor in Chapter B. Next, we begin to describe tensor
decomposition, including several famous decompositions
such as the CP (regularization) decomposition, the Tucker

decomposition, the Tensor train decomposition and Higher-
order singular value decomposition (also known as higher-
order tensor decomposition) in Chapter C. In Chapter D,
we give a detailed description of tensor train decomposition
and the related algorithms. In Chapter E, i.e., the last section
of the first part, we summarize the advantages and disadvan-
tages of these decompositions and applications. In part two,
we mainly describe tensor application algorithms in machine
learning and deep learning. In Chapter A, we introduce
the application of structured tensor in data preprocessing
including tensor completion and tensor dictionary learning.
In Chapter B of this part, we introduce some applications of
tensor in classification, including algorithm innovation and
data innovation. Then, we illustrate the application of tensor
in regression, including tensor regression and multivariate
tensor regression, in Chapter C. In the last of part two,
we explain the background of the tensor network and discuss
its advantages, shortcomings, opportunities and challenges in
detail.

II. PART ONE: TENSOR AND TENSOR OPERATION
A. TENSOR NOTATIONS
A tensor can be seen as a generalization of multidimensional
arrays. For example, a scalar quantity can be considered as a
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0-order tensor, a vector can be treated as a first-order tensor,
and a matrix can be regarded as a second-order tensor. And a
third-order tensor looks like a cuboid (see figure 2).

FIGURE 2. A 3rd-order tensor looks like a cuboid [3].

A fourth-order tensor is an extension of the third-order
tensor along one dimension (see figure 3).

FIGURE 3. A 4th-order tensor extending along the lateral direction [3].

As you can imagine, a fifth-order tensor is an extension of
a third order tensor in two directions (see figure 4).

FIGURE 4. A fifth-order tensor extending along the lateral and
longitudinal directions [3].

We use underlined uppercase letters to indicate tensors,
that is, Y ∈ RI1×I2×I3×···IN , to represent an Nth-order tensor.
Then, similar to the diagonal matrix, we define the diagonal
tensor as follows: 3 ∈ RI×I×I×···I or ϒ ∈ RI×I×I×···I .
Similar to the transposition of the matrix, we define the trans-
position of the tensor as follows: Y ∈ RI1×I2×I3×···IN , Y T ∈
RIN×IN−1×IN−2×···I1 . We can also use this symbol to represent
2nd-order tensor (matrix) and 1st-order tensor (vector). For
convenience, we use separate symbols to represent 2nd-order
tensor (matrix) and 1st-order tensor (vector) respectively.
We use Y ∈ RI×J to represent matrix, y ∈ RI for vector,
y ∈ R0 for scalar.

We use yi1,i2,··· ,iN to represent the entries of an Nth-order
tensor Y ∈ RI1×I2×I3×···IN . The order of a tensor is the
total number of its ‘‘dimension’’ or ‘‘mode’’. The size of a
tensor means the range of values that can be obtained for a
dimension of tensor. For example, a tensor Y ∈ R3×4×5×6 is
of order 4, size 3 inmode-1, size 4 inmode-2, size 5 inmode-3
and size 6 in mode-4. In order to describe the tensor more
simply, simple tensor network diagram will be used. We use
the geometric nodes of a square(sometimes with polygons

such as pentagons or hexagons) to represent tensor, and the
outgoing line of the node represents the index of a particular
dimension (see figure 5 and figure 6). The Nth-order tensor
can be expressed in a similar way.

FIGURE 5. A simple network diagram of the tensor, vector y ∈ RI , matrix
Y ∈ RI×J , 3rd-order tensor Y ∈ RI×J×K [3].

FIGURE 6. A simple network diagram of the 4th-order diagonal tensor,
ϒ ∈ RI×I×I×I .

We need to know the definition of tensor slice and tensor
fiber. Tensor fiber(see figure 7) is a vector equivalent to fixing
two tensor indices, and tensor slice(see figure 8) is a matrix
equivalent to fixing one indices. We use a simple example to

FIGURE 7. Tensor fibers (vectors) for a 3rd-order tensor. It’s like tofu
being cut in both directions [127].

FIGURE 8. Tensor slices (matrices) for a 3rd-order tensor. It’s like tofu
being cut in one direction [127].

162952 VOLUME 7, 2019



Y. Ji et al.: Survey on Tensor Techniques and Applications in Machine Learning

illustrate tensor slice and tensor fiber.

C =
[[

1 2
3 4

]
,

[
5 6
7 8

]]
(1)

This is a 3rd-order tensor C ∈ R2×2×2. For tensor
slices(matrices), we can get two matrices C(1, :, :) and
C(2, :, :) when we fix the first dimension:

[
1 2
3 4

]
,
[
5 6
7 8

]
, which

we usually call them horizontal slices. If we fix the second
dimension, we can get another two matrices C(:, 1, :) and
C(:, 2, :):

[
1 2
5 6

]
,
[
3 4
7 8

]
, which we usually call them lateral

slices. If we fix the third dimension, we can still get another
two matrices C(:, :, 1) and C(:, :, 2):

[
1 3
5 7

]
,
[
2 4
6 8

]
, which we

usually call them frontal slices.
For tensor fibers(vectors), we can get four vectors

C(1, 1, :),C(1, 2, :),C(2, 1, :),C(2, 2, :) whenwe fix the first
and the second indices: [ 1 2 ], [ 3 4 ], [ 5 6 ], [ 7 8 ]. If we fix the
first and the third indices, we can get another four vectors
C(1, :, 1), C(1, :, 2), C(2, :, 1), C(2, :, 2): [ 1 3 ], [ 2 4 ], [ 5 7 ],
[ 6 8 ]. If we fix the second and the third indices, we can
get another four vectors C(:, 1, 1), C(:, 1, 2), C(:, 2, 1),
C(:, 2, 2): [ 1 5 ], [ 2 6 ], [ 3 7 ], [ 4 8 ].

B. TENSOR OPERATION
In this chapter, we begin to discuss some basic tensor
operations. Tensor operations are similar to traditional linear
algebras, but are richer and more meaningful than them.
The same operation will also be applied to the following
tensor decomposition in Chapter C. In order to get a clearer
description of the formulas, we will give examples and graph-
ical instructions. Thirteen tensor calculation formulas will be
given.We first give the definition of the following operations:⊗

means the Kronecker product,
⊙

means the Khatri-Rao
product, ◦ means the outer product, ×n means the mode-n
product. Next, we introduce a few commonly used formulas.

1) THE SUM OF TWO TENSORS

C = A+ B (2)

where A ∈ RI1×I2×I3×···IN , B ∈ RI1×I2×I3×···IN , C ∈

RI1×I2×I3×···IN , ci1,··· ,iN = ai1,··· ,iN + bi1,··· ,iN .

2) THE MODE-n PRODUCT OF A TENSOR AND A VECTOR

C = A×nv b (3)

where in ×nv, v means vector, n means mode-n,
A ∈ RI1×I2×I3×···IN means the Nth-order tensor, and
b ∈ RIn means the vector. They yield a tensor C ∈

RI1×···×In−1×In+1×···×IN with entries ci1,··· ,in−1,in+1,··· ,iN =

In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iN bin . For example,

C =
[[

1 2
3 4

]
,

[
5 6
7 8

]]
×

[
2
3

]
(4)

where C11 = A111b1 + A121b2 = 1 × 2 + 3 × 3 = 11. And
so on, we can get C =

[
11 16
31 36

]
.

3) THE MODE-n PRODUCT OF A TENSOR AND A MATRIX

C = A×nm B (5)

where in ×nm, m means matrix, n means mode-n,
A ∈ RI1×I2×I3×···IN means the Nth-order tensor, B ∈

RJ×In means the matrix. They yield a tensor C ∈

RI1×···×In−1×J×In+1×···×IN with entries ci1,··· ,in−1,j,in+1,··· ,iN =
In∑

in=1
ai1,··· ,in−1,in,in+1,··· ,iN bj,in .

4) THE MODE-(a,b) PRODUCT(TENSOR CONTRACTION) OF
A TENSOR AND ANOTHER TENSOR

C = A×(a,b) B (6)

where A ∈ RI1×I2×I3×···IN means the Nth-order tensor, B ∈
RJ1×J2×J3×···JM means another tensor and here we should note
that Ia = Jb (a ∈ [1,N ], b ∈ [1,M ]). They yield a tensor
C ∈ RI1×···×Ia−1×Ia+1×···IN×J1×···Jb−1×Jb+1···×JM with entries

ci1,··· ,ia−1,ia+1,··· ,iN ,j1,··· ,jb−1,jb+1,··· ,jM =

Ia∑
ia=1

ai1,··· ,ia,··· ,iN

bj1,··· ,jb−1,ia,jb+1,··· ,jM . Note that it is also called tensor contrac-
tion because the dimension of the new tensor is the sum of the
dimensions of the original two tensors minus the dimension
of the same size. We draw a picture to show tensor contrac-
tion(see figure 9). For convenience, when two tensors have
same size of one dimension, the () in the above formula is
usually omitted, that is C = A×a,b B.

FIGURE 9. (a) the tensor contraction of two 4th-order tensors, I3 = J1,
C = A×(3,1) B ∈ RI1×I2×I4×J2×J3×J4 . (b) the tensor contraction of two
5th-order tensors, I3 = J1, I4 = J5,
C = A×(3,1)(4,5) B ∈ RI1×I2×I5×J2×J3×J4 .

From the three formulas (the mode-n product of tenor and
vector, matrix, tensor) above, we can see that the mode-n
product offsets the same dimension, and the different dimen-
sions are added, which is similar to the product of the matrix,
but a little different.

5) THE TRANSPOSITION OF TENSOR CONTRACTION

C = (A×a,b B)T = BT ×b,a AT (7)
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6) THE CONJUGATE TRANSPOSE OF A 3RD-ORDER TENSOR
The conjugate transpose of a 3rd-order tensor X ∈ RI1×I2×I3
is a tensor X∗ ∈ RI2×I1×I3 obtained by conjugate transpos-
ing each of the frontal slices(fix the third order X (:, :, i3))
and then reversing the order of transposed frontal slices 2
through I3. We give a simple example to show(see formula 8):

C =
[[

1 3
2 4

]
,

[
5 7
6 8

]]
C∗ =

[[
1 3
5 7

]
,

[
2 4
6 8

]]
(8)

7) THE OUTER PRODUCT OF A TENSOR AND ANOTHER
TENSOR

C = A ◦ B (9)

where A ∈ RI1×I2×I3×···IN and B ∈ RJ1×J2×J3×···JM .
They yield an (N+M)th-order tensor C with entries
ci1,··· ,iN ,j1,··· ,jM = ai1,··· ,iN bj1,··· ,jM .

8) THE (RIGHT)KRONECKER PRODUCT OF TWO TENSORS

C = A⊗R B (10)

where in ⊗R, R means right, A ∈ RI1×I2×I3×···IN and B ∈
RJ1×J2×J3×···JN . They yield a tensor C ∈ RJ1I1×···×JN IN with
entries ci1j1,··· ,iN jN = ai1,··· ,iN bj1,··· ,jN , where iN jN = jN +
(iN − 1)JN is called multi-indices. Note that for Kroneker
product, two tensors must have the same dimension. They
must not carry out the Kronecker product of the matrix and
the 3rd-order tensor, and must have a 3rd-order tensor and
another 3rd-order tensor. A simple example of a second-order
matrix is provided, as follows:

C =
[
1 2
3 4

]
⊗R

[
5 6
7 8

]

=


1× 5 1× 6 2× 5 2× 6
1× 7 1× 8 2× 7 2× 8
3× 5 3× 6 4× 5 4× 6
3× 7 3× 8 4× 7 4× 8

 (11)

In fact,

C = A⊗R B = B⊗L A (12)

The right-most equation is called the left Kronecker product.

9) THE RIGHT KHATRI-RAO PRODUCT OF MATRICES

C = A�R B

= [a1 ⊗R b1, a2 ⊗R b2, · · · , aK ⊗R bK ] ∈ RIJ×K (13)

where A = [a1, a2, a3, · · · , aK ] ∈ RI×K ,B =

[b1, b2, b3, · · · , bK ] ∈ RJ×K . The left Khatri-Rao product
of matrices is similar. For convenience, the right Khatri-
Rao product of matrices is used in this survey, so we will
abbreviate the right Khatri-Rao product of matrices⊗R as⊗.

10) THE MODE-n MATRICIZATION AND VECTORIZATION
OF THE TENSOR
In the previous section, we introduced the concepts of ten-
sor slice and tensor fiber. Here we present two similar but
different concepts, matricization and vectorization. Tensor
slice and tensor fiber take some specific elements of the
tensor to form a matrix or a vector, while matricization and
vectorization are to matricize or vectorize all the elements.
We now give a formal definition.

The mode-n matricization of a tensor, Y ∈

RI1×I2×I3×···IN , is as follows:

mat(Y )n = mat(Y )n = Ymn ∈ R
In×I1···In−1In+1···IN

Where for the matrix element (inj),

j = 1+
N∑

k=1,k 6=n

(ik − 1)Jk with Jk =
k−1∏

m=1,m6=n

Im

(14)

Themode-n vectorization of a tensor,Y ∈ RI1×I2×I3×···IN,
is as follows:

vec(Y )n = Y vn ∈ R
InI1···In−1In+1···IN (15)

For the mode-n vectorization, we first performmode-n matri-
cization and then stack the matrix in columns. Of course,
vectors and matrices can also be transformed into tensor.
We give examples of mode-1 matricization and vectorization
of a 3rd-order tensor(see formula 16).

C =
[[

1 3
2 4

]
,

[
5 7
6 8

]]
⇔

[
1 2 3 4
5 6 7 8

]
⇔



1
5
2
6
3
7
4
8


(16)

11) THE TENSOR QUANTITATIVE PRODUCT

c = A • B =
J1∑
j1=1

· · ·

JN∑
jN=1

aj1,··· ,jN bj1,··· ,jN (17)

where A ∈ RJ1×···×JN ,B ∈ RJ1×···×JN . Note that the require-
ments for tensor quantitative product are too strict. Not only
the dimension of the two tensors should be the same, but also
the size of the two tensors has to be the same. In this way, we
can further define the Frobenius norm of tensor.

‖A‖F = (A • A)1/2 (18)

12) THE TENSOR ELEMENT PRODUCT

C = A~ B (19)

where C ∈ RI1×···×IN , A ∈ RI1×···×IN ,B ∈ RI1×···×IN ,
ci1,··· ,iN = ai1,··· ,iN bi1,··· ,iN . Note that since it is element
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product, similar to the quantitative product, the two tensors
must have the same dimension and the same size.

13) THE TENSOR TRACE
Similar to trace of the matrix, tensor also has a trace.
(Gu, 2009) [162] proposed the concept of tensor trace. Let’s
first look at the concept of inner indices. If a tensor has the
same size for several dimensions, those same size dimensions
are called inner indices. For example, a tensor X ∈ RA×B×A

has two inner indices. Modes 1 and 3 are both size A. Then,
we define the following concept of tensor trace:

x = Trace(X ) =
R∑
r=1

X (r, :, r) (20)

x = [x1, x2, · · · , xB]T , xi =
R∑
r=1

X (r, i, r) (21)

x = [tr(X1), · · · , tr(XB)]T , Xi ∈ RR×R (22)

Let’s give an example of the 3rd-order tensor that we have
used before.

C =
[[

1 2
3 4

]
,

[
5 6
7 8

]]
(23)

c = Trace(C) = [1+ 6, 3+ 8]T = [7, 11]T (24)

C1 =

[
1 2
5 6

]
, C2 =

[
3 4
7 8

]
(25)

14) THE TENSOR CONVOLUTION
Tensor also has convolution, which is similar to matrix con-
volution. For two Nth-order tensors A ∈ RI1×I2×I3×···IN and
B ∈ RJ1×J2×J3×···JN . Their tensor convolution is as follows:

C = A ∗ B (26)

C ∈ R(I1+J1−1)×(I2+J2−1)×···×(IN+JN−1), with entries

ck1,k2,··· ,kN =
J1∑
j1=1

J2∑
j2=1
· · ·

JN∑
jN=1

bj1,··· ,jnak1−j1,··· ,kn−jn For a

simple and intuitive display, we use matrix convolution to
illustrate (see figure 10).

FIGURE 10. A schematic diagram of the results of matrix convolution,
with C11 = 0× 1 = 0,C12 = 1× 1+ 0× 2 = 1,C22 = 1× 2+ 2×
1+ 1× 1+ 0× 0 = 5, · · · .

15) SHORT SUMMARY
The formulas for tensor operations described above are rela-
tively basic ones. Because tensor can be seen as a generaliza-
tion of matrices and vectors, the above formulas also apply to

vectors and matrices (just change the dimension to 1 or 2 in
the formulas). Many researchers have also defined some new
operations, such as the strong Kronecker product(de Launey
and Seberry [140]; Phan et al. [8]) and themode-nKhatri-Rao
product of tensors (Ballard et al.) [33]. Based on the Kroneker
product, these two operations are just grouped into blocks to
perform the Kroneker product operation.

This chapter mainly introduces basic calculation formulas
commonly used by tensor. If you want to know more about
many other formulas, please refer to (Kolda and Bader) [127].

C. TENSOR DECOMPOSITION
This chapter begins to discuss the knowledge of tensor
decomposition, which is similar but different from matrix
decomposition. Tensor decomposition aims to reduce the
computational complexity while ensuring the data structure,
so as to better deal with the data. Tensor decomposition
technology has been gradually used in data analysis and
processing. This chapter will focus on five main types of
decomposition, i.e., the Canonical Polyadic(CP) decompo-
sition, the Tucker decomposition, the MultiLinear Singular
Value(the higher-order SVD or HOSVD) decomposition,
the Hierarchical Tucker(HT) decomposition and the tensor-
train(TT) decomposition, respectively.

1) THE CANONICAL POLYADIC(CP) DECOMPOSITION
Before introducing CP decomposition, we first introduce the
bidirectional component analysis, i.e., the constrained low-
rank matrix factorization.

C = 3ABT + E =
R∑
r=1

λrarbTr + E (27)

where 3 = diag(λ1, · · · , λr ) is an diagonal matrix.
C ∈ RI×J is a known matrix (for example, known input data,
etc.). E ∈ RI×J is a noise matrix. A = [a1, · · · , aR] ∈
RI×R, B = [b1, · · · , bR] ∈ RJ×R are two unknown factor
matrices with ar ∈ RI , br ∈ RJ , r ∈ [1,R]. In fact, if the
noise matrix is very small, it can be ignored and the upper
expression can be written as C ≈ 3ABT .

In fact, based on low rank matrix decomposition,
(Hitchcock [31]; Harshman, 1970 [110]) proposed the CP
decomposition of tensor. Before introducing the definition of
CP decomposition, we give the definition of rank-1 tensor.
If a tensor can be represented as follows:

Y = b1 ◦ b2 ◦ · · · bN (28)

where Y ∈ RI1×I2×I3×···IN , bn ∈ RIn , yi1,··· ,iN = b1i1 · · · b
N
iN ,

then we call the tensor rank-1 tensor. In CP decomposition,
tensor is decomposed into the linear sum of these vectors.
CP decomposition is defined as follows:

Y ≈
R∑
r=1

λrb1r ◦ b
2
r ◦ · · · b

N
r =3×1m B1 ×2m B2 · · · ×Nm BN

(29)
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Similar to the constrained low-rank matrix factorization that
we have just described, where λr = 3r,r,r,··· ,r , r ∈ [1,R]
are entries of the diagonal core tensor 3 ∈ RR×R×R×···R.
Bn = [bn1, b

n
2, · · · , b

n
R] ∈ R

In×R are factor matrices. With the
help of other formulas, CP decomposition has a lot of other
similar expressions, among which we give two commonly
used equations. Considering a special case, when all factor
matrices are the same, we call the CP decomposition a sym-
metric tensor decomposition, then Y ∈ RI×I×I ···I . Figure 11
shows CP decomposition of a 3rd-order tensor(see figure 11).

FIGURE 11. CP decomposition of a 3rd-order tensor,
Y ≈ 3×1m B1 ×2m B2 ×3m B3 [3].

CP Rank: Similar to matrix, tensor also has a rank. Since
it is a CP decomposition at this time, we call it CP rank. CP
rank refers to the smallest R for which the CP decomposition
in the above formula holds exactly.We use rcp(Y ) to represent
the CP rank.

In practice, unlike traditional matrix decomposition, tensor
usually have interference (such as noise or even data loss).
Therefore, it is usually difficult to find the exact solution
of CP decomposition, so most of them are approximate
solutions.

So the question comes, that how do we get tensor approx-
imate CP decomposition, or in other words, that how can we
get the core tensor? The general approach is to first find the
factor matrix Bn by minimizing an appropriate loss function.
(A.Vorobyov, 2005) [116] presents a loss function similar to
the least square method.

J (B1, · · · ,BN ) = ‖Y −3×1m B1 · · · ×Nm BN‖2F (30)

Our goal is to minimize the loss function in the upper form,
and we use the alternating least square method, which means
iterative optimization by fixing the value of a variable other
than one. That is to say, one of those N factor matrices
Bn, is optimized separately at a time, keep the values of
other N-1 factor matrices unchanged (we first initialize all
N factor matrices, and optimize only B1 by gradient descent
while keep the initial values of B2 to BN unchanged). This
becomes a single variable loss function optimization prob-
lem. Then it continues to iterate until the iteration threshold
is reached or the algorithm has converged. The derivation
is not given here. We give the results directly, and take the
4th-order tensor as an example to write the following

example: the factor matrices can be iterative updated as

Bn = Ymn[(BN �R · · ·Bn+1 �R Bn−1 · · ·B1)
T ]† (31)

where Ymn represents the mode-n matricization of tensor Y ,
† means the Moore-Penrose pseudo-inverse of the matrix.
We give an algorithm for the 4th-order tensor CP decompo-
sition (see Algorithm 1).

Algorithm 1 The CP Decomposition Algorithm of a
4th-Order Tensor
Input:

The 4th-order tensor Y ∈ RI×J×K×L

Output:
Factor matrices A,B,C,D and the core tensor 3

1: Initialize A,B,C,D and CP rank R, where R ≤

min{IJ , JK , IK };
2: while the iteration threshold does not reach or the algo-

rithm has not converged do
3: A = Ym1[(D�R C �R B)

T ]†;
4: Normalize column vectors of A to unit vector;
5: B = Ym2[(D�R C �R A)

T ]†;
6: Normalize column vectors of B to unit vector;
7: C = Ym3[(D�R B�R A)

T ]†;
8: Normalize column vectors of C to unit vector;
9: D = Ym4[(C �R B�R A)

T ]†;
10: Normalize column vectors of D to unit vector;
11: Save the value of the norms of the R column vectors

in the factor matrix C to the core tensor 3;
12: end while
13: return Factor matrices A,B,C,D and the core tensor 3

From the above algorithm, we can see that the key
to calculate CP decomposition is to calculate Khatri-
Rao product and the pseudo inverse of the matrices.
(Choi and Vishwanathan [63]; Karlsson et al. [79]) proposed
the least-squares solution method of CP decomposition and
the detailed derivation process can be referenced by them.

2) THE TUCKER DECOMPOSITION
The Tucker decomposition was first proposed by
(Tucker) [81], so it was namedTucker decomposition. Similar
to the CP decomposition, the Tucker decomposition also
divides tensor into small size of core tensor and factor
matrices, but what we need to pay attention to is that the core
tensor here is not necessarily the diagonal tensor. We define
the Tucker decomposition as follows:

Y ≈
R1∑
r1=1

· · ·

RN∑
rN=1

ar1r2···rN b
1
r1 ◦ b

2
r2 ◦ · · · b

N
rN

= A×1m B1 ×2m B2 · · · ×Nm BN
Y v1 = (BN ⊗R BN−1 · · · ⊗R B1)Av1 (32)

where ar1r2···rN are entries of the small size core tensor
A ∈ RR1×R2···RN , Bn = [bn1, b

n
2, · · · , b

n
Rn ] ∈ R

In×Rn are factor
matrices, Y v1 is the mode-1 vectorization of the tensor Y ,
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and Av1 is the mode-1 vectorization of the core tensor A.
In fact, CP decomposition is a special form of Tucker decom-
position. We draw two decomposition figures to compare
them intuitively (see figure 12 and figure 13).

FIGURE 12. Comparison of CP decomposition and Tucker decomposition
for a 3rd-order tensor. The above figure is Tucker decomposition
Y ≈ A×1m A×2m B×3m C and the following figure is CP decomposition
Y ≈ 3×1m A×2m B×3m C , Y ∈ RI×J×K .

FIGURE 13. Comparison of CP decomposition and Tucker decomposition
for a 3rd-order tensor, (simple tensor network schematic mode). The
above figure is CP decomposition Y ≈ 3×1m B1 ×2m B2 ×3m B3 and the
following figure is Tucker decomposition Y ≈ A×1m B1 ×2m B2 ×3m B3,
Y ∈ RI1×I2×I3 . Note that the factor matrices can be represented by
different English letters.

As we can see from the two figures (figure 12 and
figure 13), the CP decomposition is a special form of Tucker
decomposition. Once the normal core tensor degenerates into
a diagonal core tensor, the Tucker decomposition becomes
the CP decomposition. As did to CP decomposition, we can
use the properties of other formulas to represent the Tucker
decomposition. Here we give two that commonly used.
Multiple Linear Rank (Tucker Rank):Unlike CP decompo-

sition, a new rank is redefined here for Tucker decomposition,
whichwe call multiple linear rank. Themultiple linear rank of
the tensor is (R1,R2, · · · ,RN ). Moreover, if the upper Tucker
decomposition can get an equal sign, then the multiple linear
rank of a tensor Y ∈ RI1×I2×I3×···IN is defined as follows:

rml(Y ) = (r(Ym1), r(Ym2), · · · , r(YmN )) (33)

FIGURE 14. Because only B3 is the identity matrix, the graph is the
Tucker-1 decomposition model.

where Ymn is the mode-n matricization of tensor Y , r(Ymn)
means the matrix rank of the mode-n matricization of
tensor Y .

If the upper Tucker decomposition can get an equal sign,
then it will have the following important properties:

1. The CP rank of any tensor Y = A×1mB1×2mB2 · · ·×Nm
BN is equal to the small size core tensor A.

rcp(Y ) = rcp(A) (34)

where A is the small size core tensor of Y .
2. If a tensor Y has full column rank factor matrices and its

multiple linear rank=(R1,R2, · · · ,RN ), then

Rn ≤
N∏
k 6=n

Rk ,∀n. (35)

3. If a tensor Y ∈ RI×I×I ···×I has full column rank
factor matrices and its corresponding CP decomposition is
symmetric (all the factor matrices are the same), then its core
tensor,A ∈ RR×R×R···R, is also symmetric. In this case, Tucker
decomposition is equivalent to CP decomposition, which is
called symmetric decomposition (as we’ve defined before.).

4. If a tensor Y ∈ RI1×I2×···IN has full column rank factor
matrices and all the factor matrices are orthogonal, then the
Frobenius norms of the tensor Y and it’s core tensor A are
equal.

‖Y‖F = ‖A‖F (36)

There are also some special Tucker decompositions, which
are briefly described here. The full column rank of all the fac-
tor matrices in the property 3 we just have is usually called an
independent Tucker decomposition. On this basis, if all the
factor matrices are also orthogonal matrices, that is BTn Bn =
IRn , we call it orthogonal Tucker decomposition. If there
are N identity matrices in factor matrices, we usually call
them Tucker-N decomposition (see figure 14). For example,
Y = A×1m B1 ×2m B2 ×3m I ×4m I , then we call it Tucker-2
decomposition.
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Here we briefly introduce some operational properties of
Tucker decomposition. Consider two Nth-order tensors X =
AX ×1m B1 ×2m B2 · · · ×Nm BN , Y = AY ×1m C1 ×2m
C2 · · ·×NmCN , their multiple linear rank is (R1,R2, · · · ,RN )
and (Q1,Q2, · · · ,QN ), respectively. Then, they will have the
following computational properties:

1. The (Right or left) Kronecker product of the two tensors:

Z = X ⊗ Y

= (AX ⊗ AY )×1m (B1 ⊗ C1) · · · ×Nm (BN ⊗ CN ) (37)

2. TheHadamard product of the two tensors (the same sizes
and order):

Z=X ~ Y = (AX⊗L AY )×1m (B1 � C1) · · · ×1m (BN � CN )

(38)

3. The inner product of the two tensors:

z = X • Y = (vec(X )1)T vec(Y )1
= (vec(AX )1)

T
⊗L ((B1)TC1)⊗L ((B2)TC2) · · · ⊗L

((BN )TCN )vec(AY )1 (39)

Here it is noted that we used a vector equivalent representa-
tion of the Tucker decomposition:

vec(Y )1 = (BN ⊗R BN−1 · · · ⊗R B1)vec(A)1 (40)

We put the formula 40 in 39 and get the result.

3) THE HIERARCHICAL TUCKER DECOMPOSITION
(Hackbusch and Khn [142]; Grasedyck [78]) produced
the Hierarchical Tucker decomposition. The Hierarchical
Tucker(HT) decomposition decomposes tensor in a hierarchi-
cal way, and it is similar to a binary tree split. It is important to
note that for theHT decomposition, all the core tensormust be
less than or equal to the third order. In other words, the fac-
tor matrices connected to the core tensor cannot exceed 3.
Simpler, if you use a tensor network diagram to illustrate,
a core tensor can’t have more than three lines connected to
it. Also, the HT decomposition model graphs cannot contain
any loops. We draw a diagram of the HT decomposition of
5th-order tensor and 6th-order tensor so that we can under-
stand it more intuitively (see figure 15 and figure 16).
From the figure 15 and the figure 16, we can find that the

first step of HT decomposition is to extract the dimensions
to be decomposed. For a 5th-order tensor, we can extract
any one dimension or any two dimensions and the steps
are repeated until the 5th-order tensor becomes five factor
matrices. In fact, we can discover that the HT decomposition
replaces the core tensor A of Tucker decomposition, with
low-order interconnected kernels, thus forming a distributed
tensor network. We draw the conversion of HT decomposi-
tion and Tucker decomposition of the 5th-order tensor(see
figure 17). Of course, we can find that with the increase
in dimension, these distributed networks (HT decomposition
networks) are not unique(see figure 16).

FIGURE 15. Schematic diagram of HT decomposition of 5th-order tensor,
in which the core tensor is split into two small-size 3rd-order tensors
A12,A345, and the right core tensor is split into the factor matrix B3 and
the 3rd-order core tensor of smaller size A45. Finally, A12 and A45
continue to be decomposed into the last four factor matrices
B1,B2,B3,B4. The diagram on the right is the HT tensor network
structure diagram with the core tensor A12345 in the original left image
replaced by a connecting line.

FIGURE 16. Similar to the HT decomposition of the fifth-order tensor
in figure 15, it is noted here that since the decomposition of the core
tensor is different at the beginning, there are two kinds of decomposition
cases. The above figure is to decompose A123456 according to
dimensions 12 and 3456 respectively, and the following figure is to
decompose A123456 according to dimensions 123 and 456 respectively.
The results are not the same but both the HT decomposition.

FIGURE 17. The Tucker decomposition of the 5th-order tensor and its
equivalent HT decomposition, the right side is the equivalent conversion
of the left Tucker decomposition.

We can use the vector form of the Tucker decomposition
to explain the HT decomposition network in figure 15.

vec(Y )1 = (B1 ⊗L B2 · · · ⊗L B5)vec(A12345)
vec(A12345)1 = vec(A12)1 ⊗L vec(A345)1
vec(A12)1 = B1 ⊗L B2
vec(A345)1 = B3 ⊗L vec(A45)1
vec(A45)1 = B4 ⊗L B5 (41)
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In fact, the core idea is to replace the core tensor with smaller
dimension of tensors until the original tensor is decomposed
into factor matrices. Finally, the original tensor is decom-
posed into a case where several 3rd-order tensors and sev-
eral factor matrices are connected to each other. Here we
introduce the HT decomposition of the 5th-order and the
6th-order tensor. The higher order tensor HT decomposition
of the tensor network diagram can be drawn with a similar
example and for more details please refer to (Tobler [22];
Kressner et al. [23]).
After Tucker decomposition, although the size of the core

tensor is reduced, the dimension of the core tensor is still the
same as before. When the original tensor dimension is very
large (for example, greater than 10), we usually express it
with the distributed tensor network similar to the HT decom-
position. That is, the dimension of core tensor is not limited
to the 3rd order. According to the actually need, it can be
4th or 5th order (see figure 18).

FIGURE 18. The blue rectangles represent the core tensors and the red
circles represent the factor matrices. The diagram on the left is an
18th-order tensor HT decomposition tensor network diagram, in which
the 4th-order small size core tensors are connected to each other. The
diagram on the right is a 20th-order tensor HT decomposition tensor
network diagram, in which the 5th-order small size core tensors are
connected to each other.

4) THE HIGHER ORDER SVD(HOSVD) DECOMPOSITION
The high-order singular value decomposition of tensor can be
considered as another special form of Tucker decomposition
(De Lathauwer et al.) [73], where the factor matrices and the
core tensor are all orthogonal.

The definition of core tensor orthogonality is as follows:
1. The tensor slices in each mode of a tensor should mutually
orthogonal, such as, for a 3rd-order tensor A ∈ RI×J×K

(Aa,:,:)(Ab,:,:) = 0, for (a 6= b, a, b ∈ [1, I ])

(A:,c,:)(A:,d,:) = 0, for (c 6= d, c, d ∈ [1, J ])

(A:,:,e)(A:,:,f ) = 0, for (e 6= f , e, f ∈ [1,K ]) (42)

2. The Frobenius norms of slices in each mode of a tensor
should increase with the increase in the running index, such
as, for a 3rd-order tensor

‖Aa,:,:‖F ≥ ‖Ab,:,:‖F , for(a 6= b, a, b ∈ [1, I ])

‖A:,c,:‖F ≥ ‖A:,d,:‖F , for(c 6= d, c, d ∈ [1, J ])

‖A:,:,e‖F ≥ ‖A:,:,f ‖F , for(e 6= f , e, f ∈ [1,K ]) (43)

FIGURE 19. The truncated HOSVD decomposition of a 3rd-order
tensor [127].

In fact, the orthogonal constraints of tensors and the
constraints of matrix SVD decomposition are very simi-
lar. Similar to the truncated SVD decomposition of the
matrix, the tensor also has a truncated HOSVD decomposi-
tion (see figure 19).

The first step in finding the solution of HOSVD decom-
position is to first perform the mode-n matricization of the
original input tensor and then use a truncated or randomized
SVD to find the factor matrices(see equation 157)

Xmn = UnSnV T
n = [U1

n ,U
2
n ][S

1
n , 0][V

T
n1,V

T
n2] (44)

When the factor matrix is obtained, the core tensor can be
decomposed using the following formula:

A = X ×1m BT1 ×2m BT2 · · · ×Nm B
T
N (45)

where X ∈ RI1×I2···IN is the input tensor, A ∈ RR1×R2···RN

is the core tensor, and Bn ∈ RIn×Rn are the fac-
tor matrices. See Algorithm 2 for details and refer to
(Vannieuwenhoven et al. [101]; Halko et al. [96]).

Algorithm 2 The Truncated HOSVD of the Tensor
(N.Vannieuwenhoven, 2012) [101]
Input:

The Nth-order input tensor X ∈ RI1×I2···IN and truncation
rank (R1,R2, · · · ,RN ) and accuracy ε

Output:
Estimated value X̂ = A ×1m B1 ×2m B2 · · · ×Nm BN ,
the core tensor A ∈ RR1×R2···RN and the factor matrices
Bn ∈ RIn×Rn such that ‖X − X̂‖F ≤ ε

1: A← X ;
2: for n=1 to N do
3: [Un, Sn,V T

n ] = [U1
n ,U

2
n ][S

1
n , 0][V

T
n1,V

T
n2] =

truncated − svd(Amn,
ε
√
N
);

4: Bn = U1
n ;

5: Amn← S1nV
T
n1;

6: end for
7: A = X ×1m BT1 ×2m BT2 · · · ×Nm B

T
N ;

8: return the core tensor A and factor matrices Bn
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After performing the mode-n matricization of the tensor,
if the tensor size is too large, we can also obtain the factor
matrices by matrix partitioning, as follows:

Xmn = [X1n,X2n, · · · ,XMn]

= UnSn[V T
1n,V

T
2n, · · · ,V

T
Mn] (46)

where we divide the resulting matrix (called the unfolded
matrix) Xmn intoM parts. Then we use the eigenvalue decom-

position XmnX
T
mn = Un(Sn)2UT

n =
M∑
m=1

XmnXTmn, Un =

[U1
n ,U

2
n ], B

n
= U1

n . And we can get Vmn = XTmnUn(Sn)
−1.

Thus, computational complexity and computational memory
will be decreased and the efficiency will be improved to
some extent by matrix partitioning. At the same time, it also
alleviates the curse of dimension problem.

Some researchers proposed a random SVD decomposi-
tion algorithm for matrices with large size and low rank.
(Halko et al.) [96] reduced the original input matrix to a
small size matrix by random sketching, i.e., by multiplying
a random sampling matrix (see Algorithm 3).

Algorithm 3 The Random SVD Decomposition Algorithm
for Large-Size and Low Rank Matrices (Halko et al.) [96]
Input:

The large-size and low rank matrix X ∈ RI×J , estimated
rank R, oversampling parameter P, overestimated rank
R̂ = R + P, exponent of the power method q (q=0
or 1)

Output:
the SVD of X, orthogonal matrix U ∈ RI×R̂, diagonal
matrix S ∈ RR̂×R̂ and V ∈ RJ×R̂

1: Initialize a random Gaussian matrixW ∈ RJ×R̂;
2: Calculate sample matrix Y = (XXT )qXW ∈ RI×R̂;
3: Compute the QR decomposition of the sample matrix
Y = QR;

4: Calculate the small-size matrix A = QTX ∈ RR̂×J ;
5: Compute the SVD of the small-size matrix A = ÛSV T ;
6: Calculate the orthogonal matrix U = QÛ ;
7: return orthogonal matrices U ∈ RI×R̂, diagonal matrix
S ∈ RR̂×R̂ and V ∈ RJ×R̂

The advantage of using the overestimated rank of the
matrix is that it can achieve a more accurate approximation
of the matrix. (Chen et al.) [129] improved the approxima-
tion of SVD decomposition by integrating multiple random
sketches, that is, multiplying the input matrix X by a set of
random Gaussian matrices. (Halko et al.) [96] used a special
sampling matrix to greatly reduce the execution time of the
algorithm while reducing complexity. However, for a matrix
with a slow singular value decay, this method will result in a
lower accuracy of SVD.

Many researchers developed a variety of different
algorithms to solve the HOSVD decomposition. For
details, please refer to (Vannieuwenhoven et al. [101];
Austin et al. [138]; Constantine et al. [103]).

Compared with the truncated SVD decomposition of the
standard matrix, the tensor HOSVD decomposition does not
produce the best multiple linear rank, but only the weak linear
rank approximation (De Lathauwer et al. ) [73]:

‖X−A×1m B1×2m B2 · · ·×Nm BN‖≤
√
N‖X−X̂Prefect‖ (47)

where X̂Prefect is the best approximation for X .
In order to find an accurate approximation of Tucker

decomposition, researchers have extended the alternating
least squares method to the higher-order orthogonal iterations
(Jeon et al. [56]; Austin et al. [138];Constantine et al. [103];
De Lathauwer et al. [74]). For details, please refer to
Algorithm 4.

Algorithm 4 The Higher-Order Orthogonal Iterations
(Austin et al. [138]; De Lathauwer et al. [74])
Input:

The Nth-order input tensor X ∈ RI1×I2···IN decomposed
by Tucker.

Output:
the core tensor A and factor orthogonal matrices
Bn,BTn Bn = IRn

1: Initialize all parameters via the Truncated HOSVD by
Algorithm 2;

2: while the cost function ‖X − A ×1m B1 · · · ×Nm BN‖2F
does not reach convergence do

3: for n=1 to N do
4: Y ← X ×(p6=n)m (BTp );
5: Z ← Ymn(Ymn)

T
∈ RR×R;

6: Bn← leading Rn eigenvectors of Z;
7: end for
8: A← Y ×Nm (BTN );
9: end while
10: return the core tensor A and factor matrices Bn

When the size of the original tensor is too large(too many
elements), it will result in insufficient memory, and finally
the computational complexity may also increase. In this case,
the operation can be simplified in the form of a matrix prod-
uct. Simply put, the mode-n product of the tensor and the
matrix is converted into the product of the general matrix to
simplify the operation and reduce thememory (see figure 20).

For the large size tensor, another way to simplify the
operation is to use the blocking method. It simply divides
the original tensor and the factor matrix into blocks, and then
performs the mode-n product between the small size matrix
and the small size tensor (see figure 21).

As seen from the figure 21, we divide the input tensor X
into small pieces X (x1,x2,··· ,xN ). Similarly, we divide the factor
matrix BTn into B(xn,bn). The tensor A

n remained by the mode-
n product of the matrix and the tensor is equal to:

An(x1,x2,··· ,bn,··· ,xN )=
Xn∑
xn=1

X (x1,x2,··· ,bn,··· ,xN ) ×nm (Bn(xn, bn))T

(48)
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FIGURE 20. The mode-n product of a factor matrix and a large-size
3rd-order tensor is shown in the figure. When the tensor size is very large,
the mode-n matricization of the tensor can be first performed, and then
multiplied by the factor matrix to simplify the calculation.

FIGURE 21. The mode-n product of a factor matrix and a large-size
3rd-order tensor is shown in the figure. When the tensor/matrix size is
very large, we can also divide the large-size tensor/matrix into several
small-size tensors/matrices, and then operate on the small-size
tensors/matrices after blocking, thus simplifying the operation [52].

5) THE TENSOR-SVD(T-SVD) DECOMPOSITION
Similar to the SVD decomposition of a matrix, when we
extend the matrix to a 3rd-order tensor, we call it the
Tensor-SVD decomposition.

X = U ×(2,1)(3,3) S ×2,1 V ∗ (49)

where X ∈ RI1×I2×I3 , U ∈ RI1×I1×I3 , V ∈ RI2×I2×I3 .
S ∈ RI1×I2×I3 means f- diagonal tensor, each of its frontal
slices is a diagonal matrix. We draw a figure to show the t-
svd decomposition (see figure 22).

FIGURE 22. T-SVD of a 3rd-order tensor [20].

6) THE TENSOR CROSS-APPROXIMATION
Before we discuss the concept of the Tensor Cross-
Approximation, we first introduce some concepts of
matrix cross approximation. (Bebendorf et al. [85];
Khoromskij and Veit [16]) proposed the concept of thematrix

cross approximation(MCA). The main role of the MCA is to
reduce the size of the original large-size matrix by finding
a linear combination of several components of the matrix,
thereby decreasing computational complexity and computa-
tionalmemory. These components are usually a small fraction
of the original matrix. This method has a premise that the
original matrix is highly redundant, so it can be approximated
by a small size matrix with some marginal information lost.

We illustrate the MCA in figure 23.

FIGURE 23. Schematic diagram of MCA, X = ABC + E , A ∈ RI×A,
B ∈ RA×B, C ∈ RB×J , E ∈ RI×J [3].

From figure 23 we give the specific formula of the MCA
method:

X = ABC + E (50)

where A ∈ RI×A is a small size matrix obtained by selecting
appropriate A columns from the original matrix X. B ∈ RA×B

is a small size matrix obtained by selecting the appropriate B
rows from the original matrix X. C ∈ RB×J is a small size
matrix obtained from the appropriate selected B rows in the
original matrix X. E ∈ RI×J is the redundant matrix (error
matrix).

Obviously, if the elements of the error matrix are small
enough, we can convert the MCA decomposition of X above
into a CR matrix decomposition.

X ≈ CR (51)

where C = A ∈ RI×A, R = BC ∈ RA×J or C = AB ∈ RI×B,
R = C ∈ RB×J .

Note that in order to reduce the size, A � J and B � I ,
and minimize the F norm of the redundancy matrix ‖E‖F ,
the choices of A and B are also very important. Generally,
if A and B are given, then the three matrices can be obtained
according to the method as shown in figure 23(split the orig-
inal matrix and then get three matrices from it). Another spe-
cial property is that when rank(X ) ≤ min(A,B), the matrix
cross-approximation solution is exact or the error matrix E at
this time is very small and can be ignored, i.e., X = ABC .
Now we extend the concept of the MCA to the form

of tensor, i.e., tensor cross-approximation (TCA). There are
usually two ways to implement TCA.

1. (Mahoney et al.) [93] extended MCA to the matrix form
of tensor data (that is, find the matricization of the tensors and
then implement MCA).
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FIGURE 24. The schematic diagram of TCA is similar to MCA. It is noted that R1,R2 and R3 are selected appropriately, and then
four new tensors A,B,C,D are formed. The rightmost is the equivalent Tucker decomposition diagram. For detailed derivation,
please refer to formula 52.

FIGURE 25. A simple tensor network diagram of TCA and Tucker decomposition. Here is a schematic
diagram of the conversion of TCA and Tucker decomposition [3].

2. (Caiafa and Cichocki) [17] proposed a Fiber Sampling
Tucker Decomposition that operates directly on the input
matrix, but with the premise that it is based on low rank
Tucker decomposition. Since tensor usually has a good low-
rank Tucker decomposition, FSTD algorithm is often used.
Figure 24 and 25 shows the TCA by FSTD algorithm.

We can see from figure 24 and 25 that the FSTD algorithm
first finds a suitable cross tensor from the original input ten-
sor, and then changes the size of the core tensor. Specifically
by the formula:

X = A×1m B1 ×2m B2 ×3m B3
= W ×1m Bm1 ×2m Cm2 ×3m Dm3 (52)

where the first equation is the standard Tucker decomposi-
tion. In the second equation, where Bm1 ∈ R

I1×R2R3 , Cm2 ∈

RI2×R1R3 , Dm3 ∈ R
I3×R1R2 , W = A ×1m A

†
m1 ×2m A

†
m2 ×3m

A†m3 ∈ R
R2R3×R1R3×R1R2 . Note that Bm1A

†
m1 = B1, Cm2A

†
m2 =

B2, Dm3A
†
m3 = B3. The above is for the 3rd-order tensor, and

when the dimension becomes 2(the matrix), it is easy to see
that the TCA degenerates into MCA.

For an Nth-order tensor, the formula for FSTD is as follows
(Caiafa and Cichocki, 2015) [17]:

X = A×1m B1 ×2m B2 × · · · ×Nm BN
= W ×1m C1

m1 ×2m C2
m2 · · · ×Nm C

N
mN (53)

For a 3rd-order tensor, the four cross tensors of the above
FSTD(W ,B,C,D) can be obtained by random projection
(see formula 51), as follows:

W = X ×1m B1 ×2m B2 ×3m B3 ∈ RR1×R2×R3

B = X ×2m B2 ×3m B3 ∈ RI1×R2×R3

C = X ×1m B1 ×3m B3 ∈ RR1×I2×R3

D = X ×1m B1 ×2m B2 ∈ RR1×R2×I3 (54)

where Bn ∈ RRn×In are the projection matrices.

7) THE TENSOR TRAIN AND TENSOR CHAIN
DECOMPOSITION
CP decomposition is a special case of Tucker decomposi-
tion. The core tensor of Tucker decomposition is further
decomposed into hierarchical tree structure and becomes
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FIGURE 26. The TT and TC decomposition for a large size vector. Figure (a) first reorganizes the vector into a
suitable Nth-order tensor, Y ∈ RI1×I2···×IN ← y ∈ RI , I = I1I2 · · · IN , and then TT and TC decomposition are
performed on the Nth-order tensor. Figure (a) is TT decomposition, and Figure (b) is TC decomposition. Please
refer to formula 55 for the TT decomposition of Nth-order tensor.

HT decomposition. The Tensor Chain(TC) decomposition
is a special case of HT decomposition. The core tensor is
in series and aligned, i.e., every core tensor has the same
dimension, and at the same time, all the factor matrices
are unit matrices. The advantage of having the same form
of core tensor and unit matrix is that it can significantly
reduce the amount of computation, facilitate subsequent opti-
mization, and so on. The Tensor Train(TT) decomposition
is also a special case of HT decomposition. (Oseledet [60]
and Oseledet and Tyrtyshnikov [61]) first put forward the
concept of TT decomposition. The only difference between
TT decomposition and TC decomposition is that the dimen-
sion of the first and the Nth core tensor is one less than
the dimension of the intermediate N-2 core tensors in TT
decomposition. In different domains, TT decomposition has
different names. Generally speaking, in the field of physics,
when we refer to the Tensor Chain(TC) decomposition as
the Matrix Product State (MPS) decomposition with periodic
boundary conditions(PBC), we also refer to the TT decompo-
sition as the Matrix Product State (MPS) decomposition with
the Open Boundary Conditions. Before we give the concrete
expression, we draw a picture to give an intuitive explanation
of the TT decomposition and the TC decomposition (see
figure 26 and figure 27).

In figure 26 and figure 27, we first transform the large
size vector and matrix into the Nth-order and 2Nth-order
small size tensor, respectively. Then we decompose them by
TT or TC. We can see that the only difference between TT
decomposition and TC decomposition is that TC decomposi-
tion connects the first core tensor and the last core tensor with
a single line RN .

Then we give a concrete mathematical expression of TT
decomposition of an Nth-order tensor Y ∈ RI1×I2×I3×···IN .

Y = A1 ×3,1 A2 · · · ×3,1 AN (55)

where An ∈ R
Rn−1×In×Rn ,R0 = RN = 0, n = 1, 2, · · · ,N

yi1,i2,··· ,iN =
R1,R2,··· ,RN−1∑
r1,r2,··· ,rN−1=1

a11,i1,r1a
2
r1,i2,r2

· · · aN−1rN−2,iN−1,rN−1
aNrN−1,iN ,1 (56)

where yi1,i2,··· ,iN and anrn−1,in,rn are entries of Y and An,
respectively.

Y =
R1,R2,··· ,RN−1∑
r1,r2,··· ,rN−1=1

a1,r11 ◦ ar1,r22 ◦ · · · ◦ arN−2,rN−1N−1 arN−1,1N

(57)
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FIGURE 27. The TT and TC decomposition for a large size matrix. Figure (a) first reorganizes the matrix into a suitable
2Nth-order tensor, Y ∈ RI1×J1···×IN×JN ← Y ∈ RI×J , I = I1I2 · · · IN , J = J1J2 · · · IN , and then TT and TC decomposition are
performed on the 2Nth-order tensor. Figure (a) is TT decomposition, and Figure (b) is TC decomposition. Please refer to
formula 58 for the TT decomposition of 2Nth-order tensor.

where arn−1,rnn = An(rn−1, :, rn) ∈ RIn are tensor
fiber(vectors).

The above three formulas are TT decomposition for-
mula corresponding to the large-size vector decomposed into
Nth-order tensors (that is, figure 26). Similar to the TT
decomposition for the Nth-order tensor, the TT decomposi-
tion for the 2Nth-order tensor (see figure 27) is as follows:

Y = A1 ×4,1 A2 · · · ×4,1 AN (58)

where An ∈ R
Rn−1×In×Jn×Rn ,R0 = RN = 0, n = 1, 2, · · · ,N

yi1,i2,··· ,iN =
R1,R2,··· ,RN−1∑
r1,r2,··· ,rN−1=1

a11,i1,j1,r1a
2
r1,i2,j2,r2

· · · aN−1rN−2,iN−1,jN−1,rN−1
aNrN−1,iN ,jN ,1 (59)

where yi1,i2,··· ,iN and anrn−1,in,jn,rn are entries of Y and An,
respectively.

Y =
R1,R2,··· ,RN−1∑
r1,r2,··· ,rN−1=1

A1,r11 ◦ Ar1,r22 ◦ · · · ◦ ArN−2,rN−1N−1 ArN−1,1N

(60)

where Arn−1,rnn = An(rn−1, :, :, rn) ∈ RIn×Jn are tensor
slice(matrices).

Similarly, the 3rd-order large-size tensor or higher-order
large-size tensor can be decomposed by TT in a similar
way (by decomposing them into 3Nth-order or higher
tensor.)

Here we no longer give the mathematical expression of
the TC decomposition, because there is almost no differ-
ence between the TT decomposition and TC decomposition
(mainly the first and last core tensors have a dimension with
a size of Rn).

Here we give three common methods. The first is the
product form between the core tensor contractions, the second
is the expression between the scalars and the third is the
outer product of tensor slice or the outer product of tensor
fiber. There are some other mathematical expressions for
other uses, such as, the TT decomposition can be calculated
by performing the mode-n matricization of the core tensor
and then we can use the strong Kronecker product or tensor
slices to calculate. Those who are interested can refer to
(Cichocki et al.) [3].
Similar to the CP rank,we define the TT rank.

rTT (Y ) = (R1,R2, · · · ,RN−1),

Rn = rank(Ymcn) = r(Ymcn) (61)
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Here we add a concept. We have previously introduced the
definition of mode-n matricization of tensor. But in fact, there
are two ways to perform the matricization of tensor. One of
them is to extract one dimension as the first dimension of
the resulting matrix, and the remaining N-1 dimensions as
the second dimension. The other is to extract n dimensions
from the original tensor as the first dimension of the resulting
matrix, and the remaining (N-n) dimensions as the second
dimension. We call the latter mode-n cannonical matri-
cization of the tensor:

mat(Y )cn = Ymcn ∈ R
I1···In×In+1···IN (62)

where m means matricization, c means cannonical, n means
mode-n.

According to the mathematical expression of TT decom-
position and the definition of TT rank, we give the computa-
tional complexity of TT decomposition.

N∑
n=1

Rn−1InRn ∼ O(NIR2),R = max
n
Rn, I = max

n
In (63)

We can see from the formula that the complexity is related
to the TT rank. Thus, we need to find a suitable low rank TT
decomposition to reduce the complexity.

8) THE TENSOR NETWORKS(DECOMPOSITIONS) WITH
CYCLES
In the above sections, we briefly introduced TT decompo-
sition, HT decomposition and other tree tensor networks.
We should note that all the tensor decomposition networks
mentioned above do not contain a circle(except TC). We also
mentioned in the previous section that the TT rank usually
increases with the growth of the dimension of original data
tensor that needs to be decomposed. As the depth of decom-
position increases for an arbitrary tree-shaped tensor network,
the TT rank will also increase. In order to reduce the TT
rank, researchers invented some layered tensor networks with
Loops. (Verstraete et al. [32]; Schuch et al. [100]) proposed
Projected Entangled Pair States(PEPS) and Projected Entan-
gled Pair Operators(PEPO), respectively (see figure 28).
In these two kinds of tensor networks, they replaced the
3rd-order core tensors of the original TT decomposition
with 5th and 6th-order core tensors, respectively. But they
reduced tensor rank at the expense of higher complexity
because the original 3rd-order core tensor rises to 5th order,
6th order.

Sometimes for some higher order tensors in science
and physics, it may not be enough to reduce the rank
for the above two kinds of networks. Some researchers
have proposed new tensor networks with more circles.
(Giovannetti et al. [135]; Matsueda [50]) produced the
Honey-Comb Lattice(HCL) and the Multi-scale Entangle-
ment Renormalization Ansatz(MERA), respectively (see
figure 29). They used the 3rd and 4th-order core tensors,
respectively. However, as the number of cycles increases,
the overall computational complexity of the network

FIGURE 28. Projected Entangled Pair States(PEPS) and Projected
Entangled Pair Operators(PEPO). PEPS on the left and PEPO on the right.
The blue rectangles represent core tensors. They use the 5th and
6th-order core tensors, respectively [3].

FIGURE 29. Honey-Comb Lattice(HCL) and the Multi-scale Entanglement
Renormalization Ansatz(MERA). HCL on the left and MERA on the right.
The blue rectangle represents core tensors and the red circle represents
factor matrices. HCL uses the 3rd-order core tensors while MERA uses the
3rd-order and 4th-order tensors.

increases, i.e., we need to calculate more circles. In short,
in order to reach the balance between rank and complexity
in practice, the network will be selected according to the
need.

Compared with the former two tensor networks with
cycles, the size and dimension of the core tensor in MERA
are usually smaller, so the number of unknown parameters
(variables or free parameters) will be reduced, and the cor-
responding computational complexity will also be decreased.
At the same time, the MERA network with cycles can help us
find the relationship and interaction between tensor and free
parameters. In general, the main idea of these four methods
is to reduce TT rank by increasing the number of core tensors
and reducing the size of core tensors but usually at the cost of
increasing computational complexity. The advantage of small
size tensor is that it is easier to manage, and it can reduce
the number of free parameters in the network. For a single
small-scale tensor, the calculation is relatively simple. At the
same time, we can see that due to the cycle structure, these
four networks can usually describe the correlation between
variables well.
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D. THE NATURE AND ALGORITHM OF TT
DECOMPOSITION
1) BASIC OPERATIONS IN TT DECOMPOSITION
If large-size tensors are given in the form of TT decom-
position, then many calculations can be performed on the
small-size core tensors. By performing operations on small-
size core tensors, the unknown parameters can be reduced
effectively, and the operations can be simplified to achieve
the effect of the optimization algorithm.

Consider two Nth-order tensors in TT decomposition:

X = X1 ×3,1 X2 · · · ×3,1 XN ∈ R
I1×I2×I3×···IN

Y = Y 1 ×3,1 Y 2 · · · ×3,1 YN ∈ R
I1×I2×I3×···IN (64)

where the core tensors Xn ∈ R
Rn−1×In×Rn ,Y n ∈ R

Qn−1×In×Qn

and their TT ranks are rTT (X ) = (R1, · · · ,RN−1) and
rTT (Y ) = (Q1, · · · ,QN−1), respectively. Note that the size
and dimension of two tensors are the same.Their operations
have the following properties:

1. the Hadamard product of two tensors:

Z = X ~ Y = Z1 ×3,1 Z2 · · · ×3,1 ZN (65)

We can use the tensor slice to represent the core tensor Z.

Z (in)
n = X (in)

n ⊗L Y
(in)
n , n = 1, · · · ,N , in = 1, · · · , In

(66)

where Zn ∈ R
Rn−1Qn−1×In×RnQn is the core tensor and Z (in)

n ∈

RRn−1Qn−1×RnQn , X (in)
n ∈ RRn−1×Rn , Y (in)

n ∈ RQn−1×Qn is the
tensor slice (fix the second dimension in to get).
2. the sum of two tensors:

Z = X + Y (67)

where its TT rank rTT (Z ) = rTT (X ) + rTT (Y ) = (R1 + Q1,

R2+Q2, · · · ,RN +QN ), similar to the previous one, we can
still use tensor slice to represent Z.

Z (in)
n =

[
X (in)
n 0
0 Y (in)

n

]
, n = 2, 3, 4, · · · ,N − 1 (68)

Note that the tensor slices of the first and last core tensors are
as follows:

Z (1)
n =

[
X (1)
n Y (1)

n

]
, Z (iN )

n =

[
X (iN )
n

Y (iN )
n

]
(69)

3. the quantitative product of two tensors:

AN = X • Y

An = Xn ×1,2 (Y n ×1m An−1) ∈ RRn×Qn , n = 1, · · · ,N

(70)

Thenwe calculate the final result by iterativemethod, the spe-
cific process reference algorithm 5.

4. the multiplication of large-size matrix and vector:

Ax ≈ y (71)

where A ∈ RI×J , X ∈ RJ1×J2···×JN ← x ∈ RJ , J =
J1J2 · · · JN , Y ∈ RI1×I2···×IN ← y ∈ RI , I = I1I2 · · · IN

Algorithm 5 The Quantitative Product of Two Tensors
Expressed in the Form of TT Decomposition
Input:

The two Nth-order tensors X = X1 ×3,1 X2 · · · ×3,1
XN ∈ RI1×I2×I3×···IN , Y = Y 1 ×3,1 Y 2 · · · ×3,1
YN ∈ RI1×I2×I3×···IN , where Xn ∈ RRn−1×In×Rn ,Y n ∈
RQn−1×In×Qn ,R0 = Q0 = RN = QN = 1.

Output:
the quantitative product of the two tensors
Initialize A0 = 1;
for n=1 to N do
(Zn)m1 = An−1(Y n)m1 ∈ R

Qn−1×Qn ;
An = ((Xn)mc2)

T (Zn)mc2 ∈ R
Rn×Qn ;

end for
return AN = X • Y ∈ R

FIGURE 30. The multiplication of large-size matrix and vector.
Ax ≈ y,A ∈ RI×J ,X ∈ RJ1×J2···×JN ← x ∈ RJ , J = J1J2 · · · JN ,Y ∈
RI1×I2···×IN ← y ∈ RI , I = I1I2 · · · IN [3].

are decomposed in TT. We give an intuitive picture to show
it(see figure 30).

As we can see from the figure 30, An ∈ RAn−1×In×Jn×An ,
Xn ∈ RRn−1×Jn×Rn , Y n ∈ RQn−1×In×Qn . If starting from the
form of the outer product of the TT decomposition, it is as
follows:

A =
A1,A2,··· ,AN−1∑
a1,a2,··· ,aN−1=1

A1,a11 ◦ Aa1,a22 ◦ · · · ◦ AaN−2,aN−1N−1 AaN−1,1N

X =
R1,R2,··· ,RN−1∑
r1,r2,··· ,rN−1=1

x1,r11 ◦ xr1,r22 ◦ · · · ◦ xrN−2,rN−1N−1 xrN−1,1N

Y =
R1,R2,··· ,RN−1∑
r1,r2,··· ,rN−1=1

y1,r11 ◦ yr1,r22 ◦ · · · ◦ yrN−2,rN−1N−1 yrN−1,1N

(72)

then the multiplication of a matrix and a vector is equivalent
to:

yrn−1,rnn = Aan−1,ann xrn−1,rnn ,Qn = AnRn, n = 1, 2, · · · ,N

(73)

Similarly, we can use the tensor network of TT decompo-
sition to represent some loss functions (see figure 31).
Similar to the multiplication of matrices and vectors,

TT decomposition can also be used to simplify the solution
for multiplication between large-scale matrices and matri-
ces, and here we omit its solution. Since the outer product
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FIGURE 31. Special loss function represented by TT decomposition
network. J(x) = xT AT Ax, where xT ,AT ,A, x are all represented by TT
decomposition.

calculation is relatively simple, we use the outer product
expression of the TT decomposition to simplify the mul-
tiplication between the matrix and the vector. Of course,
we can also use the TT decomposition expressed in the form
of Kronecker or tensor contraction for simplified solution.
For more calculations on TT decomposition, please refer to
(Kazeev et al. [132]; Lee and Cichocki [99])

2) TT DECOMPOSITION SOLUTION
The solution of TT decomposition is similar to the solution
of the truncated HOSVD algorithm mentioned above (see
algorithm 2), and the following constraints need to be met:

(‖Y − Ŷ‖l2 )
2
≤

N−1∑
n=1

In∑
k=Rn+1

(σk (Ymcn))
2 (74)

where Ŷ is the approximate estimated tensor of the original
tensor. The l2 norm of the tensor is equal to the Frobenius
norm of the tensor. σk (Ymcn) represents the kth maximum
singular value of the nth cannonical matricization of the input
tensor Y .

Under the above constraints, there are usually three basic
ways to obtain the solution of TT decomposition.

1 SVD-based TT algorithm (TT-SVD)
2 Algorithm based on low rank matrix decomposi-

tion(LRMD)
3 Restricted Tucker-1 decomposition(RT1D)
SVD-based TT algorithm first performs mode-n matriciza-

tion on the input tensor and then performs HOSVD decom-
position (see figure 32 and algorithm 6).

Algorithm based on low rank matrix decomposi-
tion(LRMD) is similar to SVD-based TT algorithm (see
figure 33 and algorithm 7). The only difference we noticed
is that after performing the mode-n matricization of the first
step, the original complex SVD decomposition operation
is simplified by using matrix cross-approximation or CR
decomposition.

FIGURE 32. SVD-based TT algorithm (TT-SVD) [40] for a 4th-order tensor
X ∈ RI1×I2×I3×I4 . First,we perform the mode-n matricization of the
tensor X , here we perform the mode-1 matricization for convenience.
Then we perform the SVD decomposition and execute algorithm 6 step by
step.

FIGURE 33. Algorithm based on low rank matrix decomposition for a
4th-order tensor X ∈ RI1×I2×I3×I4 . First,we perform the mode-n
matricization of the tensor X , here we perform the mode-1 matricization
for convenience. Then we perform the CR/MCA/LR or other low-rank
matrix decomposition methods. Then step by step according to
algorithm 7.

Note that in the above two methods, we constructed
the mode-n matricization of a tensor and then performed
matrix decomposition-related operations. The third method,
Restricted Tucker-1 decomposition (RT1D), converts the
original input tensor into 3rd-order tensor, and then performs
Tucker-1 and Tucker-2 decomposition (see figure 34).
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Algorithm 6 SVD-Based TT Algorithm (TT-SVD) [40]
Input:

The Nth-order tensor X ∈ RI1×I2×···IN and accuracy ε
Output:

Approximate tensor of TT decomposition X̂ , such that
‖X − X̂‖F ≤ ε

1: Initialize R0 = 1, Z1 = Xm1;
2: for n=1 to N-1 do
3: [Un, Sn,V T

n ] = [U1
n ,U

2
n ][S

1
n , 0][V

T
n1,V

T
n2] =

truncated − svd(Amn,
ε
√
N
);

4: An = U1
n ;

5: Reshape An in the manner described in figure 32, An =
An .reshape([Rn−1, In,Rn]);

6: Zn+1 = SnV T
n .reshape([RnIn+1, In+2In+3 · · · IN ]);

7: end for
8: Compute the last core AN =ZN .reshape([Rn−1, IN , 1]);
9: return the core A1,A2, · · · ,AN

Algorithm 7 Algorithm Based on Low Rank Matrix
Decomposition (LRMD) (Taking CR Decomposition as an
Example) [29]
Input:

The Nth-order tensor X ∈ RI1×I2×···IN and accuracy ε
Output:

Approximate tensor of TT decomposition X̂ , such that
‖X − X̂‖F ≤ ε

1: Initialize R0 = 1, Z1 = Xm1;
2: for n=1 to N-1 do
3: [Cn,Rn] = CR− decomposition(Zn, ε);
4: Choose the suitable Rn;
5: Reshape Cn in the manner described in figure 33,

An = Cn.reshape([Rn−1, In,Rn]);
6: Zn+1 = Rn.reshape([RnIn+1, In+2In+3 · · · IN ]);
7: end for
8: Compute the last core AN = ZN .reshape([Rn−1, IN , 1]);

9: return the core A1,A2, · · · ,AN

It can be seen from figure 34 that we first compress the
original tensor into a 3rd-order tensor. It should be noted
that we use the first and Nth dimensions of the original
Nth-order tensor as the first and third dimensions of the new
3rd-order tensor, respectively. The remaining N-2 dimen-
sions are all multiplied as the second dimension of the
new 3rd-order tensor. Specifically as shown in the following
formula:

Y 1 = X .reshape([I1, I2I3 · · · IN−1, IN ]) (75)

For the new third-order tensor, we first perform the
Tucker-1 decomposition. Then, according to the parity of N,
we perform the Tucker-2 or Tucker-1 decomposition, respec-
tively. Specifically as shown in algorithm 8.

Algorithm 8 Restricted Tucker-1 Decomposition
(RT1D) [10]
Input:

The Nth-order tensor X ∈ RI1×I2×···IN and accuracy ε
Output:

Approximate tensor of TT decomposition X̂ , such that
‖X − X̂‖F ≤ ε

1: Initialize R0 = RN = 1, Y 1 = Tensorization(X ) ∈
RI1×I2I3···IN−1×IN ;

2: if N is an odd number then
3: for n=1 to N−1

2 do
4: [Bn,Y n+1,BN+1−n] = Tucker − 1 −

decomposition(Y n, ε);
5: Estimate Rn = size(Bn, 2), RN−n =

size(BN+1−n, 2);
6: Reshape Y n in the manner described in fig-

ure 34, Y n+1 = Y n+1. reshape ([Rn−1In, In+1 · · ·
IN−n, IN−n+1RN−n+1]), An = Bn.reshape([Rn−1,
In,Rn]), AN+1−n = BN+1−n.reshape([RN−n,
IN+1−n,RN+1−n]);

7: end for
8: Compute the last core AN+1

2
= Y N+1

2
.reshape

([RN−1
2
, IN+1

2
,RN+1

2
]);

9: else {N is an even number}
10: for n = 1 to N−2

2 do
11: [Bn,Y n+1,BN+1−n] = Tucker − 1 −

decomposition(Y n, ε);
12: Estimate Rn = size(Bn, 2), RN−n =

size(BN+1−n, 2);
13: Reshape Y n in the manner described in figure 34,

Y n+1 = Y n+1.reshape([Rn−1In, In+1 · · ·
IN−1,RN−1]), An = Bn.reshape([Rn−1, In,Rn]),
AN+1−n = BN+1−n.reshape([RN−n, IN+1−n,
RN+1−n]);

14: end for
15: [BN

2
,Y N+2

2
] = Tucker − 2− decomposition(Y N

2
, ε);

16: Reshape Y n in the manner described in figure 34,
An = BN

2
.reshape([RN−2

2
, IN

2
,RN

2
]), AN+2

2
=

Y N+2
2
.reshape([RN

2
, IN+2

2
,RN+2

2
]);

17: end if
18: return the core A1,A2, · · · ,AN

3) TT TRUNCATION
In the previous section, we discussed the problem of
increased complexity due to increased TT rank. Therefore,
if we still use the TT decomposition, we need to adopt
some approximate decomposition algorithms to reduce the
TT rank. (Oseledets) [60] proposed an algorithm called TT
Truncation. The algorithm first inputs a tensor with large TT
rank. The goal of this algorithm is to find an approximate
solution whose rank is much smaller than the original input
tensor. For TT Truncation, please refer to algorithm 9 and
figure 35).
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FIGURE 34. Restricted Tucker-1 decomposition(RT1D) [10] for a 4th-order tensor X ∈ RI1×I2×I3×I4 and a 5th-order tensor
X ∈ RI1×I2×I3×I4×I5 . Similar to TT-SVD and LRMD, we first convert the original tensor into a new 3rd-order tensor, next
perform the Tucker-1 decomposition, and then follow the algorithm 8 step by step. On the left is a schematic diagram of
the 4th-order tensor and on the right is a schematic diagram of the 5th-order tensor.

It is noted that the algorithm 9 actually performs the
Nth cannonical matricization of the core tensor and then
performs a low rank matrix approximation (SVD and QR).
We noticed that in the process of calculating the low rank
matrix decomposition, the size of matrix will become smaller
and smaller because of continuous iterative optimization,
so the complexity will be continuously reduced in the process
of performing decomposition. By TT Truncation, TT rank
can be reduced to the utmost extent and the correspond-
ing approximate tensor can be found, which greatly reduces
the computational complexity and improves the efficiency
for future data processing, mathematical operations, and so
on. Of course, some researchers have developed a similar
method for the HT decomposition. For details, please refer to
(Kressner and Tobler) [25].

E. BRIEF SUMMARY FOR PART ONE
Part one mainly introduced the basic knowledge about tensor,
including the definition of tensor, the operation of tensor, and
the concept of tensor decomposition. As a new technique, ten-
sor decomposition can reduce the computational complexity
and memory by decomposing the tensor into lower-order ten-
sors, matrices, and vectors. At the same time, it can preserve
the data structure, effectively reduce the dimension, avoid the
curse of dimension problems, and extract the important parts

we need from the correlation. At the same time, the biggest
feature of tensor decomposition is that the increase of dimen-
sion will lead to the non-uniqueness of decomposition. So we
usually want to get an approximate solution of it instead of an
exact solution, so that don’t waste toomuch computation time
and can get a good approximation of the original data.

Due to the limited space of this survey, there are some new
tensor decompositions that are not covered in detail in this
survey, such as t-svd(Zhang and Aeron) [165], tensor ring
decomposition(Zhao et al.) [109]. The above introduction
is several important tensor decompositions in this survey,
and has important applications in part two. At the same
time, some of these decomposition algorithms have their own
advantages or limitations.

For CP decomposition, due to its particularity, if a certain
constraint condition is imposed on the factor matrices or core
tensor, an accurate solution can be obtained. The constraint
is mainly determined according to the required environment.
The advantage is that it can extract the structured infor-
mation of the data, which helps better extract and process
the required data, and improves the accuracy of the appli-
cation in the future. For the Tucker decomposition, since
the decomposition is general, the solution is usually more,
so it is usually considered to impose a constraint term,
such as the orthogonal constraint we mentioned above. Then
the Tucker decomposition becomes HOSVD decomposition.
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FIGURE 35. TT Truncation for a 3rd-order tensor. First perform TT
decomposition on the original third-order tensor, (the rank of the TT
decomposition at this time is relatively large) and then the TT
approximate solution with the lower TT rank is found step by step
according to the algorithm 9.

For HT decomposition, the utility is relatively poor due to
the need to determine the binary tree, and most of us use TT
decomposition. The biggest advantage of TT decomposition
is that only the core tensor is used, and thus we just need to
calculate between core tensors. However, as we mentioned
earlier, one of the biggest drawbacks of TT decomposition is
that if there is no lower TT rank (i.e., there is no low rank TT
solution), the computational complexity will be high.

F. VARIOUS TYPES OF DECOMPOSITION APPLICATIONS
We can find that almost all tensor-based algorithms are
inseparable from tensor decomposition because of huge
amount of unknown parameters. Therefore, tensor decompo-
sition becomes very important in high-dimensional problems.

Algorithm 9 TT Truncation (I.V.Oseledets, 2011) [60]
Input:

The Nth-order tensor Y = Y 1
×3,1 Y 2

· · · ×3,1 YN ∈
RI1×I2×I3×···IN , the core tensor Y n ∈ RRn−1×In×Rn with
a large TT rank, rTT (Y ) = (R1,R2, · · · ,RN−1), Rn =
r(Ymcn)

Output:
Approximate tensor of TT decomposition Ŷ with a small
TT rank rTT (Ŷ ) = R̂1, R̂2, · · · , R̂N−1, R̂0 = R̂N =
1, R̂n = r(Ŷmcn),such that ‖Y − Ŷ‖F ≤ ε

1: Initialize Ŷ = Y , a = ε
√
N−1

;
2: for n=1 to N-1 do
3: [Qn,Rn] = QR− decomposition(Y nmc2),
4: Replace Y nmc2 = Qn and Y n+1mc1 = RnY n+1mc1 , Y

n+1
mc1 ∈

RRn×In+1Rn+1
5: end for
6: for n=N to 2 do
7: [Un,3n,V T

n ] = truncated − svd(Y nmc1, a),

8: find the smallest rank R̂n−1 such that
Rn−1∑
i>R̂n−1

α2r ≤

a2‖α‖1 = a2(
Rn−1∑
i=1
| αi |)2;

9: Replace Ŷ n−1mc2 = Ŷ n−1mc2 Û
n3̂n

∈ RR̂n−2In−1×R̂n−1 and
Ŷ nmc1 = V̂ T

n ∈ R
R̂n−1×InR̂n ;

10: Reshape Ŷ n = Ŷ nmc2 .reshape([̂Rn−1, In, R̂n]);
11: end for
12: return Approximate tensor Ŷ = Ŷ 1

×3,1 Ŷ
2
· · · ×3,1

ŶN ∈ RI1×I2×I3×···IN , where Ŷ n ∈ RR̂n−1×In×R̂n , R̂0 =
R̂N = 1

Next we will introduce some basic tensor decomposition
applications.

As described in part two of this survey, we can find that
rank-one decomposition can be applied in tensor regression
to support the tensor and solve optimization problem with
constraint terms. However, since not all tensors can be per-
formed rank-one decomposition, its application has certain
limitations. Some results can be seen in recent papers, such
as Zhou et al.’s Tensor regression with applications in neu-
roimaging data analysis [55], Chen et al.’s A hierarchical
support tensor machine structure for target detection on high-
resolution remote sensing Images [45], Makantasis et al.’s
Tensor-Based Classification Models for Hyperspectral Data
Analysis [69], and Makantasis et al.’s Tensor-Based Nonlin-
ear Classifier for High-Order Data Analysis [70].

For CP decomposition, the best approximate solution can
usually be found even if there are no special constraints on
the original tensor or factor (such as orthogonal, independent,
sparse, etc.). Therefore, CP decomposition is applied in
many tensor-based algorithms. Some results can be seen in
recent papers, such as Tresp et al.’s Learning with memory
embeddings [137], Biswas and Milanfar’s Linear Support
Tensor Machine With LSK Channels: Pedestrian Detection
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in Thermal Infrared Images [121], Pham and Yan’s Tensor
Decomposition of Gait Dynamics in Parkinson’s Dis-
ease [125], Xu et al.’s Application of support higher-order
tensor machine in fault diagnosis of electric vehicle range-
extender [147], Zdunek and Fonal Randomized Nonnega-
tive Tensor Factorization for Feature Extraction from High-
dimensional Signals [115], Kisil et al.’s Common and Indi-
vidual Feature Extraction Using Tensor Decompositions: a
Remedy for the Curse of Dimensionality? [57], and Kargas
and Sidiropoulos’s Completing a joint PMF from projections:
A low-rank coupled tensor factorization approach [98].

In practice, we tend to impose constraints on the original
input tensor or the resulting core tensor. So the application
of Tucker decomposition is usually translated into the appli-
cation of HOSVD decomposition. In fact, HOSVD decom-
position is a multidimensional extension of PCA. Some
results can be seen in recent papers, such as Hu et al.’s
Attribute-Enhanced Face Recognition with Neural Tensor
Fusion Networks [37], Fanaee-T and Gama’s Tensor-
based anomaly detection: An interdisciplinary survey [46],
Chen et al.’s Robust supervised learning based on tensor
network method [156], Sofuoglu and Aviyente’s A Two-
Stage Approach to Robust Tensor Decomposition [118],
Imtia and Sarwate’s Improved Algorithms for Differentially
Private Orthogonal Tensor Decomposition [47], Kisil et al.’s
Common and Individual Feature Extraction Using Tensor
Decompositions: a Remedy for the Curse of Dimensional-
ity? [57], and Kossaifi et al.’s Tensor Contraction Layers for
Parsimonious Deep Nets [64].

Because of intuitive tree or chain representations, HT and
TT decomposition are used inmany places. However, because
the tree structure is not necessarily unique, the HT decompo-
sition always has a variety of tree structures. So researchers
often extend HT decomposition to a fixed TT decomposi-
tion. For the traditional HT decomposition, please refer to
Bachmayr et al.’s Tensor networks and hierarchical tensors
for the solution of high-dimensional partial differential equa-
tions [86], Zhang and Barzilay’s Hierarchical low-rank ten-
sors for multilingual transfer parsing [158], and Kountchev
and Kountcheva’s Truncated Hierarchical SVD for image
sequences, represented as third order tensor [111]. In recent
years, there have been many studies on TT decomposition,
especially in terms of properties and algorithms. Here we give
some references, such as Kressner and Uschmajew’s On low-
rank approximability of solutions to high-dimensional oper-
ator equations and eigenvalue problems [26], Steinlechner’s
Riemannian Optimization for Solving High-Dimensional
Problems with Low-Rank Tensor Structure [92], Phan et al.’s
Tensor networks for latent variable analysis. Part I: Algo-
rithms for tensor train decomposition [10], Wu et al.. Gen-
eral tensor spectral co-clustering for higher-order data [130],
Chen et al.’s Parallelized Tensor Train Learning of Polyno-
mial Classifiers [161]. Wang et al.’s Support vector machine
based on low-rank tensor train decomposition for big data
applications [155], and Xu et al.’s Whole Brain fMRI Pattern
Analysis Based on Tensor Neural Network [148].

FIGURE 36. Traditional linear regression model. Where (a) is a linear
regression of a two-dimensional plane, and (b) is a linear regression of
three-dimensional space.

III. PART TWO: TENSOR APPLICATION IN MACHINE
LEARNING AND DEEP LEARNING
The second part is based on the first part of tensor operation
and tensor decomposition. This part mainly discusses the
application of innovative algorithms for tensor in machine
learning and deep learning. For example, converting the tra-
ditional input vector to a new tensor produces a new tensor-
based algorithm, such as support tensor machine, tensor
regression, and so on. These algorithms mainly achieve the
goal of improving accuracy by finding structured information
of the original data and performing subsequent data pro-
cessing. Some algorithms tensorize weight matrix or vector,
and use tensor decomposition on the resulting tensor. The
number of elements can be reduced by tensor decomposition,
which can effectively reduce the complexity and running
time. Before the specific description, we give the outline of
the algorithm (see table 1).

A. APPLICATION OF TENSOR IN REGRESSION
1) TENSOR REGRESSION
Consider a traditional linear regression model (see figure 36):

y = wTx+ b (76)

where x ∈ RN is sample feature vector, and w ∈ RN is coef-
ficient vector, b is bias. Regression models are often used to
predict, such as stockmarket forecasts, weather forecasts, etc.
When we expand the input x into a tensor, it becomes tensor
regression. First let’s consider a simple case where the input
is a tensor X ∈ RI1×I2···IN and the predicted value y is a scalar.
Usually tensor regression has the following expression:

y = W • X + b or y = W • X + b+ aTc (77)

where W ∈ RI1×I2···IN is the coefficient vector, and b is the
bias. Some researchers will sometimes add a vector-valued
covariate c. In general, the solution of tensor regression is
to decompose the coefficient tensor and then solve factors
by alternating least squares (ALS) method, such as rank-1
decomposition, CP decomposition, Tucker decomposition,
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TABLE 1. Tensor based algorithm.

TT decomposition, etc. For example, (Zhou et al.) [55] pro-
posed the rank-1 and CP decomposition. Then the formula
becomes:

y = w1 ◦ w2 ◦ · · ·wN • X + b+ aTc
y = 3×1m W1 ×2m W2 · · · ×Nm WN • X + b+ aTc (78)

Tensor regression of the Tucker decomposition form is
similar. For details, please refer to (Hoff et al. [102];
Yu et al. [113]). The general tensor regression is attributed
to solving the following minimization problem:

L(a, b,W ) = argmin
a,b,W

N∑
i=1

(̂yi − yi)2, i = 1, · · · ,N (79)

where ŷi = W • X i + b+ aTc represents the predicted value
corresponding to the ith tensor sample, X i represents the ith
tensor sample, and yi represents the true value of the ith tensor
sample.

We give the following general algorithm for tensor regres-
sion (see algorithm 10).

2) TENSOR VARIABLE GAUSSIAN PROCESS REGRESSION
Tensor variable Gaussian process regression is similar to what
we have introduced in the previous section. The same thing is
that the input X i ∈ RI1×I2···IN is still an Nth-order tensor and
the output yi is a scalar, and the difference is that the input here
is subject to Gaussian distribution. (Hou et al.) [90] assumed
that the output consists of a nonlinear function with respect
to input X and Gaussian noise εi ∼ N (0, σ 2), as follows:

yi = f (X i)+ εi i = 1, · · · ,N (80)

The nonlinear function of the above formula can be mod-
eled by a Gaussian process, as follows:

f (X ) ∼ GP(m(X ), k(X , X̃ )|θ) (81)

where m(X ) is the mean function, k(X , X̃ ) is the kernel func-
tion and θ is the associated hyperparameter. For the sake of
simplicity, we use the standard Gaussian process m(X ) = 0.
For the kernel function, we use the product probability kernel:

k(X , X̃ ) = α2
N∏
n=1

exp(
D[p(x|�X

n )||q(̃x|�
X̃
n )]

−2β2n
) (82)

where α represents the amplitude parameter and β repre-
sents the scale parameter, D(p||q) =

∑
x=1 p(x)log

px
q(x) =∫

xp(x)log px
q(x) dx means the KL divergence, p(x|�X

n )
means the Gaussian distribution of vector variable x =
[x1, · · · , xId ], the mean vector and the covariance matrix are
µn,

∑n, respectively. Note that the mean vector and the
covariance matrix are determined from the mode-n matri-
cization Xmn of X by treating each Xmn as a probability model
with In number of variables and I1×· · ·×In−1×In+1 · · ·×IN
number of observations.

Whenwe have determined the parameters from the training
set, the purpose of the tensor Gaussian process regression is
to infer the probability distribution of the output for the test
point X test , i.e.:

p(ytest |X test ,X, y, θ, σ
2) (83)

where X = [X1,X2, · · · ,XN ]T ∈ RN×I1×I2···IN means com-
bining all sample tensors, and y = [y1, y2, · · · , yN ]T ∈ RN .
But actually we only need to know the distribution of f (X test )
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Algorithm 10 Tensor Regression Algorithm
(Zhou et al.) [55]
Input:

N Nth-order sample data tensors X i ∈ RI1×I2···IN , i =
1, · · · ,N and its true value yi, a vector-valued covariate
c.;

Output:
a, b,W ;

1: InitializeW = 0, solve (a, b) = mina,b,W
N∑
i=1

(̂yi − yi)2;

2: Initialize the factor matrices Wn for n = 1, · · · ,N and
core tensor 3 for CP decomposition or initialize the
factor vectosr for rank-1 decomposition, other decompo-
sition is similar;

3: while the number of iterations is not reached or there is
no convergence do

4: for n=1 to N do
5: solve Wn = minWn L(a, b,3,W1, · · · ,Wn−1,

Wn+1, · · · ,WN );
6: end for
7: solve 3 = min3 L(a, b,3,W1, · · · ,WN );

8: (a, b) = mina,b,W
N∑
i=1

(̂yi − yi)2;

9: end while

according to the expression. So it finally turns to solve the
following expression:

p(f (X test )|X test ,X, y, θ, σ
2) (84)

Here we omit the complicated calculations and give the
results directly. It is noted that the test samples are also subject
to the Gaussian distribution, and the probability properties of
the distribution is accorded to Bayesian conditions. We get:

p(f (X test )|X test ,X, y, θ, σ
2) ∼ N (µtest , σ 2

test ) (85)

where µtest = k(X test ,X)T (K + σ 2I )−1y and σ 2
test =

k(X test ,X test )− k(X test ,X)T (K + σ 2I )−1k(X test ,X).
Tensor variable Gaussian process regression is generally

used to deal with noise-bearing and Gaussian-distributed
data. It has certain limitations, and this method is compu-
tationally expensive. Without using tensor decomposition,
the amount of parameter data is very large. Thus, the amount
of calculation will also increase exponentially.

3) GENERALIZED TENSOR REGRESSION
Now we introduce a more general case where both input
and output are tensors. We start with a simple second-order
matrix. A second-order matrix regression is as follows:

Y i = AX iBT + E (86)

where X i ∈ RI1×I2 , Y i ∈ RJ1×J2 , i = 1, · · · ,N are N input
sample matrices and corresponding output sample matrices.
A ∈ RJ1×I1 and B ∈ RJ2×I2 are unknown coefficient matrices.
E ∈ RJ1×J2 is a noise matrix with mean-zero.

(Hoff) [102] used the residual mean squared error to mea-
sure the error between the true value and the prediction value:

(A,B) = argmin
A,B

∑N
i=1 ||Y

i
− AX iBT ||2F
n

(87)

By deriving the above formula, we finally get:

A = (
∑

Y iB(X i)T )(
∑

X iBTB(X i)T )−1

B = (
∑

(Y i)TAX i)(
∑

(X i)TATAX i)−1 (88)

Similarly, we can get A and B respectively by alternating
least squares.

We further extend to generalized tensor regression as
follows:

Y i = X i ×1m W1 ×2m W2 · · · ×nm WN + E (89)

where Wn ∈ RJn×In are coefficient matrices (factor matrices)
and X i ∈ RI1×I2···×IN , Y i ∈ RJ1×J2···×JN are input and output
tensors, respectively. E ∈ RJ1×J2···×JN is a Noise tensor.
Note that there is a property between the mode-n product

and the Kronecker product, as follows:

Z = X ×1m W1 ×2m W2 · · · ×nm WN

Zmn = WnXmn(WN ⊗R · · · ⊗R Wn+1

⊗RWn−1 · · ·W1)T

Z v1 = (WN ⊗R · · · ⊗R W1)X v1 (90)

Therefore, we only need to adopt the mode-n matricization
on both sides of the formula 89 to get the solution:

Ymn = WnX̃mn + Emn (91)

where mat(X̃ )n = mat(X )n(WN ⊗R · · · ⊗ Wn+1 ⊗R
Wn−1 · · ·W1)T . Then through formula 88 we finally get:

Wn = (
∑

Y imn(X̃
i
mn)

T ) (
∑

X̃ imn(X̃
i
mn)

T )−1 (92)

Finally, we give the specific algorithm of the whole gener-
alized tensor regression (see algorithm 11).

Algorithm 11 Generalized Tensor Regression (Hoff) [102]
Input:

N Nth-order sample data tensors X i ∈ RI1×I2···IN , i =
1, · · · ,N and output tensor Y i ∈ RJ1×J2 ,;

Output:
Wn, n = 1, · · · ,N ;

1: InitializeW n as random matrices;
2: while the number of iterations is not reached or there is

no convergence do
3: for n=1 to N do
4: CalculateWn by formula 92;
5: end for
6: return Wn;
7: end while
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4) TENSOR REPRESENTATION OF MULTIVARIATE
POLYNOMIAL REGRESSION FOR SCALAR VARIABLES
Multivariate polynomial regression is a generalization of lin-
ear regression and multiple regression, which predicts the
next moment or possible future output by processing the
interaction between multiple variables. We first consider a
simple binary quadratic regression:

y = a0 + a1x1 + a2x2 + a12x1x2 + a11x21 + a22x
2
2 (93)

One of the coefficients a12 represents the relationship
between two variables. We can use the multiplication of
matrix and vector to represent the above formula:

y =
[
1 x1 x21

] a0 a2 a22
a1 a12 0
a11 0 0

 1
x2
x22

 (94)

Consider a more complex complete binary quadratic
polynomial regression (or more general binary quadratic
polynomial regression):

y = a0 + a1x1 + a2x2 + a12x1x2 + a11x21 + a22x
2
2

+ a112x21x2 + a122x1x
2
2 + a1122x

2
1x

2
2 (95)

We can also use a similar product form of matrix and
vector, as follows:

y =
[
1 x1 x21

] a0 a2 a22
a1 a12 a122
a11 a112 a1122

 1
x2
x22

 (96)

Using the mode-n product property of tensor and vector,
the above equation can be transformed into:

y = A×1v

[
1
x1

]
×2v

[
1
x1

]
×3v

[
1
x2

]
×4v

[
1
x2

]
(97)

where the 4th-order tensor A ∈ R2×2×2×2 is the coefficient
tensor and :

A =




 a0

1
2
a2

1
2
a2 a22

 ,
 1

2
a1

1
4
a12

1
4
a12

1
2
a122





 1

2
a1

1
4
a12

1
4
a12

1
2
a122

 ,
 a11

1
2
a112

1
2
a112 a1122





(98)

For a general case of N variables, the complete multivariate
polynomial regression can be expressed as follows (Chen and
Billings) [117]:

y =
N∑

i1=0

· · ·

N∑
iN=0

ai1i2···iN x
i1
1 x

i2
2 · · · x

iN
N

= A×1v

[
1
x1

]
· · · ×Nv

[
1
x1

]
×(N+1)v

[
1
x2

]
· · · ×2Nv[

1
x2

]
· · · ×(N 2−N+1)v

[
1
xN

]
· · · ×(N 2)v

[
1
xN

]
= B×1v V (x1)×2v V (x2) · · · ×Nv V (xN ) (99)

where A is an N 2th-order tensor with size 2×2×· · ·×2, B is
an Nth-order tensor with size (N+1)×(N+1)×· · ·×(N+1),
and V (xn) is the Vandermonde vector of xn:

V (xn) =
[
1 xn x2n · · · xNn

]T (100)

Because of its breadth and generality, this model is used
in many fields, such as weather prediction, stock forecasting
and other regression models. But we can clearly see that
as the variables increase, the unknown coefficients will rise
exponentially, which will greatly increase the complexity.
Sowe need to reduce unknown parameters by low-rank tensor
decomposition network. (Chen et al.) [159] decomposed the
coefficient tensor with low rank TT decomposition. Another
way is to use a truncation model, which is similar to the
coefficient tensor of the binary case just mentioned. It only
takes two elements for each dimension of B, so the truncated
expression is as follows:

y = Bt ×1v

[
1
x1

]
×2v

[
1
x2

]
· · · ×Nv

[
1
xN

]
(101)

where Bt is an Nth-order truncated tensor of size
2 × · · · × 2. However, the coefficient tensor B in the second
term of formula 108 is the N 2th-order tensor. This is the
Nth-order tensor. The calculation can be simplified greatly,
and the subsequent duplicates are also reduced by using a
new truncated tensor.

5) TENSOR REPRESENTATION OF MULTIVARIATE
POLYNOMIAL REGRESSION FOR VECTOR VARIABLES
In the previous section, we introduced the multivariate poly-
nomial regression of traditional scalar variables. Then we
extend to the vector form. Here we directly give the general
vector form of the generalized (complete) binary quadratic
regression, which is similar to formula 95, as follows:

y = a0 + aT1x1 + a
T
2x2 C x

T
1A12x2 C xT1A11x1

+ xT2A22x2 + A112 ×1v x1 ×2v x1 ×3v x2
+A122 ×1v x1 ×2v x2 ×3v x2
+A1122 ×1v x1 ×2v x2 ×3v x2 ×4v x2 (102)

where x1, x2 represent vectors, A11,A12,A22 represent
matrices. A112,A122 are 3rd-order tensors and A1122 is a
4th-order tensor.

We directly give the equivalent tensor product form of the
above formula, as follows:

y = w0 +

N 2∑
n=1

N∑
i1,i2,··· ,in=1

Ai1,i2,··· ,in ×1v xi1 · · · ×nv xin

= B×1v

[
1
x1

]
· · · ×Nv

[
1
x1

]
×(N+1)v

[
1
x2

]
· · · ×2Nv

[
1
x2

]
· · · ×(N 2−N+1)v

[
1
xN

]
· · · ×(N 2)v

[
1
xN

]
= C ×1v V(x1)×2v V(x2) · · · ×Nv V(xN) (103)

where xn ∈ In, Ai1,i2,··· ,in are Nth-order tensors(n ∈ [1,N 2])
of size Ii1 × Ii2 · · · × Iin , B is an Nth-order tensor with
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size B1 × B2 × · · · × BN , where Bn =
(In)N+1−1
In−1

, C is an
N 2th-order tensor with size (I1 + 1)× · · · × (I1 + 1)× (I2 +
1)× · · · × (I2 + 1) · · · × (IN + 1) · · · × (IN + 1), and V(xn)
is the Vandermonde vector of xn:

V(xn)=
[
1 xnT (xn ⊗ xn)T · · · (xn ⊗ · · · ⊗ xn)T

]T
(104)

This model can be generalized to multidimensional ten-
sors. Similar to the scalar form of multivariate polynomial
regression, the multivariate polynomial regression in the form
of vector (tensor) also has an exponential rise in complexity
as the variable n increases. Similarly, we can reduce the coef-
ficient tensor from N 2th-order to Nth-order. We can also use
CP decomposition, Tucker decomposition, or TT decompo-
sition to get a truncated model. Please refer to (Stoudenmire
andSchwab,2016 [30]; Cohen andShashua, 2016 [94]) for
details.

6) DISCUSSION AND COMPARISON
This section mainly introduces five tensor regressions.
We extend from the simplest model to the multivariate regres-
sion of the most complex vector variable values. Usually
the first and third tensor regressions are more common. For
the first tensor regression, since the factors obtained by the
rank 1 decomposition are all vectors, the calculation is rela-
tively simple and the complexity is low. The tensor regres-
sion based on CP decomposition is slightly different from
the tensor regression based on Tucker decomposition. When
given tensor rank, CP decomposition is unique, and Tucker
decomposition is usually not unique. Since the factors after
CP decomposition are all matrices, in general, the factor after
Tucker decomposition still has core tensor, so CP decompo-
sition is still much simpler in performing operations. Since
the factors obtained by CP decomposition is usually unique,
and the factors of Tucker decomposition is usually not unique.
For Tucker regression, we can choose the most accurate ones
from many weighted tensors. Therefore, the Tucker regres-
sion is better than CP regression in terms of the accuracy.
For multivariate generalized regression scenarios, tensors
are used instead of complex coefficients. The coefficient
tensor decomposition not only reduces the complexity, but
also clearly expresses the structural relationship between the
data.

B. APPLICATION OF TENSOR IN CLASSIFICATION
1) SUPPORT TENSOR MACHINE(STM) APPLICATION IN
IMAGES CLASSFICATION
a: THE SUPPORT VECTOR MACHINE(SVM)
First, we briefly review the concept of support vector
machine(SVM). The SVM is first proposed by (Corts and
Vapnik) [18] to find a hyperplane to distinguish between
the two different categories, what we usually call the binary
classifier (see figure 37).

As can be seen from figure 37, the purpose of the SVM is
to find a hyperplane wTx + b = 0, x = [x1, x2, · · · , xm] to
distinguish between the two classes. We give the two types
of labels +1 and −1 respectively. Where the distance from a
point x to the hyperplane in the sample space is:

d =
|wTx+ b|
‖w‖

(105)

As shown in figure 37, the point closest to the hyperplane
is called the support vector, and the sum of the distances
of the two heterogeneous support vectors to the hyperplane
is:

γ =
2
‖w‖

(106)

FIGURE 37. A simple schematic of a linear SVM. As shown, the input is a
first-order tensor (vector) and the size is 2.

It is also called the margin. In order to find the hyperplane
with the largest interval, it is converted to solve the following
optimization problem:

max
w,b

2
‖w‖

s.t. yi(wTxi C b) ≥ 1, i = 1 · · · ,m (107)

where ‖w‖ is the two norm of the vector w.
In fact, the training samples are linearly inseparable in

many cases, which is called the soft interval. The general
constraint formula for the SVM is shown as follows:

max
w,b,ξj

‖w‖2

2
+ C

M∑
j=1

ξj

s.t. yj(wTxj C b) ≥ 1− ξj, ξj ≥ 0, j = 1, 2 · · · ,M .

(108)

where ξj = l(yi(wTxi+ b)− 1) is called slack variables. l is a
loss function. There are three commonly used loss functions

hinge loss : lhinge(x) = max(0, 1− x);

exponential loss : lexp(x) = exp(−x);

logistic loss : llog(x) = log(1+ exp(−x)); (109)
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Later researchers (Zhao et al.) [144] converted the above
constraints into the following formula:

min
w,b,ξj

‖w‖2

2
+
γ

2
ξT ξ

s.t. yj(wTxj C b) = 1− ξj, ξj ≥ 0, j = 1, 2 · · · ,M .

(110)

where ξ = [ξ1, ξ2, · · · , ξM ] ∈ RM . Note that formula 110
has two major differences compared to formula 108. 1: in
order to facilitate the calculation, the above constraint is
changed from inequality to equality. 2: the loss function in
formula 110 is the mean square loss. The benefit of this
modification is that the solution will be easier. Generally,
the solution is developed by Lagrangian multiplier method.
We do not repeated derivation here. For details, please refer to
(Corts and Vapnik) [18].

b: THE SUPPORT MATRIX MACHINE(SMM)
If we extend the input sample from vector to second-
order tensor (matrix), we will get the Support Matrix
Machine(SMM). (Luo) [80] proposed the concept of the
Support Matrix Machine. We consider a matrix sample Xa ∈
RI×J , a = 1, 2, · · · ,m. The hinge loss function are replaced
in SMM. The following constraint formula is obtained:

min
W ,b,ξj

1
2
tr(W TW )+ C

M∑
j=1

max(0, 1− yj[tr(W TXj)+ b])

+ λ‖W‖∗
s.t. yj[tr(W TXj)+ b]≥1− max(0, 1− yj[tr(W TXj)+ b]).

(111)

where ‖W‖∗(we usually call it the nuclear norm) represents
the sum of all singular values of the matrix W, C and λ
are coefficient. In fact, we get the following properties after
performing the mode-1 vectorization of the matrix w =
vec(W T )1.

tr(W TXj) = vec(W T )T1 vec(X
T
j )1 = wTxi

tr(W TW ) = vec(W T )T1 vec(W
T )1 = wTw. (112)

Substituting the formula 136 into the formula 135 returns
the constraint expression of the original SVM. Note that
in order to protect the data structure from being destroyed,
we generally do not perform the mode-n vectorization of
the matrix and convert it into a traditional SVM. So we
give the optimization problem directly in the form of a
matrix. According to (Goldstein et al.) [39], they further
converted the above constraints into the following augmented
Lagrangian function form:

L(W , b, S, λ) = F(W , b)+ G(S)+ tr[3T (S −W )]

+
a
2
‖S −W‖2F , a is hyperparameter

(113)

where F(W , b) =
1
2 tr(W

TW ) + C
m∑
j=1

max(0, 1 −

yj[tr(W TXj) + b]), G(S) = λ‖W‖∗. Due to the complexity
of the SMM solution, please refer to (Luo et al.) [80] for
details.

c: THE SUPPORT TENSOR MACHINE(STM)
If we further extend the matrix to tensor, we will get the
Support Tensor Machine(STM). In general, STM currently
have five constraint expressions, we first give the original
constraint expression:

max
w,b,ξj

‖W‖2

2
+ C

M∑
j=1

ξj

s.t. yj(W • X j + b) ≥ 1− ξjξj ≥ 0, j = 1, 2 · · · ,M .

(114)

Here we usually choose to decompose the coefficient
tensor W , and the researchers give four solutions in total.
(Tao et al.) [27] proposed to decompose the coefficient
tensor into the form of the rank-one vector outer prod-
uct, i.e., W = w1

◦ w2
◦ · · ·wN (see formula 28).

(Kotsia et al.) [58] performed CP decomposition on the coef-

ficient tensor, i.e., W =

R∑
r=1

λrw1
◦ w2

◦ · · ·wN (see for-

mula 29). (Kotsia and Patras) [59] performed Tucker decom-
position on the coefficient tensor, i.e., W = A ×1m W1 ×2m
W2 · · · ×Nm WN (see formula 108). (Wang et al.) [155] per-
formed TT decomposition on the coefficient tensor, i.e.,W =
W 1×3,1W 2 · · ·×3,1WN (see formula 55). Substituting these
three decompositions will result in three forms of STM.

In general, the solution of STM is similar to the solution of
CP decomposition. The central idea is based on the alternat-
ing least squares method, that is, N-1 other optimization items
are fixed first, and only one item is updated at a time. For
example, if we use the form of the rank-one decomposition
for coefficient tensor, then the constraint expression becomes
as follows (see algorithm 12):

max
wm,b,ξj

1
2
‖wm‖2α + C

M∑
j=1

ξj

s.t. yj(wTm(X j ×(i6=m)v wi)+ b) ≥ 1− ξj,

i = 1, 2 · · · , n− 1, n+ 1, · · · ,N .j = 1, 2 · · · ,M .

(115)

where α = ‖ ◦Ni=1,i6=m wi‖
2.

Then the label of a test sample, X test , can be predicted as
follows:

y = sign(X test ×1v w1 · · · ×Nv wN + b) (116)

However, the above-mentioned alternating least squares
iteration method usually needs a lot of time and com-
putational memory, and only obtian a local optimal solu-
tion. So many researchers proposed other algorithms.
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Algorithm 12 Support Tensor Machine (Hao et al.) [164]
Input:

Input tensor sample sets X j ∈ R
I1×I2···IN , j = 1, 2 · · · ,M

and label yj ∈ {+1,−1};
Output:

wi, i = 1, · · · ,N and b;
1: if the required number of iterations is not reached then
2: for m=1 to N do
3: Initialize w1,w2, · · · ,wm−1,wm+1, · · · ,wN
4: α = ‖ ◦Ni=1,i6=m wi‖

2

5: Calculate wm by solving the binary optimization
problem of the formula 139.

6: end for
7: end if

(Z.Hao, 2013) [164] proposed to transform the formula 114
into the following constraint expression:

min
α

1
2

M∑
i,j=1

αiαiyiyj(X i • X j)−
M∑
j=1

αj

s.t.
M∑
j=1

αjyj = 0, 0 ≤ αj ≤ C j = 1, 2 · · · ,M . (117)

where αj are the Lagrange multipliers. Note that if the input
tensor becomes a vector, formula 117 will become the dual
problem of the standard SVM.

STM has gradually entered the field of machine learning
due to its ability to preserve data structures and improve
performance. STM with different constraints have sepa-
rate application scenarios. For example, STM based on CP
decomposition is applied to pedestrian detection of thermal
infrared rays in order to find pedestrians in a group of
images for precise positioning (Biswas and Milanfar) [121].
STM based on rank-one decomposition is applied to
high-resolution remote sensing image target detection
(Chen et al.) [45]. STM based on the original dual problem
solving algorithm is applied to the fault diagnosis of electric
vehicle range finder (Xu et al.) [147].

2) HIGH-ORDER RESTRICTED BOLTZMANN MACHINES
(HORBM) FOR CLASSIFICATION
We first review the concept of Restricted Boltzmann
Machines. RBM is a random neural network, which can
be used for algorithm modeling of dimensionality reduc-
tion, classification, collaborative filtering, etc. In RBM,
it contains two layers, including visible layer and hid-
den layer (see figure 38). Where the visible layer is,
x = [x1, x2, · · · , xM ]T ∈ RM , hidden layer is, y =
[y1, y2, · · · , yN ]T ∈ RN , xm = {0, 1}, m ∈ [1,M ] and
yn = {0, 1}, m ∈ [1,N ]. The weight of the interconnection
is W ∈ RM×N . The visible layer has a bias of a ∈ RM and
the hidden layer has a bias of b ∈ RN . When the input value
of the visible layer is given, the value of the hidden layer is

FIGURE 38. A simple schematic of the RBM, with the visible layer variable
x = [x1, · · · , x5] on the left and the hidden layer variable y = [y1, y2] on
the right.

derived from the following formula:

y = σ (W T x+ b) (118)

where σ (x) = 1
1+e−x is the activation function.

Then we carry out the back propagation algorithm, which
recalculates the value of the visible layer as the input of the
hidden layer’s value:

x = σ (W y+ a) (119)

When the back-propagation recalculated visible layer
value is not equal to the original visible layer value, the oper-
ation is repeated, which is the training process of the
restricted Boltzmann machine. KL divergence is usually used
in a Restricted Boltzmann Machine to measure the distance
between the distributions of these two variables. RBM is a
probability distribution model based on energy, as follows:

E(x, y) = −aT x− bT y− yTWx (120)

Then we derive the joint probability distribution of the
hidden layer variable y and the visible layer variable x:

P(x, y) =
1
Z
e−E(x,y) (121)

where Z =
∑
x,y

. In order to make the distribution of these

two values as close as possible to maximize the likelihood
function of the input samples:

L(W , a, b) = argmax E[
N∑
t=1

log P(xt )]

P(x) =
∑
y

P(x, y) (122)

We assume that there are N input samples, x t ∈ RM , t ∈
[1,N ] in visible layer. Since the derivative form of the above
formula cannot be solved generally, the deep learning pio-
neer Hinton proposed the CD algorithm (i.e.,k times Gibbs
sampling) to obtain an approximate solution. Here we give a
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FIGURE 39. Schematic diagram of the energy function of the three sets of
variables. The middle is the weight tensor, the above is the variable a,
the lower is the variable b, and the right is the variable c.

very simple update formula based on the actual application.
In practice, it usually takes only one sample to achieve very
accurate results, so the updated formula is as follows:

W = W + α(xy− x1y1)

a = a+ α(x− x1)

b = b+ α(y− y1) (123)

where α ∈ [0, 1] is the learning rate, x1 is the updated value
of the visible layer variable x obtained by the first back-
propagation of the hidden layer y, and y1 is the first update
value of the hidden layer obtained by x1 forward propagation
again. If it is k(k > 1) times, we only need to change the x1

of the above formula to xk (the value of the visible layer
variable obtained by the kth back-propagation). For details,
please refer to (Hinton) [35].

If we increase the number of layers, the traditional RBM
will become a higher dimension, which we call High-order
restricted Boltzmann machines (HORBM). For example,
for three sets of variables, a ∈ RI , b ∈ RJ , c ∈ RK , the energy
function can be represented (see figure 39):

E(a, b, c) = −
I ,J ,K∑
i,j,k=1

wi,j,kaibjck − dTa− eTb− f Tc

= W ×1v a×2v b×3v c− dTa− eTb− f Tc

(124)

where a ∈ RI and b ∈ RJ are two input variables, which
can be understood as two visible layers, c ∈ RK is a hidden
layer variable, and d, e, f correspond to the biases of three
variables.

Note that the input of the visible, hidden layer or the
additional layer of the RBM is a vector. If the input becomes
a tensor, we call it Tensor-variate Restricted Boltzmann
machines (TvRBMs) (Nguyen et al.) [126]. We assume that
the visible layer variable is, X ∈ RI1×I2···×IN , and the hidden
layer variable is, y ∈ RJ , so the weight tensor is W ∈

RI1×I2···×IN×J . Then the energy function can be similarly

expressed as follows:

E(X , y) = A • X − bT y−W • (X ◦ y) (125)

where A ∈ RI1×I2···×IN , b ∈ RJ are the biases of the visible
and hidden layers, respectively. And similarly, the hidden
layer variable y = [y1, · · · , yJ ]T can be expressed as:

yj = σ (X •W (:, · · · , :, j)+ bj), j = 1, 2 · · · , J (126)

A major problem is that as the input tensor dimension
increases, the weight tensor elements will multiply. We usu-
ally use low rank tensor decomposition to solve the problem.
For example, if we perform CP decomposition on weight
tensors:

W ≈3×1m W1 ×2m W2 · · · ×Nm WN ×(N+1)m WN+1 (127)

where Wn ∈ RIn×R, n = 1, · · · ,N , WN+1 ∈ RJ×R are factor
matrices, and 3 is the diagonal tensor. Then the number of
elements is reduced from the original J

∏N
n=1 In to R(J +∑N

n=1 In + 1).
More simply, if the weight tensor can be expressed in the

form of a rank-one vector outer product:

W = w1
◦ w2
◦ · · ·wN ◦ wN+1 (128)

where wn ∈ RIn , n = 1, · · · ,N , wN+1 ∈ RJ . Then the
number of elements is reduced from the original J

∏N
n=1 In

to J +
∑N

n=1 In.
Finally, we introduce a latent conditional high-order

Boltzmann machines(CHBM). (Huang et al.) [151] pro-
posed latent conditional high-order Boltzmann machine for
classification. The algorithm is similar to the high-order
Boltzmann machine of the three sets of variables we just
mentioned. However, in CHBM, input data are two N sample
features xi ∈ RI , yi ∈ RJ , i = 1, · · · ,N and z is the
relationship label of xi, yi where z = [z1, z2]. For each
sample, if x and y are matched, z = [1, 0], else z = [0, 1]
(‘‘one-hot’’ encoding). Then the author adds another set of
binary-valued latent variables to the hidden layer. The entire
structure is shown in figure 40. Where h denotes the intrinsic
relationship between x and y. h and z are connected by a
weight matrix U. Then its energy function is as follows:

E(x, y,h, z) = W ×1v x×2v y×3v h− hTUz

− aTx− bTy− cTh− dT z (129)

where a, b, , c , d are the biases of x, y, h, z,
respectively.

Then the value of zt , t = {1, 2} (which is also known as
activation conditional probability) is :

hk = p(hk |x, y) = σ (
IJ∑
ij

wijkxiyj + ck )

zt = p(zt |x, y, h) = σ (dt +
K∑
k

hkUkt )

k = 1, · · · ,K . t = {1, 2} (130)
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FIGURE 40. Schematic diagram of the energy function of the four sets of
variables. The middle is the weight tensor, the above is the variable x,
the lower is the variable y, the right is the hidden layer variable h, and the
far right is the label z. z and h are connected by a weight matrix U.

In fact, the model is a two-layer RBM. The first layer is
ternary RBM (x, y, h), and the second layer is the traditional
binary RBM (h, z). For the 3rd-order tensor W of the first
layer, we can use the CP decomposition to solve.

3) POLYNOMIAL CLASSIFIER ALGORITHM BASED ON
TENSOR TT DECOMPOSITION
Polynomial classifiers are often used for classification
because of their ability to generate complex surfaces and
have a good fit to raw data. However, when coming to high-
dimensional space, the multivariate polynomial can only use
some specific kernels in the support vector machine, and the
kernel function should be mapped to the high-dimensional
space for processing, which increases the difficulty of data
processing. In order to enable the Polynomial classifier to
handle high dimensional problems, (Chen et al.) [161] sim-
plified the operation by using the polynomial with the tensor
inner product of the TT format, and proposed two algorithms.

First we give the definition of pure-power-n polynomial:
Given a vector n = (n1, n2, · · · , nm), if in a polynomial f
with m variables, the highest power for each variable xi is
ni, i = 1, 2, · · · ,m, then the polynomial f is called pure-
power-n polynomial.
Example 1: The polynomial f = 1 + x1 + 3x32 + 2x3 +

4x23 − 2x2x23 − 5x1x2x3 is a pure-power-n polynomial with
n = (1, 3, 2).

For pure-power-n polynomial, it can be expressed equiva-
lently by the expression of the mode-n product of the vectors
and a tensor A ∈ R(n1+1)×(n2+1)···(nm+1):

f = A×1v v(x1)T ×2v v(x2)T · · · ×mv v(xm)T (131)

where v(xi) are the Vandermonde vectors:

v(xi) = (1, xi, x2i , · · · , x
ni
i )

T , i = 1, 2, · · · ,m (132)

Example 2: For the polynomial f in example 1, since
n=(1,3,2), then v(x1) = (1, x1)T , v(x2) = (1, x2, x22 , x

3
2 )
T ,

and v(x3) = (1, x3, x23 )
T . The nonzero elements of the coef-

ficient tensor A ∈ R2×4×3 are a111 = 1, a211 = 1, a141 = 3,
a112 = 2, a113 = 4, a123 = −2, a222 = −5. We combine the
indices of the three Vandermonde vectors to get the indices
of A, such as,−5x1x2x3 is from v(x1)[2] = x1, v(x2)[2] = x2,
v(x3)[2] = x3, so a222 = −5.
Given a set of N training samples, (xi, yi), i = 1, 2, · · · ,

N , xi ∈ Rm. After feature extraction, each feature is mapped
to high-dimensional space by mapping T:

T (x) = v(x1) ◦ v(x2) · · · v(xm) x= (x1, x2, · · · , xm)T (133)

Therefore, formula 139 is further equivalent to:

f = T (xi) • A (134)

Example 3: Here we consider the example of a binary
polynomial for the sake of simplicity. Assuming f = 2+3x1−
x2+2x21+4x1x2−2x

2
1x2+7x

2
2 . We can get n = (2, 2), v(x1) =

(1, x1, x21 )
T , v(x2) = (1, x2, x22 )

T , then according to formula
9 and 17, both T (x)and A are 2rd-order tensors(matrices):

T (x) =

 1 x2 x22
x1 x1x2 x1x22
x21 x21x2 x21x

2
2

 , A =

2 −1 7
3 4 0
2 −2 0


(135)

Similar to the idea of SVM, polynomial classification is
looking for a hyperplane to distinguish between these two
types of examples. Its ultimate goal is to find the coefficient
tensor A so that:

yi(T (xi) • A) > 0, i = 1, 2 · · · ,N (136)

Considering the TT decomposition of the coefficient tensor
A, A = A1×3,1A2 · · ·×3,1Am, the above polynomial equation
(formula 134) has the following further properties:

f = T (xi) • A = A×1v v(x1)T ×2v v(x2)T · · · ×mv v(xm)T

= (A1 ×2v v(x1)T ) · · · (Am ×2v v(xm)T )

= Aj ×1v pj(x)×2v v(xj)T ×3v qj(x)
T

= (qj(x)
T
⊗L v(xj)T ⊗L pj(x))(Aj)v1

for any j = 1, 2 · · · ,m (137)

where p1(x) = 1, pj(x)j≥2 =
∏j−1

k=1(Ak ×2v v(xk )T ) and
qm(x) = 1, qj(x)j<m =

∏m
k=j+1(Ak ×2v v(xk )T ), vec(Ai)2

means the mode-2 vectorization of the tensor (see for-
mula 15).
Example 4: For the polynomial f in example 3, according to

formula 137, T (x)•A = (q2(x)
T
⊗L v(x2)T⊗Lp2(x))vec(A2)2,

let i = 2. Then we will get:

q2(x) = 1

v(x2) =
[
1 x2 x22

]
p2(x)) = A1 ×2v v(x1)T

v(x1) =
[
1 x1 x21

]
(138)
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(Chen et al.) [161] proposed two loss functions, least
squares loss and logistic loss function:

J (A) =
1
N

N∑
i=1

(T (xi) • A− yi)2

J (A) = −
1
N

N∑
i=1

[
1+ yi

2
ln(gA(xi))+

1− yi

2
ln(1− gA(xi))]

(139)

where the first formula is the least squares loss func-
tion, the second is the logical loss function, and
gA(xi) = σ (T (xi) • A), σ (x) = 1

1+e−x .
According to formula 137, the least squares loss function

of formula 139 can be further transformed into:

J (A) =
1
N
‖Cj(Ai)v1 − y‖

2
2

T (xi) • A = Cj[i](Ai)v1 (140)

where

Cj =


qj(x

1)T ⊗L v(x1j )
T
⊗L pj(x

1)
qj(x

2)T ⊗L v(x2j )
T
⊗L pj(x

2)
· · ·

qj(x
N )T ⊗L v(xNj )

T
⊗L pj(x

N )

 (141)

and Cj[i] means the ith term of vector Cj[i], y =
[y1, y2, · · · , yN ]T .
If we further add a regular term, the final loss function is:

Jloss(A) = J (A)+
α

2
(A • A) (142)

Finally, it is transformed into solving the loss function
problem of minimizing the tensor A with TT format. In fact,
the idea of optimization is still similar to alternating least
squares, which we call the improved alternating least squares
method. The central idea is to update only one core An in each
iteration while keeping other cores unchanged. In general,
we first update from A1 to An, so that the left half is updated,
which we call forward half-sweep. Then we update from An
to A1, and the right half is updated, which we call backward
half-sweep.When both forward and backward are completed,
an iteration is completed (see figure 41 and algorithm 13).

4) FEATURE TENSOR GENERATION (TENSORIZATION) FOR
IMAGE CLASSIFICATION
Feature tensor generation (Tensorization) is often used in
image processing, which means finding good image feature
representations. By finding feature tensors, that is, extracting
valid data, image classification can be better, thereby improv-
ing classification accuracy. Usually we need to use some
means to convert 2D images into 3D feature tensors to extract
information.

Feature tensor generation transforms the original image X
into another 3rd-order high-dimensional image Y , which can
maintain the spatial relationship between the images. The
size of each transformed image Y is much smaller than the

Algorithm 13 The Improved Least Squares Method for TT
Decomposition (Chen et al.) [161]
Input:

Loss function Jloss(A) and an initial guess for the TT
decomposition of the Nth-order tensor A = A1 ×3,1
A2 · · · ×3,1 Am, An ∈ R

Rn−1×In×Rn ;
Output:

A in the TT format, A = argmin Jloss(A), A = Â1 ×3,1
Â2 · · · ×3,1 Âm ;

1: if the required number of iterations is not reached then
2: for n=1 to N do
3: solve: Ãn = argminÃn J (̃A

1
, · · · , Ãn−1, Ãn,An+1,

· · · ,AN );
4: [Qn,Rn] = QR− decomposition of Ãnmc2;
5: Ãn+1 = Ãn+1 ×2m Rn;
6: end for
7: for n=N to 1 do
8: solve: Ân = argminÂn J (̂A

1
, · · · , Ân−1, Ân, Ãn+1,

· · · , ÃN );
9: [Qn,Rn] = QR− decomposition of Ânmc2;
10: Ân−1 = Ân−1 ×2m Rn;
11: end for
12: end if
13: return A = Â1 ×3,1 Â2 · · · ×3,1 Âm;

original image X, and the original image X can be accurately
recovered from the transformed 3D image Y .
Image-based feature tensor generation is generally gener-

ated by the following steps (see algorithm 14).
We also made a picture to show the process of generating

feature tensors (see figure 42)
We can recover the original image by reversing the above

steps. For the feature tensor, it is highly compatible with the
deep learning method commonly used in images, Convolu-
tional Neural Network (CNN). So for general image process-
ing, it can be classified firstly by finding the feature tensor
of the image and then we can use CNN to classify. Similar to
CNN’s convolutional layer, this operation reduces the size of
the original image because n and k are smaller than the size
N of the original input image, which can significantly reduce
computing time andmemory consumption. For details, please
refer to (Yang et al.) [51].

5) TENSOR-BASED FEATURE FUSION FOR FACE
RECOGNITION
In general, traditional face recognition has only a single
input x, and the output expression is as follows:

y = f (W T x+ b) (143)

But (Hu et al.) [37] proposed to combine the face attribute
feature and the face recognition feature, which is simply
adding an input z. Then their output model becomes as
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FIGURE 41. The improved least squares method for TT
decomposition [161]. First forward half sweep, then backward half
sweep, forward and backward half sweep is an iteration. The forward and
backward half sweeps are all completed, then an iterative update is
completed. After each update of the nuclear tensor, the green matrix R
generated by QR decomposition of the nuclear tensor is absorbed into
the adjacent matrix, and then continues to update the adjacent matrix.

follows:

yi = softmax(W ×1v xi ×3v zi)

softmax(xi) =
ei∑
j
ej

(144)

where the bias is omitted, xi ∈ RA, zi ∈ RB, yi ∈ RC ,
i = 1, · · · ,N and weight tensor W ∈ RA×C×B. The goal
is still to optimize the loss function between the predicted
and true values. The author used Tucker decomposition

Algorithm 14 Feature Tensor Generation (Yang et al.) [51]
Input:

The original image X ∈ RN×N ;
Output:

Feature tensor, which we call F t ;
1: First, the original input imageX is divided into n×n block

regions, and then multi-level perception is performed
to find the feature representation of each block region,
we call the block area Ya,b(a, b = 1, 2, · · · , n) ;

2: Perform DCT transform for each block: Da,b(u, v) =

c(u)c(v)
K∑
x=0

K∑
y=0

Ya,b(x, y)cos[ πK (x+
1
2 )u]cos[

π
K (y+

1
2 )v],

K = N
n , if u=0, c(u) =

√
1

K+1 , else, c(u) =
√

2
K+1 ;

3: Convert matrices Da,b(u, v) to vectors (vectorization),
Ca,b = [Da,b(0, 0),Da,b(0, 1),Da,b(0, 2), · · · ,
Da,b(K ,K )];

4: Pick first k elements of each Ca,b, Cab = Ca,b[0 : k];
5: Finally, all these element groups will become a feature

tensor Fk =


C11 C12 · · · C1n
C21 C22 · · · C2n
...

... · · ·
...

Cn1 Cn2 · · · Cnn

, where Cab ∈ Rk are

vectors, Fk ∈ R
n×n×t is a 3rd-order tensor;

W = S ×1m UA ×2m UC ×3m UB, UA ∈ RA×RA , UB ∈
RB×RB , S ∈ RRA×RC×RB . Then formula 144 becomes as
follows:

yi = softmax(S ×1m UA ×2m UC ×3m UB ×1v xi ×3v zi)

(145)

According to some properties between the formula 169,
it can be converted into:

yi = softmax(S ×1m (UAxi)×2m UC ×3m (UBzi)) (146)

According to the nature of Kronecker, it can be further
transformed into:

yi = softmax(((UAxi)⊗ (UBzi))mat(S)T2UC ) (147)

where ((UAxi)⊗ (UBzi))mat(S)T2 is called fused feature. The
entire classification process is shown in figure 43.
Finally, the entire training process is actually the process

of solving the factor matrix and the core tensor. This way

FIGURE 42. Feature tensor generation example (n=8). We assume that the original image (800× 800) is divided into
8× 8 blocks, and each block is 100× 100. Then we perform DCT transformation. Finally it is encoded into a feature tensor
8× 8× 100.
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of decomposing can reduce the amount of parameters, thus
reducing the computation time, and the efficiency of large-
scale data processing can be improved.

6) TENSOR-BASED GRAPH EMBEDDING ALGORITHM
The graph embedding algorithm is generally used to better
classify data by reducing the dimensionality of the data while
preserving the data structure of the graph. In order to accu-
rately classify and identify the target object in the image,
(Hu et al.) [143] used the second-order tensor-based graph
embedding to learn the discriminant subspace (discriminate
the embedding space), and distinguished the target object
image block and the background image block from the dis-
criminant subspace.

First they assume that input training sample set are
Nth-order tensors, Xa ∈ R

R1×R2···×Rn , a = 1, 2 · · · ,N . They
construct an intrinsic graph Gi to characterize the correla-
tion between the target sample and the background sample.
In addition they also construct a penalty graph Gp to char-
acterize the difference between the target sample and the
background sample to separate them from the image. These
two graphs represent the geometry and discriminant structure
of the input sample. Define the weight matrix of the two
graphs separately,W i,W p. The elementW i

ab inW
i represents

the degree of similarity between the vertices Xa and Xb, and
the element W p

ab in W p represents the degree of difference
between Xa and Xb.
Tensor-based graph embedding aims to find a best low-

dimensional tensor representation for each vertex in a
graph G, and to make the low-dimensional tensor well
describe the similarity between vertices. The optimal tensor
representation of the vertex is obtained by solving the follow-
ing optimization problem.

J (B1,B2, · · · ,BN )

= argmin
Bn

(
N∑
a=1

N∑
b=1

‖Xa ×1m B1

· · · ×Nm BN − Xb ×1m B1 · · · ×Nm BN‖2FW
i
ab)

s.t.
N∑
a=1

N∑
b=1

‖Xa ×1m B1 · · · ×Nm BN

− Xb ×1m B1 · · · ×Nm BN‖2FW
p
ab = d (148)

whereBn ∈ RIn×Rn are called transfer matrices, d is a constant
according to the needs. In fact, we can see that this is similar to
the optimal solution to the Tucker(HOSVD) decomposition
with constraints. Bn is actually factor matrices, and X is
the core tensor in Tucker decomposition. But note that here
In ≤ Rn.
However, depending on the image itself, it can be seen as a

matrix. (He et al.) [146]proposed the solution to the above
problem. First, the mode-n matricization of the tensor is
used to convert the above optimization problem equivalently.
Note that since the input Xa ∈ RR1×R2 , a = 1, 2 · · · ,N
are second-order tensors, according to the definition of the

FIGURE 43. Tensor-based feature fusion neural network.

mode-n matricization, Then the following formula is estab-
lished:

Xm1 = X ,Xm2 = XT (149)

According to figure 20, the mode-n product of the tensor
and matrix can be converted into matrix product. Then the
Y a = Xa ×1m B1 ×2m B2 in the formula 148 becomes as
follow:

Y a = Xa ×1m B1 ×2m B2,
A1 = A1m1 = B1(Xa)m1 = B1Xa,
Y a = A1 ×2m B2,

(Y a)m2 = B2(A1)m2,
Y a = ((Y a)m2)

T
= (B2(A1)m2)T = B1XaB

T
2 (150)

The optimization problem of factor formula 148 is con-
verted into:

J (B1,B2) = argmin
B1,B2

(
N∑
a=1

N∑
b=1

‖B1XaB
T
2 − B1XaB

T
2 ‖

2
FW

i
ab)

s.t.
N∑
a=1

N∑
b=1

‖B1XaB
T
2 − B1XbB

T
2 ‖

2
FW

p
ab = d

(151)

To further simplify the operation, (He et al.) [146] defined
two diagonal matrices 3i

∈ RN×N and 3p
∈ RN×N , where

the diagonal elements are λiaa =
N∑
b=1

W i
ab and λ

p
aa =

N∑
b=1

W p
ab,

respectively. Formula 151 can be further transformed into:

J (A,B) = argmin
A,B

trace(BT (3i
A −W

i
A)B)

s.t. trace(BT (3p
A −W

p
A )B) =

d
2

(152)

For convenience, AT = B1, BT = B2,

3i
A =

N∑
a=1

λiaaX
T
a AA

TXa, W i
A =

N∑
a=1

N∑
b=1

W i
abX

T
a AA

TXa

3
p
A =

N∑
a=1

λpaaX
T
a AA

TXa, W p
A =

N∑
a=1

N∑
b=1

W p
abX

T
a AA

TXa

(153)
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Using the idea of alternating least squares, when fixing A,
B consists of I1 generalized eigenvectors, which correspond
to the largest eigenvalues of first I1 and satisfy the following
equation, (3p

A − W p
A )b = c(3i

A − W i
A)b. when fixing B,

A consists of I2 generalized eigenvectors, which correspond
to the largest eigenvalues of first I2 and satisfy the following
equation, (3p

B −W
p
B )a = c(3i

B −W
i
B)a.

According to the above analysis, we present a graph
embedding algorithm based on a second-order tensor (matrix)
(see algorithm 15).

Algorithm 15 2nd-Order Tensor-Based Graph Embedding
Algorithm (Hu et al.) [143]
Input:

Input tensor sample set Xa ∈ R
R1×R2 , a = 1, 2 · · · ,N ;

Output:
Transfer matrices (factor matrices) AT , BT ;

1: Initially A, take the first I1 column of the unit matrix I ∈
RR1×R1 as the matrix A;

2: Initialize the weight coefficient W i
ab and W

p
ab according

to (Weiming Hu,2017);
3: for k=1 to n do
4: Calculate 3i

A, W
i
A, 3

p
A, W

p
A in formula 153;

5: Calculate B by using the properties of generalized
eigenvectors: (3p

A −W
p
A )b = c(3i

A −W
i
A)b;

6: Calculate3i
B,W

i
B,3

p
B,W

p
B in formula 153 by exchang-

ing A and B;
7: ReplaceA by using the properties of generalized eigen-

vectors: (3p
B −W

p
B )a = c(3i

B −W
i
B)a;

8: end for
9: return Transfer matrices (factor matrices) AT , BT ;

Note that since the images are mostly two-dimensional,
the above authors used the form of a second-order matrix.
In fact, if the input is a higher-dimension tensor (n>3), we can
still use the alternating least squares to convert the above
multivariate optimization problem into a single variable opti-
mization problem.

7) DISCUSSION AND COMPARISON
This section mainly introduces some tensor-based classifi-
cation algorithms. Among them, Support Tensor Machine
(STM) and High-order Restricted Boltzmann machines
(HORBM) are the main ones. Similar to the traditional SVM,
STM can only perform two classifications. When faced with
multiple classification problems, we need to perform STM
multiple times, and now the more popular method is to use
neural network replacement. Due to the simplicity of rank-
one decomposition, we mainly describe the STM algorithm
based on rank-one decomposition in STM. For high-order
Boltzmann machines, we extend it to a more general case.
At the same time, in the case of performing CP decom-
position or rank-one decomposition of tensor, not only the
number of unknown parameters is reduced, but also effi-
cient iterative solution can be effectively performed by ALS.

Tensor can also combine various high-dimensional features
to improve the classification accuracy. Therefore, a tensor-
based feature fusion technique is proposed for classification
processing. Finally, using the tensor to separate the target
from the background pattern, the discriminant space can be
effectively learned, thereby effectively detecting the target in
the picture.

C. APPLICATION OF TENSOR IN DATA PREPROCESSING
1) TENSOR DICTIONARY LEARNING
Dictionary learning refers to finding a sparse representation
of the original data while ensuring the structure and non-
distortion of the data, thereby achieving the effect of data
compression and ultimately reducing computational com-
plexity (see figure 44). General dictionary learning boils
down to the following optimization problems:

min
A,xi

N∑
i=1

||yi − Axi||22+λ
N∑
i=1

||xi||1, i=1, · · · ,N (154)

where A ∈ RJ×I is sparse matrix, yi ∈ R
J , i = 1, · · · ,N are

N raw data and xi ∈ RI are vectors sparsely represented.

FIGURE 44. Schematic diagram of dictionary learning, left y is the original
input data, A is a sparse matrix, and x is a sparse representation of y.

We now extend the vector to the tensor. When the input
raw data Y ∈ RI1×I2×···IN is an Nth-order tensor, it produces
tensor dictionary learning. The tensor decomposition method
is usually used to solve the problem for the tensor dictionary
learning. (Ghassemi et al.) [88] used the Kronecker prod-
uct representation of Tucker decomposition to represent the
above optimization problem. According to the expression of
the formula 108 Tucker decomposition, we get

Y v1 = (BN ⊗R BN−1 · · · ⊗R B1)X v1 (155)

We combine N samples as N column vectors of a new
matrix Y, and get the expression of the matrix as follows:

Y = (BN ⊗R BN−1 · · · ⊗R B1)X (156)

At this time we call the factor matrices the Kronecker
structured(KS) matrices and let D = BN ⊗L BN−1 · · · ⊗L B1.
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However, a more general sparse matrix is a low rank sep-
aration structure matrix, which is the sum of KS matrices,
as follows:

D =
I∑
i=1

BiN ⊗R B
i
N−1 · · · ⊗R B

i
1 (157)

Considering another property. Let D = B2 ⊗R B1, for the
elements in D we can reconstitute the form of the vector outer
product as follows: Dr = vec(B1)1 ◦ vec(B2)1. Then we can
convert the equivalent of equation 157 to the following:

Dr =
I∑
i=1

(Bi1)v1 ◦ (B
i
2)v1 · · · ◦ (B

i
N )v1 (158)

So we can use this structure as a regular term. Finally,
we get the optimal expression for the tensor dictionary learn-
ing as follows:

min
D,X

1
2
||Y − DX ||2F + λ

1
N

N∑
n=1

||Drmn||∗ (159)

where D =
∑I

i=1 B
i
N ⊗R BiN−1 · · · ⊗R Bi1, ||D

r
mn||∗ is

the kernel norm of the matrix Dr after the mode-n matri-
cization of the tensor Dr . It is generally solved by the
Lagrangian multiplier method. Since the solution process is
too complicated, it is omitted here. For details, please refer to
(Ghassemi et al.) [88].

2) TENSOR COMPLETION FOR DATA PROCESSING
In data processing, sometimes there are some missing values
in the data. There are many ways to complete the missing
data, and the popular ones are matrix estimation and matrix
completion. If the input data is tensor, then we call the ten-
sor estimation and tensor completion. The tensor estimation
and the tensor completion are similar. They are all required
to solve the corresponding minimum constraint problem.
However, the tensor estimation is mainly to minimize the
mean square error between the estimated value and the orig-
inal value. Here we mainly introduce the tensor completion.
The general tensor completion aims to seek the optimal solu-
tion of the following expression:

min
Y
‖(X − Y )~ Ĩ‖2F (160)

where X ∈ RI1×I2×···×IN is a tensor with missing values,
Y ∈ RI1×I2×···×IN means the reconstruction tensor, ~ means
the element product (see formula 19), and Ĩ ∈ RI1×I2×···×IN
represents the indexes of missing values in X . The entries of
Ĩ are as follows:

ĩi1i2···iN ==
{
0 if x i1i2···iN is missing
1 otherwise

(161)

The first step in such problems is usually to find a low
rank approximation of the original tensor. The conventional
method uses several tensor decompositions introduced in
part one, such as CP, HOSVD, TT decomposition, etc.

(Peng et al.) [68] used the HOSVD decomposition. But he
did not use the traditional truncated SVD decomposition
algorithm (see algorithm 2). Since traditional algorithms need
to initialize the approximate rank of a given tensor first and
the factor matrices, which actually requires a lot of pre-
calculation. So they proposed an adaptive algorithm to obtain
the low rank approximation of tensors.

First they set an error parameter α ∈ [0, 1]. Then, sim-
ilar to truncated-SVD, SVD decomposition is performed
on the mode-n matricization of the core tensor 3mk , k =
1, 2 · · · ,N , 3mk = UkSkV T . Where S is a diagonal matrix
with nonzero entries sjj, j = 1, · · · ,K , K = rank(3mk ). The
optimal rank can be obtained by

Rk = min
Rk

(R0 < Rk < Ik <

K∑
j=Rk+1

sjj

K∑
j=1

sjj

< α) (162)

where R0 is the lower bound of the predefined rank, which
prevents the rank from being too small. The detailed process
is shown in algorithm 16.

Algorithm 16 The Adaptive HOSVD Decomposition of the
Tensor (Peng et al.) [68]
Input:

The Nth-order data tensor X ∈ RI1×I2···IN , error parame-
ter α ∈ [0, 1], R0

Output:
The core tensor A ∈ RR1×R2···RN and the factor matrices
Bn ∈ RIn×Rn ;

1: A0← X ;
2: for n=1 to N do
3: [Un, Sn,V T

n ] = SVD(An−1mn ), and then compute rankRk
by formula 90;

4: Select the first Rk column vector of U to assign to
the factor matrix Bk , Bk = Un(:, 1 : Rk ) =
[u1,u2, · · · ,uRk ];

5: Anmn = Sn(1 : RK , 1 : RK )Vn(:, 1 : Rk )T ;
6: end for
7: A = AN ;
8: return the core tensor A and factor matrices Bn

When the improved HOSVD decomposition algorithm is
completed, we obtain the factor matrices Bn and the low rank
approximate solution of the original tensor X by the mode-n
product of the original input tensor and the factor matrices,
as follows:

Z i = X ×1m (B1BT1 )×2m (B2BT2 ) · · · ×im (BiBTi ) (163)

where i = 1, · · · ,N , so we can get N low rank approximate
solutions of X : Z1, Z2, · · · , ZN . We take the average of these
N numbers as a best approximation of the original tensor X .

X ≈ 1
N

N∑
i=1

Z i.
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After the previous steps, we first perform a zero-
compensation operation for the missing data of X , and we
get the fulfilled tensor X̂ . And then we get the approximate
solution of it.

D =
1
N

N∑
i=1

Ẑ i (164)

Finally, for missing values, we update it with the following
formula:

X̂ = X ~ Ĩ + D~ (¬̃I ) (165)

where ¬ is the Boolean NOT operator (i.e., 0 ← 1,
1← 0). The entire tensor completion algorithm is shown in
algorithm 17.

Algorithm 17 Tensor Completion (Zisen Fang, 2018)
Input:

The Nth-order data tensor X ∈ RI1×I2···IN with missing
values, Ĩ , error parameter α ∈ [0, 1], R0, the number of
iterations required L

Output:
The Nth-order tensor X̂ obtained after the missing value
is completed, the core tensor A ∈ RR1×R2···RN and the
factor matrices Bn ∈ RIn×Rn ;

1: X̂0← X ~ Ĩ , D0 = 0;
2: for n=1 to L do
3: Obtain the core tensor A and factor matrices Bn by

applying algorithm 16 for X̂n−1;
4: for k=1 to N do
5: Z k = X ×1m (B1BT1 )×2m (B2BT2 ) · · · ×km (BkBTk );
6: end for

7: Dn = 1
N

N∑
k=1

Ẑ k ;

8: X̂n = X ~ Ĩ + Dn ~ (¬̃I );
9: end for

10: X̂ ← X̂L ;

3) DISCUSSION AND COMPARISON
This section focuses on two kinds of common data prepro-
cessing, dimensionality reduction and data completion. For
dictionary learning, we introduce a tensor model based on
Tucker decomposition, and it can be easily solved due to
the nature of the Tucker decomposition. At the same time,
we also introduce the latest tensor completion algorithm
based on improved HOSVD decomposition for the comple-
tion of data missing values.

D. BRIEF SUMMARY FOR PART TWO
Part two introduced the applications of tensor algorithms,
including data preprocessing, data classification and data
prediction (regression). We can see from part two that in
order to solve the high-dimensional problem, more and more
researchers have begun to develop tensor-based algorithms.
The biggest feature of the tensor algorithm is that it can

effectively use the data structure to extract effective infor-
mation. At the same time, we use tensor decomposition
to reduce unknown parameters and the size of the original
tensor. Finally, the original problem is transformed into a one-
variable optimization problem by alternating least squares
algorithm. Tensor-based algorithms not only ensure the inter-
relationship in the data characteristics, but also improve the
accuracy.

IV. CHALLENGES AND PROSPECTS
A. CHALLENGES
As a new technology in recent years, tensor is gradually
applied to various fields, such as medicine, biology, computer
vision, machine learning, etc. But at the same time it also
faces many challenges.

For example, for the existing tensor-based tracking algo-
rithm, they cannot completely detect the intrinsic local geom-
etry and discriminant structure of the image block in tensor
form. As a result, they often ignore the influence of the
background, which will be interfered by the background area
and reduce the accuracy of target tracking.

Regardless of the classification problem of machine learn-
ing or deep learning, the tensor decomposition also requires
more parameters. In order to improve the accuracy, a large
number of samples are needed. Without a better training
algorithm, a large number of parameters will cause slow
convergence or even no convergence. At the same time, how
to obtain a huge amount of data is also a very important
issue. Due to the limited sample, researchers often choose to
experiment on simulated data. After all, the simulation data
is different from the actual data, so the accuracy is not fully
guaranteed when applying the actual high-dimensional data.

For the traditional tensor decomposition introduced in part
one, such as Tucker decomposition and CP decomposition,
they all decompose the input tensor into multiple low-order
factors. However, due to some noise in illumination, occlu-
sion or practical applications, they are prone to deviations.
Thus the accuracy of the decomposition will decrease, which
means that the robustness of these decomposition algorithms
is relatively poor.

However, for data processing, some general tensor algo-
rithms often directly decompose the input features into mul-
tiple dimensions, which excessively consider the combina-
tion of these features with other useless features. So it is a
huge challenge to accurately extract useful information in
the decomposition and abandon the useless combination of
features.

The last big problem is about tensor decomposition
algorithms. When it comes to tensor decomposition, it is
indispensable to talk about alternating least squares, which
alternately obtains the factor of tensor decomposition by
iteratively updating the single core each time. However, these
algorithms have a common problem, that is, the problem of
initialization. In deep learning and machine learning, if the
weight initialization is not appropriate, it will cause long
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convergence time or even non converge. Therefore, how to
effectively initialize tensor rank and the factor matrices is a
huge challenge.

B. PROSPECTS
For the above problems, we proposed the following research
directions:

1. For target detection and image tracking, can we find a
tensor-based algorithm that can capture the features between
the background image and the target image?

In many cases, we need to extract the target image which
we need from an image. At this time, the dynamic video
image will be more difficult. How to better grasp the char-
acteristics of the target and the background and distinguish
them will affect the accuracy of target tracking. Therefore,
we urgently need to develop such a tensor-based tracking
algorithm that can capture the geometric local structural rela-
tionship and discriminant relationship between background
and target image blocks.

2. How to optimize the learning algorithm or avoid the
saddle point?

How to improve the traditional gradient descent algo-
rithm or how to avoid the saddle point becomes an urgent
requirement based on tensor deep learning. For deep learning,
when the dimension becomes higher, the first problem we
think of is the increase of computational complexity and com-
putation time. In general, we usually use tensor decomposi-
tion for dimensionality reduction. But some new problems are
inevitably generated. A more common problem with gradient
descent is that it tends to fall into local minima. As the dimen-
sion rises, such problems become more widespread, and we
still need to invent some improved algorithms to prevent the
network from falling into local minima. Also the saddle point
is generated due to the high demension, which becomes a
non-convex problem. Therefore, the learning update algo-
rithms need to be improved urgently, otherwise the accuracy
cannot be improved.

3. Can the non-convex problem of the weight optimization
process be transformed into a convex optimization problem?

As the dimension increases, in general, the objective func-
tion will change to a non-convex function, which leads to the
non-convex optimization problem. Usually the non-convex
optimization problem is difficult to solve, so we always
want to find its equivalent convex optimization problem to
solve. Can we use effective tensor decomposition or other
algorithms to transform non-convex objective functions into
convex functions and optimize them?

4. How to reduce the required samples and convergence
time while ensuring accuracy?

Some researchers tried to convert original tensor problem
into a traditional vector problem, which not only destroys the
original data structure, but also greatly increases the number
of parameters. The current method for tensor data is through
tensor decomposition, which directly converts the data tensor
into factor matrices and the core tensor. Some researchers
have reduced the parameters by tensor contraction

calculations (Kossaifi et al.) [64]. However, whether using
tensor decomposition or tensor contraction to reduce
unknown parameters, the actual unknown parameters that
need to be solved is still more than ordinary problems.
Therefore, for the required sample data, one is to use simula-
tion data, and the other is to increase the sample parameters
that are missing in reality by tensor completion. However,
there are accuracy problems in both methods, which also
affect the training of the later models and so on.

5. Is it possible to improve low-rank tensor decomposition
algorithms?

We have mentioned in the last section that tensor decom-
position algorithms face the problem of initializing factor
matrices, core tensors and tensor rank. For factor matrices
and core tensors, we tend to use the usual random Gaussian
variables to initialize the parameters. According to the struc-
tural characteristics of tensor or the mode-n matricization and
vectorization of tensor, we can add some additional priori
information to the factor matrices and core tensor. So can
we apply some constraints to the factor matrices and core
tensor to better find the properties and effectively initialize
it? Or can we improve the alternating least squares algorithm
so that it can find the original input tensor characteristics
and initialize it automatically? For the tensor rank, we have
just introduced a new improved algorithm in part two tensor
completion algorithm (see algorithm 17).

V. CONCLUSION
This survey focuses on the basics of tensors, including ten-
sor definitions, tensor operations, tensor decomposition, and
low-rank tensor-based algorithms. At the same time, we also
describe the application of tensor decomposition in various
fields and introduce some applications of tensor algorithms
in the field of machine learning and deep learning. Finally,
we discuss the opportunities and challenges of tensor.
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