
Received October 5, 2019, accepted October 20, 2019, date of publication October 28, 2019, date of current version November 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2949785

ELF-Nets: Deep Learning on Point Clouds Using
Extended Laplacian Filter
SEON-HO LEE, (Student Member, IEEE), HAN-UL KIM, (Student Member, IEEE),
AND CHANG-SU KIM , (Senior Member, IEEE)
School of Electrical Engineering, Korea University, Seoul 136-701, South Korea

Corresponding author: Chang-Su Kim (changsukim@korea.ac.kr)

This work was supported in part by the Cross-Ministry Giga KOREA Project Grant funded by the Korean Government (MSIT ) through
the development of 4D reconstruction and dynamic deformable action model based hyper-realistic service technology under Grant
GK18P0200, and in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) under
Grant NRF-2018R1A2B3003896.

ABSTRACT We propose a deep learning framework for various 3D vision tasks, which takes a point cloud
as input. The convolution is a basic operator for feature extraction in deep learning. However, it is not directly
applicable to a point cloud, which is an irregular, unordered point set. This makes deep learning on point
clouds challenging. To address this issue, we propose the extended Laplacian filter (ELF) for point clouds,
which adopts the design principles of discrete Laplacian filters in 2D image processing. In other words, ELF
extends the Laplacian filters and has the following two properties: 1) it is a two-state filter using two filter
matrices (one for a center point and the other for neighboring points), and 2) it employs a scalar weighting
function to predict the relative importance of the neighboring points. Then, we develop ELF-Nets, which
consist of ELF convolution layers and fully connected layers. Experimental results demonstrate that the
proposed ELF-Nets are capable of recognizing the 3D shape of a point cloud effectively and efficiently.
In particular, ELF-Nets provide better or comparable performances than the state-of-the-art techniques in
both object classification and part segmentation tasks.

INDEX TERMS Point cloud, convolutional neural network, Laplacian filter, 3D deep learning, object
classification, semantic part segmentation.

I. INTRODUCTION
Point clouds can be acquired by employing 3D sensing tech-
niques, such as LiDAR scanning or stereo reconstruction.
They are widely used in various 3D vision applications,
including self-driving cars [1]–[3], medical image analy-
sis [4], robotics, virtual reality, and geographic information
systems [5]. Thus, point cloud processing has drawn increas-
ing interest from both industry and academia. Recently, with
the great success of convolutional neural networks (CNNs)
in 2D image processing [6]–[11], several attempts [12]–[15]
have been made to exploit deep learning for point cloud
processing. However, deep learning on point clouds is chal-
lenging. Figure 1 illustrates a point cloud, where points are
irregularly distributed in a 3D space. Due to the irregularity,
it is difficult to apply conventional CNN techniques for 2D
regular pixels, including convolution and pooling, directly to
point clouds.

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdel-Hamid Soliman .

FIGURE 1. An example of a 3D point cloud: Each point is associated with
optional normal and color vectors. In this paper, only position and
(optional) normal vectors are used for object classification and semantic
part segmentation, whereas color vectors are not used.

To overcome this issue, early methods [12], [16]–[18]
convert a point cloud into 3D voxels in a regular grid and
use 3D CNNs to extract features. However, due to high

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 156569

https://orcid.org/0000-0002-4276-1831
https://orcid.org/0000-0001-7382-1107


S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

computational and memory costs, voxel representation is
often limited to low levels of resolution, yielding quantiza-
tion artifacts and making it difficult to handle fine details
of 3D shapes. For efficient computation, octrees [19] and
k-d trees [20] can be used to skip convolution operations on
empty voxels. However, the conversion to the voxel format
inevitably incurs an information loss or an overhead.

Recently, several deep neural networks [13]–[15], [21],
[21]–[25] have been developed to process point cloud data
directly. As a pioneering algorithm, PointNet [13] adopts
multi-layer perceptron to extract deep features of points.
However, it does not consider the spatial structure of points.
A key to the great success of CNNs is that they use convolu-
tion layers to exploit spatial correlation. Hence, the methods
in [14], [15], and [21]–[24] attempt to use local correlation of
points in a 3D space. Especially, Xu et al. [15] developed a
modified convolution operation on point clouds.

In this paper, we propose a novel point processing opera-
tion, called ELF convolution, which extends the conventional
2D convolution. In particular, ELF is an extended version
of 2D discrete Laplacian filters [26]. While Xu et al. [15]
also proposed a 3D operation based on the 2D convolution,
their operation is based on the Taylor expansion and demands
significantly more parameters than the proposed ELF convo-
lution. Also, we propose ELF-Nets using ELF convolution
layers, which perform 3D object classification and semantic
part segmentation, respectively. Given a point cloud, the pro-
posed algorithm extracts pointwise feature vectors using ELF
convolution layers. Then, the global feature vector is obtained
through the global max pooling of those pointwise feature
vectors. For 3D object classification, the global feature vector
is propagated to fully connected layers to predict the category
of the input point cloud. On the other hand, for semantic part
segmentation, not only the global feature vector but also the
pointwise feature vectors are used to predict the segmentation
label of each point.

We evaluate the performance of the proposed ELF-
Nets on popular benchmark datasets: ModelNet40 [17],
SHREC15 [27], and ShapeNet [28]. Experimental results
demonstrate that ELF-Nets provide better or compa-
rable performances than the state-of-the-art techniques
in [12]–[17], [20], [21], [25], and [29]–[31] on the three
datasets.

To summarize, this work has the following main
contributions.
• Wepropose the novel operation, called ELF convolution,
to process unordered points in a 3D space.

• We develop two ELF-Nets for 3D vision tasks: one
for 3D object classification and the other for semantic
part segmentation. The proposed ELF-Nets effectively
capture both global and local structures of a point cloud,
by stacking a series of ELF convolution layers.

• The proposed ELF-Nets yield better or compa-
rable results than the state-of-the-art algorithms
[12]–[17], [20], [21], [25], [29]–[31], [31] on Model-
Net40, SHREC15, and ShapeNet.

The rest of this paper is organized as follows: Section II
reviews related work. Section III describes the proposed
algorithm, and Section IV assesses its performance compar-
atively. Finally, Section V concludes this work.

II. RELATED WORK
While deep learning has been popular and successfully
employed in a wide variety of 2D vision tasks, relatively
little effort has been made for its application to 3D tasks.
This is mainly because, unlike 2D images, typical 3D data
formats, such as point clouds or meshes, do not have reg-
ular structures. Deep learning techniques, developed for
regular signals, cannot be used directly for irregular 3D
data. Hence, some algorithms represent 3D objects in the
regular voxel domain or project them onto multi-view 2D
images, before processing them using deep learning tech-
niques. Recently, several deep learning techniques have been
proposed to directly process irregular 3D data, such as point
clouds or graphs. In this section, we review these regular and
irregular domain approaches briefly.

A. REGULAR DOMAIN APPROACHES
1) MULTI-VIEW ALGORITHMS
This approach projects a 3D object onto multiple 2D views
and processes them using CNNs. In [12], [32], and [33],
a point cloud is represented by a collection of 2D images
from different viewpoints. Early algorithms [12], [32] extract
features from projected images using CNNs and aggre-
gate them via pooling. Yu et al. [33] utilize local features
obtained from image patches. Feng et al. [34] divide multi-
view images into several groups with different weights to
obtain a more discriminative descriptor for a 3D shape.
Kanezaki et al. [35] perform viewpoint estimation and 3D
object classification jointly, which facilitates the extraction
of view-specific features.

These multi-view algorithms can utilize conventional 2D
CNNs and yield promising results in 3D object classification.
They, however, cannot be extended straightforwardly to other
3D vision tasks, requiring per-point prediction, such as part
segmentation and scene segmentation.

2) VOXEL ALGORITHMS
In the voxel representation, a 3D space is divided into reg-
ular cubes, each of which is assigned a binary variable to
indicate whether the cubic voxel is occupied or empty. Wang
and Posner [36] extract hand-crafted geometry features from
each voxel and feed them into an SVM classifier. Also,
in [16], [17], and [37], deep voxel features are extracted by
applying 3D CNNs. However, as computational and memory
requirements increase cubically with the resolution of voxels,
only low levels of resolution are supported in practice, mak-
ing it hard to exploit detailed shape information. To address
this issue, Li et al. [18] use a probing filter to extract fea-
tures efficiently. Alternatively, to improve computational and
memory efficiency, [19], [20] exploit the sparsity of occupied
voxels in a 3D space, by adopting tree data structures.

156570 VOLUME 7, 2019



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

B. IRREGULAR DOMAIN APPROACHES
1) POINT CLOUD INPUT
Recently, several deep neural networks have been developed,
which directly accept point clouds as input. Qi et al. [13]
proposed PointNet, which exploits multi-layer perceptron
(MLP) to extract the feature vector of each point and then
aggregates those vectors via global max pooling. However,
since PointNet processes each point independently, it cannot
use the structural information in the neighborhood of each
point. To overcome this limitation, Qi et al. [14] developed
PointNet++ to capture local structures in a point cloud.
It selects a subset of points based on the farthest point sam-
pling, constructs local regions by finding neighboring points
around each selected point, and uses PointNet to extract
local features from each local region. Also, to capture local
geometric information, Shen et al. [38] proposed the kernel
correlation and the graph pooling. Li et al. [21] algorithm
adopts the self organizing map [39] to model spatial dis-
tribution of local points and extracts hierarchical features
of both individual points and nodes of the self organizing
map. Huang et al. [25] algorithm slices points along the x, y,
and z axes and uses recurrent neural networks (RNNs) to
obtain features from the spatial slices.

Basic operations for processing point clouds have been
also proposed. Su et al. [24] project data to a predefined
regular domain and obtain features by applying a bilateral
filter to the projected data. Xu et al. [15] SpiderConv is a
modified version of the well-known convolution. It exploits
the Taylor expansion to approximate a convolutional filter
as a parameterized function of input points. Hua et al. [40]
pointwise convolution allocates points to 3D grid cells, rep-
resents each grid cell with the average of points within
the cell, and performs the 3D convolution on the regular
grid. In this work, we develop ELF convolution, which
generalizes the Laplacian filter to process irregular point
data.

2) GRAPH INPUT
Graphs are widely used to represent data in an irregu-
lar domain. After Bruna et al. [41] introduced a neural
network architecture on graphs, various techniques have
been developed for deep learning on graphs [30], [42]–[46].
Wang et al. [45] combine PointNet++ [14] with a graph con-
volutional network. They group neighboring points as in [14],
build a graph representing points in each neighborhood, and
then apply the graph convolution to extract features. [46]
and [30] proposed generalized versions of the convolution,
which are defined on graphs. Specifically, Monti et al. [46]
defined the convolution as a Gaussian mixture model in a
pseudo coordinate system computed from the graph struc-
ture. Also, Simonovsky and Komodakis [30] defined their
generalized convolution on a local graph as filtering, whose
weights are conditioned on edge labels in the neighborhood
of a vertex.

FIGURE 2. An overview of the proposed ELF-Nets for (a) 3D object
classification and (b) semantic part segmentation: Given a point cloud,
the ELF-Net for classification first extracts its features and then classifies
it into one of pre-defined object categories. Also, the ELF-Net for part
segmentation assigns each point a semantic label. In this example,
the chair is divided into ‘legs,’ ‘seat,’ ‘arms,’ and ‘back,’ which are colored
in green, blue, yellow, and purple, respectively.

III. PROPOSED ALGORITHM
We develop two deep learning networks, called ELF-Nets, for
3D object classification and part segmentation, respectively.
Figure 2 is an overview of these ELF-Nets. Given a point
cloud, the proposed ELF-Nets extract discriminative features,
which represent geometrical shapes of points faithfully, and
use those features for classification or part segmentation. For
the effective feature extraction, we propose the ELF convo-
lution as a basic operator, by extending discrete Laplacian
filters in 2D image processing. Thus, the feature extractors
of ELF-Nets include multiple ELF convolution layers.

Let us first propose the ELF convolution and then describe
the detailed structures of the ELF-Nets. Also, we compare
the ELF convolution with SpiderConv [15], which is another
operation for point cloud data based on the convolution.

A. ELF CONVOLUTION
To develop a feature extraction operation for point cloud
data, we mimic the convolution, which is widely used in
CNNs [6]–[10] and has had remarkable success in deep learn-
ing tasks for 2D images. To explain the motivation behind
the design of the ELF convolution, we first describe the 2D
convolution briefly.

1) CONVOLUTION ON REGULAR GRID
A color image can be represented as a function on a regular
grid f : Z2

→ R3. Figure 3 illustrates the convolution on
an image, in which p is a center pixel and N denotes its
neighborhood, i.e. the set of neighboring pixels. Here, q is
a relative position vector between the center pixel position
and a neighboring pixel position. For instance, q1 = (1, 1)

VOLUME 7, 2019 156571



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

FIGURE 3. Convolution on a 2D image: Relative position vectors are
depicted by blue dashed arrows. Here, q1 = (1, 1),
q2 = (1, 0), . . . , q8 = (−1,−1), and q0 = (0, 0).

represents the relative position between a center point and
its upper left neighbor. The convolution returns the sum of
products of convolutional filter coefficients and image pixels
in the neighborhood N as follows.

(f ∗ g)(p) =
∑

p−qi∈N
gT(qi)f(p− qi) (1)

where g : Z2
→ R3×d is a convolutional filter. Hence,

the convolution output f∗g is a d-channel feature vector. Note
that, in a CNN, for each qi,

g(qi) = Wqi (2)

which is a 3 × d matrix composed of trainable parameters.
This convolutional filter g, which consists of matricesWqi in
(2), is optimized by the backpropagation algorithm [47].

2) CONVOLUTION ON POINT CLOUD
A point cloud is a set of unordered points in the 3D Euclidean
space, where each point p is a vector of (x, y, z) coordi-
nates. The point p has its feature vector f(p), representing
its properties, e.g., color or normal. For p, we define its
neighborhood as

N = {p− qi}i=0,...,k−1, (3)

which includes the k nearest neighbors. In (3), we have

0 = ‖q0‖ ≤ · · · ≤ ‖qk−1‖. (4)

Note that q0 = (0, 0, 0) and a point is regarded as the nearest
neighbor to the point itself. Then, we can use (1) to model the
convolution on point clouds as follows.

(f ∗ g)(p) =
∑

p−qi∈N
gT(qi)f(p− qi)

=

k−1∑
i=0

gT(qi)f(p− qi). (5)

In this case, f is a c-channel input feature, and g is a filter to
yield a d-channel output feature.

Different from the regular convolution, points in N are
irregularly distributed. Thus, the translation invariance in
the regular convolution does not hold anymore. Also, in the
regular convolution in (1), the neighboring pixel f(p − q)
is multiplied by the filter coefficient matrix g(q) = Wq
in (2). This is possible because q is defined on a discrete

FIGURE 4. Three examples of discrete Laplacian filters [26].

regular grid within a finite rectangle. In contrast, in the case
of point cloud data, the relative position qi is an arbitrary
vector with continuous components. Thus, there are infinitely
many possibilities for qi, and it is infeasible to define and
train a matrix for each possible qi. Hence, the filter g should
be designed by taking this irregularity of point clouds into
consideration.

3) EXTENDED LAPLACIAN FILTER
To alleviate the aforementioned problem, we design the filter
g by extending discrete Laplacian filters, which are widely
used in 2D image processing [26]. Figure 4 shows three
such Laplacian filters, which approximate the second-order
derivative in the discrete domain. Note that the output of
the Laplace filters quantifies how different the center pixel
is from its local neighbors. Contrary to smoothing filters
(e.g. Gaussian or averaging filters), the Laplacian filters are
sensitive to local variations in a signal and thus can be used
to extract local features effectively. Also, as discussed below,
the Laplacian filters use only a few parameters. Therefore,
they can be easily extended to learnable filters for point
cloud processing, which require only a moderate number of
parameters.

In Figure 4, even though exact filter coefficients are dif-
ferent in the three cases, they have the common design
principles.

1) They use a two-state variable: 1 for the center pixel
and −1 for the neighboring pixels.

2) They assign weights to the neighboring pixels, and
the total sum of the weights is 1. For example,
in Figure 4(b), the weight for each 8-neighbor
is 1

8 . Also, in Figure 4(c), the weight for each
side-sharing neighbor is 1

2 and that for each
corner-sharing neighbor is − 1

4 .
Then, each Laplacian filter coefficient is determined by mul-
tiplying the state variable with a weight. Also, note that they
are all isotropic filters. In other words, the filter coefficient
for pixel p − q is dependent only on the distance ‖q‖ from
the center pixel p.
Following these design principles, we introduce a novel

filter g, called ELF, which is given by

g(qi) = sN (i)h(qi) (6)

where sN is a scalar weighting function and h is a two-state
filter. An overview of ELF is shown in the upper part of
Figure 5.

156572 VOLUME 7, 2019



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

FIGURE 5. Illustration of the ELF convolution: (1) The upper part shows how to determine ELF coefficients. In this example, the neighborhood size k is 5,
and N = {p = p− q0, p− q1, p− q2, p− q3, p− q4}. The two-state filter h yields Wc for the center pixel p and Wn for the other four points, while the
scalar weighting function sN represents the relative importance of the points. By multiplying the two-state filter output with the scalar weights, the ELF
coefficients for those five points are obtained. (2) The lower part summarizes the computation flow of the ELF convolution. By multiplying the
c-dimensional input features with the corresponding ELF coefficients and then summing up the products, we obtain the d -dimensional output feature.

First, the two-state filter h is given by

h(qi) =

{
Wc if i = 0,
Wn otherwise.

(7)

where Wc and Wn are c× d trainable matrices for the center
point p and its other neighbors, respectively. Since we use
only two states (i.e. only two matrices) to define the filter h
in (7), it can be easily trained by the backpropagation in an
end-to-end manner. As illustrated in Figure 5, h(q0) = Wc is
used for the center pixel, while h(q1) = · · · = h(qk−1) =
Wn is for the other neighbors. This two-state filter follows
Principle 1 and is similar to the Laplacian filters in Figure 4(a)
and (b), where the center pixel is multiplied by a positive
number and the neighboring pixels are by a negative number.

Notice that, in Figure 4(c), neighboring pixels are multi-
plied by either − 1

2 or 1
4 depending on their distances from a

center pixel. These coefficients can be considered asweighted
values of −1, such that the total sum of all such weights
for the neighboring pixels is 1. Similarly, following Princi-
ple 2, the two-state filter h in (6) is modulated by the scalar
weighting function sN . It is determined from the distribution
of the points in the neighborhood, as shown in Figure 5, and
represents the relative importance of each neighbor. First, for
the center pixel,

sN (0) = 1. (8)

Also, let n = [pT,qT1 , . . . ,qTk−1]
T represent the neighbor-

hood N . Then, for the other neighbors, we have

sN (i) =
ew

T
i n∑k−1

j=1 e
wT
j n

for 1 ≤ i ≤ k − 1 (9)

where wi, 1 ≤ i ≤ k − 1, are trainable vectors. Note that the
weights are normalized so that

k−1∑
i=1

sN (i) = 1. (10)

Finally, by combining (5)∼(9), we have

(f ? g)(p) = WT
c f(p)+

k−1∑
i=1

sN (i)WT
n f(p− qi) (11)

where ? denotes the ELF convolution operator. The com-
putation in (11) is illustrated in the lower part of Figure 5.
Similarly to the Laplacian filtering, the center pixel is
multiplied by Wc, while the neighbors are multiplied by
weightedWn.

All computations in (11), including matrix multiplication
and softmax, are differentiable. Hence, ELF is easy to imple-
ment, and its parameters Wc, Wn, and wi can be trained by
the backpropagation algorithm. To summarize, we adopt the
design principles of 2D Laplacian filters and extend them
to design a trainable filter, called ELF, for unordered point
cloud data. ELF can be plugged into existing point process-
ing networks, such as PointNet [13] and PointNet++ [14],
to improve their performances.

B. ELF-NETS
We develop ELF-Nets based on the ELF convolution to
process unordered points for 3D object classification and
per point semantic segmentation problems. Figure 6 shows
detailed architectures of ELF-Nets.

VOLUME 7, 2019 156573



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

FIGURE 6. The proposed ELF-Nets for classification (left) and part segmentation (right). Input and output data are depicted by gray boxes.
Operations are colored to represent their types. For ELF convolution and fully connected layers, d denotes the output feature dimension.
Also, in an ELF convolution layer, r is a dilation rate and k is the number of points in the neighborhood. In the segmentation task,
the category label for an input point cloud is given as the one-hot vector in R16, since there are 16 object categories in the part
segmentation dataset [28].

1) CLASSIFICATION NETWORK
We design the classification network by substituting the
multi-layer perceptron layers of PointNet [13] with ELF con-
volution layers. Given a point cloud, its features are extracted
by three ELF layers, aggregated via the global max-pooling,
propagated to three fully connected layers, and then cate-
gorized into one of pre-defined object classes. Compared to
the previous methods in [14]–[16], [20], [29], [40], and [48],
the proposed ELF-Net for classification has a simpler archi-
tecture but provides better or comparable performance.

2) SEGMENTATION NETWORK
In the case of part segmentation, we employ a similar archi-
tecture to [13], [15]. Different from object classification,
the segmentation task requires per-point prediction. Thus,
each point feature should convey local information, as well
as global information, for accurate prediction.

First, we adopt a global feature extractor. It takes the
concatenation of the output of the ELF layers as input,
fuses the information using a fully connected layer, and then
aggregates the pointwise features through channel-wise max
pooling.

Next, we concatenate this global feature, the pointwise
local features from the fourth ELF convolution layer, and

the category information as done in [13] and [15]. Since the
objective is to predict part classes, not an object category,
the category label for an input point cloud is used to suppress
irrelevant predictions. We use three fully connected layers,
which take each point feature as input, in order to estimate
the part class label of the point.

Also, as [49] adopt the astrous convolution for semantic
segmentation to exploit a larger receptive field using the same
number of parameters, we implement each ELF convolution
layer by collecting the k× r nearest points and then sampling
k points uniformly to build the neighborhood. Here r is a
dilation rate.

Both ELF-Nets for classification and segmentation are
trained to minimize the standard cross entropy loss.

C. COMPARISON WITH SPIDERCONV
SpiderConv [15] is another operation, based on the convo-
lution, for extracting features from a point cloud. Let us
discuss how the proposed ELF is different from Spider-
Conv. The main difference between SpiderConv and ELF
lies in the design of the filter g. In SpiderConv, the filter is
defined as

g(q) = gtaylor(q)gstep(q) (12)

156574 VOLUME 7, 2019



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

TABLE 1. Accuracies on ModelNet40 [17] according to different design
choices for ELF.

where

gtaylor(x, y, z) = W t
0 + xW

t
1 + yW

t
2 + zW

t
3

+ x2W t
4 + y

2W t
5 + z

2W t
6

+ xyW t
7 + yzW

t
8 + zxW

t
9

+ xy2W t
10 + x

2yW t
11 + yz

2W t
12

+ y2zW t
13 + zx

2W t
14 + z

2xW t
15

+ x3W t
16+y

3W t
17+z

3W t
18+xyzW

t
19 (13)

and

gstep(q) = W s
i if ‖qi‖ ≤ ‖q‖ < ‖qi+1‖. (14)

In the Taylor expansion in (13), twentymatricesW t
0, · · · ,W

t
19

of size c×cT are used. In the step function in (14), k matrices
W s

0 , · · · ,W
s
k−1 of size cT × d are used. Here, T is a hyper-

parameter, which is set to 3 for the classification task.
To obtain the filter, SpiderConv employs many trainable

matrices and interpolates them using the relative location q =
(x, y, z). In comparison, the proposed ELF convolution uses
only twomatrices based on the Laplacian filtering. Therefore,
for example, when k = 20, the input feature dimension
c = 64, and the output feature dimension d = 128, the ELF
convolution needs 17,524 parameters, while SpiderConv uses
491,620 parameters. In other words, the parameter require-
ment of the ELF convolution is only 3.5% of that of Spi-
derConv. However, as will be shown in Section IV, the ELF
convolution provides better or comparable performance than
SpiderConv.

IV. EXPERIMENTAL RESULTS
A. CLASSIFICATION ON MODELNET40
ModelNet40 [17] consists of 12,311 mesh models from
40 object categories, which are divided into 9,843 training
models and 2,468 test models. As in [13], we uniformly
sample 1,024 points from mesh faces and normalize them
into a unit sphere. Also, we perform geometric transformation
to augment data [13]. More specifically, random horizontal
rotation is applied and perturbation noise clipped to 0.05 is
added. For training, we use the Adam optimizer [50] with
an initial learning rate of 0.001. The training is iterated
for 200 epochs. We decrease the learning rate by a factor
of 0.5 every 20 epochs. We implement the ELF-Net in Ten-
sorFlow [51] and the training takes 10–12 hours using a GTX
TITAN X GPU.

TABLE 2. Comparison of accuracies on ModelNet40 [17]. † means our
experimental result using the source codes distributed by the authors.

TABLE 3. Accuracies on ModelNet40 [17]. The thee numbers within
parentheses mean the hyper-parameter k setting for the first, second and
third ELF layers.

To analyze the efficacy of our design choice for ELF,
we perform five ablation studies. In Table 1, ‘k filters’ sorts
the k nearest neighbors according to their distances to a center
point p. Then, it simply exploits k different filter coefficient
matrices according to the sorted indices and the output feature
for p is obtained by

k∑
i=1

WT
i f(p− qi) (15)

where Wi is the filter coefficient matrix for the ith neigh-
bor point. Also, instead of using two-state filter function h,
we verify alternative options: one-state filter function
h1(qi) = W , which yields the same filter coefficient matrix
for all points inN , and three-state filter function h3, which is
given by

h3(qi) =


Wc if i = 0,
Wn1 if 1 ≤ i < k

2 ,

Wn2 if k2 ≤ i < k.

(16)

Note that the three-state filter function h3 dichotomizes
neighboring points into relatively close ones and the others
similarly to Figure 4(c). Furthermore, we confirm the effec-
tiveness of the weighting function sN . In Table 1, we do not

VOLUME 7, 2019 156575



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

FIGURE 7. The confusion matrix for the classification results on ModelNet40 [17].

FIGURE 8. Top-6 misclassified cases of the ELF-Net classifier on the
ModelNet40 dataset [17]. Ground-truth and predicted classes are
reported in blue and red, respectively. Note that even a human being
cannot estimate the ground-truth classes reliably.

employ sN for ‘w/o sN ’, i.e. we set g(qi) = h(qi). Also,
we adopt a different weighting function for ‘Alternative sN ’,
which is given by

sN (i) = e−‖qi‖
2
2/

k−1∑
j=1

e−‖qj‖
2
2 . (17)

FIGURE 9. Sample models in the ‘cat’ category in the
SHREC15 dataset [27].

In other words, we set the weights to be inversely proportional
to the distances of neighbors.

We see that the proposed ELF outperforms all the other
choices in Table 1, which indicates that our design choice
is more effective than the alternative ones. Notably, ‘k fil-
ters’ significantly degrades the performance, even though it
uses more coefficient matrices. This is because it considers
only the order of neighbor points and thus cannot handle
irregular data effectively. In contrast, ELF provides better
performance, although it uses only two matrices. As for the
alternative choices for h, the one-state filter h1 performs
worse than both ELF and the three-state filter h3. Thus, it can
be concluded that the center point and its other neighbors
had better be processed with different coefficient matrices.
However, ELF outperforms h3, since the detailed distinction

156576 VOLUME 7, 2019



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

FIGURE 10. Examples of 3D object part segmentation results on ShapeNetPS [28]. For each model, the left shows the ground-truth, while
the right is the segmentation result of the proposed ELF-Net. The last two rows present relatively inaccurate segmentation results for more
challenging models.

of neighbors of (16)makes the optimization harder. The lower
accuracies of both ‘w/o sN ’ and ‘Alternative sN ’ indicate
that the proposed weighting function sN performs well by
analyzing the configuration of the neighborhood.

Table 2 compares the proposed ELF-Net with conven-
tional algorithms [12]–[17], [20], [29], [30]. Note that we
design the ELF-Net, by replacing the multi-layer percep-
tron layers in PointNet (without T-Net) [13] with ELF lay-
ers. Thus, the performance gap of 4.1% between ELF-Net
and ‘PointNet w/o T-Net’ demonstrates that ELF processes

unordered points more effectively than the multi-layer per-
ceptron. The ELF-Net achieves the accuracy of 91.2%,
which is comparable to all conventional algorithms taking
1,024 points as input. The performance of the ELF-Net
is improved when normal vectors are additionally used.
Therefore, ELF-Net* outperforms all conventional algo-
rithms in Table 2.

Table 3 compares the accuracies of the ELF-Net with
different hyper-parameter settings of k . We see that ELF with
k = 20 is a better choice than the other options.

VOLUME 7, 2019 156577



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

TABLE 4. Classification accuracies on the SHREC15 dataset [27]. † means
our experimental result using the source codes distributed by the
authors.

Figure 7 is the confusion matrix for the classification
results on ModelNet40. The diagonal elements are dominant,
which indicates that ELF-Net performs classification well
regardless of object classes. The most confusion occurs when
‘night stand’ is misclassified into ‘dresser,’ ‘table’ is into
‘desk,’ and ‘dresser’ is to ‘night stand.’ Figure 8 shows exam-
ples of top-6 misclassified cases of the proposed ELF-Net
classifier. Most of them are very hard, and even a human
being cannot tell their ground-truth classes reliably.

B. CLASSIFICATION ON SHREC15
SHREC15 [27] is a dataset for non-rigid 3D shape retrieval.
It contains 1,200 watertight triangle mesh models from
50 categories: each category has 24 models. In each cat-
egory, 6 models are randomly selected to compose a test
data set. As in ModelNet40, to generate a point cloud,
1,024 points are uniformly sampled from mesh faces and
normalized into a unit sphere. We adopt five-fold cross
validation to evaluate the classification performance [14].
Compared to ModelNet40, SHREC15 is more challenging,
since 1,140 models are generated by deforming 60 original
models. Hence, as shown in Figure 9, it contains models of
the same category in different poses. To classify these models
correctly, it is necessary to understand not only global shapes
but also local details.

We employ the same ELF-Net architecture and data aug-
mentation strategy used in the ModelNet40 experiment.
We use the Adam optimizer with an initial learning rate
of 0.001. The training is done iteratively for 100 epochs.

Table 4 reports classification accuracies on the SHREC15
dataset. The proposed algorithm outperforms the conven-
tional methods in [13]–[15] by meaningful margins. This
indicates that the ELF-Net analyzes complicated geometrical
shapes in a 3D space effectively and extracts discriminative
features, which are robust against pose variations.

C. PART SEGMENTATION ON SHAPENETPS
The ShapeNet part segmentation dataset (ShapeNetPS) [28]
contains 16,881 point clouds from 16 object categories, each
annotated with two to six part labels. 14,007 point clouds
are for training, and 2,874 for test. Each point cloud includes
annotated points, which are assigned part categories, such as
chair leg and cup handle. There are 50 different part cate-
gories in total. As done in PointNet [13], we employ the inter-
section over union (IoU) ratio to evaluate part segmentation

performance. To train the ELF-Net for classification, we uti-
lize the same training process in Section IV-A, except that
2,048 points are used as input.

Table 5 compares the performance of the proposed
ELF-Net with those of the conventional algorithms
in [13]–[15], [20], [21], [25], [28], and [31]. Among the con-
ventional algorithms, SpiderCNN [15] and PointNet++ [14]
yield the state-of-the-art performances. The ELF-Net yields
comparable or better results than these state-of-the-arts. More
specifically, in terms of the average IoU, the ELF-Net is
comparable to SpiderCNN and better than all other methods.
Especially, the ELF-Net achieves the best performances on
the five categories of ‘chair,’ ‘knife,’ ‘laptop,’ ‘mug,’ and
‘rocket’ and the second best performances on the ‘airplane,’
‘car,’ and ‘motorbike’ categories. For the ‘earphone,’ ‘motor-
bike,’ and ‘rocket’ categories, ELF-Net provides relatively
low IoUs. This is mainly because there are only few training
samples for those categories, which are 49, 125, and 46,
respectively. Note that ‘rocket’ is the most difficult cate-
gory, on which all algorithms yield poor IoUs. However, the
ELF-Net still outperforms the conventional algorithms on this
challenging category.

Figure 10 shows some segmentation examples. We see that
the ELF-Net provides faithful segmentation results.

D. ELF-NET ANALYSIS
1) ROBUSTNESS TEST
Point clouds in the real world, which are acquired by LiDAR
scanners, tend to be noisier than synthetic point clouds in
ModelNet40, SHREC15, and ShapeNetPS. Moreover, their
densities may vary according to the scanning conditions.
Therefore, it is important to evaluate the robustness against
various kinds of input corruption for the practical usage.

For the density change, we randomly sample input points
as illustrated in Figure 11(a). Figure 12(a) shows accura-
cies of the proposed ELF-Net and PointNet [13] on Mod-
elNet40 [17] according to the number of input points,
where both networks take points and normal vectors as their
input. In Figure 12(a), the performance drop of ELF-Net
is only 2.8 when the number of points is decreased by
88%. The ELF-Net outperforms PointNet in all cases without
exception.

To evaluate the robustness against noise, we generate Gaus-
sian noise and add it to each point independently as shown
in Figure 11(b). Figure 12(b) plots the accuracy according
to the noise level. The ELF-Net achieves 86.5% even when
point cloud are blurred by severe noise with the standard
deviation of 0.02. Also, the ELF-Net outperforms PointNet
at all noise levels. These results indicate that the proposed
ELF-Net is robust to various input corruptions, even though
it has a simple structure.

2) FEATURE VISUALIZATION
In Figure 13, we visualize what the filters in the first ELF
layer in the ELF-Net for classification captures.We randomly

156578 VOLUME 7, 2019



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

TABLE 5. Comparison of IoU scores on ShapeNetPS [28]. The best result is boldfaced, while the second best is underlined.

FIGURE 11. Examples of point clouds with different kinds of input
corruption: (a) density change (b) Gaussian noise.

generate 1,024 points within a unit sphere centered at the
origin and find the 150 points with high feature values, which
represent the patterns that the filters recognize. We observe
that each filter captures different local areas or patterns in the
unit sphere.

Figure 14 visualizes important points, which are assigned
large weights sN , for some models in ModelNet40 [17].
These points captures object skeletons faithfully. In other
words, sN predicts the relative importance of each point
reliably.

FIGURE 12. Comparison of robustness against (a) density change
(b) Gaussian noise.

3) NETWORK COMPLEXITY
Table 6 reports the complexity of the classification networks.
As input, all networks in Table 6 take 1,024 points without
normal data. The proposed ELF-Net requires significantly
fewer parameters than the conventional networks. Compared
to SpiderCNN [15], the ELF-Net uses only 9.5% of param-
eters. However, as shown in Table 2, the ELF-Net yields
0.7% and 0.5% higher accuracies than SpiderCNN, when
1,024 points and 1,024 points + normal are used as input,
respectively. Also, the ELF-Net takes only 7.58ms to classify
a point cloud using a GTX TITAN X GPU.

VOLUME 7, 2019 156579



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

FIGURE 13. Visualization of the patterns captured by the first ELF layer.
Points with the top 150 feature values are depicted in yellow.
In the second and third rows, we observe that different filters focus on
different local regions.

FIGURE 14. Visualization of the impacts of sN . Important points are
depicted in yellow.

TABLE 6. Comparison of the numbers of parameters and the floating
point operations (FLOP), which are required by the classification
networks. M and B stand for million and billion, respectively.

Table 6 also compares the floating point operations
(FLOP), which are carried out in the networks. All these
FLOP measurements are done in TensorFlow [51]. The
proposed ELF-Net requires a higher FLOP than Point-
Net or PointNet++, but a lower FLOP than SpiderCNN.

V. CONCLUSION
We proposed ELF-Nets, which are composed of ELF lay-
ers, to process and analyze 3D point clouds. We showed
that ELF can be interpreted as an extended version of 2D
discrete Laplace operators. More specifically, ELF employs
two matrices: one for a center point and the other for its

neighboring points. The second matrix is scaled using a
weighting function, which is determined by the local config-
uration of the neighborhood. Since it uses only two matrices,
ELF is more efficient in terms of memory and computational
requirements than the conventional methods. Furthermore,
experimental results on popular benchmarks demonstrated
that ELF-Nets provide better or comparable performances
than the state-of-the-art techniques in both classification and
segmentation tasks.

REFERENCES
[1] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, ‘‘Multi-view 3D object

detection network for autonomous driving,’’ in Proc. CVPR, Jul. 2017,
pp. 1907–1915.

[2] M. Menze and A. Geiger, ‘‘Object scene flow for autonomous vehicles,’’
in Proc. CVPR, Jun. 2015, pp. 3061–3070.

[3] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek,
D. Stavens, A. Teichman, M. Werling, and S. Thrun, ‘‘Towards fully
autonomous driving: Systems and algorithms,’’ in Proc. IV, Jun. 2011,
pp. 163–168.

[4] L. C. Hieu, N. Zlatov, J. V. Sloten, E. Bohez, L. Khanh, P.H. Binh, P. Oris,
and Y. Toshev, ‘‘Medical rapid prototyping applications and methods,’’
Assem. Automat., vol. 25, no. 4, pp. 284–292, 2005.

[5] B. Schwarz, ‘‘LIDAR: Mapping the world in 3D,’’ Nature Photon., vol. 4,
no. 7, pp. 429–430, 2010.

[6] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. CVPR, Jun. 2016, pp. 770–778.

[7] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional
network for image super-resolution,’’ in Proc. ECCV, 2014, pp. 184–199.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. NIPS, 2012,
pp. 1097–1105.

[9] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. ICCV, Dec. 2015, pp. 1440–1448.
[10] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-

time object detection with region proposal networks,’’ in Proc. NIPS, 2015,
pp. 91–99.

[11] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[12] C. R. Qi, H. Su,M.Niessner, A. Dai,M. Yan, and L. J. Guibas, ‘‘Volumetric
andmulti-viewCNNs for object classification on 3D data,’’ inProc. CVPR,
Jun. 2016, pp. 5648–5656.

[13] C. R. Qi, H. Su, K.Mo, and L. J. Guibas, ‘‘PointNet: Deep learning on point
sets for 3D classification and segmentation,’’ in Proc. CVPR, Jul. 2017,
pp. 652–660.

[14] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘PointNet++: Deep hierarchical
feature learning on point sets in a metric space,’’ in Proc. NIPS, 2017,
pp. 5099–5108.

[15] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, ‘‘SpiderCNN: Deep learning
on point sets with parameterized convolutional filters,’’ in Proc. ECCV,
Sep. 2018, pp. 87–102.

[16] D. Maturana and S. Scherer, ‘‘VoxNet: A 3D convolutional neural net-
work for real-time object recognition,’’ in Proc. IROS, Sep./Oct. 2015,
pp. 922–928.

[17] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, ‘‘3D
ShapeNets: A deep representation for volumetric shapes,’’ in Proc. CVPR,
Jun. 2015, pp. 1912–1920.

[18] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas, ‘‘FPNN: Field probing
neural networks for 3D data,’’ in Proc. NIPS, 2016, pp. 307–315.

[19] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, ‘‘O-CNN: Octree-
based convolutional neural networks for 3D shape analysis,’’ ACM Trans.
Graph., vol. 36, no. 4, p. 72, 2017.

[20] R. Klokov and V. Lempitsky, ‘‘Escape from cells: Deep Kd-networks for
the recognition of 3D point cloud models,’’ in Proc. ICCV, Oct. 2017,
pp. 863–872.

[21] J. Li, B. M. Chen, and G. H. Lee, ‘‘SO-Net: Self-organizing network for
point cloud analysis,’’ in Proc. CVPR, Jun. 2018, pp. 9397–9406.

[22] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and
A. J. Smola, ‘‘Deep sets,’’ in Proc. NIPS, 2017, pp. 3391–3401.

156580 VOLUME 7, 2019



S.-H. Lee et al.: ELF-Nets: Deep Learning on Point Clouds

[23] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, ‘‘Tangent convolutions
for dense prediction in 3D,’’ in Proc. CVPR, Jun. 2018, pp. 3887–3896.

[24] J.-C. Su, M. Gadelha, R. Wang, and S. Maji, ‘‘A deeper look at 3D shape
classifiers,’’ in Proc. ECCV, Sep. 2018, p. 0.

[25] Q. Huang, W. Wang, and U. Neumann, ‘‘Recurrent slice networks for 3D
segmentation of point clouds,’’ in Proc. CVPR, Jun. 2018, pp. 2626–2635.

[26] A. K. Jain, Fundamentals of Digital Image Processing. Upper Saddle
River, NJ, USA: Prentice-Hall, 1989.

[27] Z. Lian et al., ‘‘Non-rigid 3D shape retreival,’’ in Proc. Eurograph. Work-
shop DOR, 2015, pp. 108–120.

[28] L. Yi, V. G. Kim, D. Ceylan, I-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, and L. Guibas, ‘‘A scalable active framework for region anno-
tation in 3D shape collections,’’ ACM Trans. Graph., vol. 35, no. 6, p. 210,
2016.

[29] G. Riegler, A. O. Ulusoy, and A. Geiger, ‘‘OctNet: Learning deep 3D repre-
sentations at high resolutions,’’ in Proc. CVPR, Jul. 2017, pp. 3577–3586.

[30] M. Simonovsky and N. Komodakis, ‘‘Dynamic edge-conditioned filters
in convolutional neural networks on graphs,’’ in Proc. CVPR, Jul. 2017,
pp. 3693–3702.

[31] L. Yi, H. Su, X. Guo, and L. J. Guibas, ‘‘SyncSpecCNN: Synchronized
spectral CNN for 3D shape segmentation,’’ in Proc. CVPR, Jul. 2017,
pp. 2282–2290.

[32] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, ‘‘Multi-view con-
volutional neural networks for 3D shape recognition,’’ in Proc. ICCV,
Dec. 2015, pp. 945–953.

[33] T. Yu, J. Meng, and J. Yuan, ‘‘Multi-view harmonized bilinear network for
3D object recognition,’’ in Proc. CVPR, Jun. 2018, pp. 186–194.

[34] Y. Feng, Z. Zhang, X. Zhao, R. Ji, and Y. Gao, ‘‘GVCNN: Group-view
convolutional neural networks for 3D shape recognition,’’ in Proc. CVPR,
Jun. 2018, pp. 264–272.

[35] A. Kanezaki, Y. Matsushita, and Y. Nishida, ‘‘RotationNet: Joint object
categorization and pose estimation using multiviews from unsupervised
viewpoints,’’ in Proc. CVPR, Jun. 2018, pp. 5010–5019.

[36] D. Z. Wang and I. Posner, ‘‘Voting for voting in online point cloud object
detection,’’ Robot. Sci. Syst., vol. 1, no. 3, p. 15607, 2015.

[37] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, ‘‘Vote3Deep:
Fast object detection in 3D point clouds using efficient convolutional
neural networks,’’ in Proc. ICRA, May/Jun. 2017, pp. 1355–1361.

[38] Y. Shen, C. Feng, Y. Yang, and D. Tian, ‘‘Mining point cloud local struc-
tures by Kernel correlation and graph pooling,’’ in Proc. CVPR, Jun. 2018,
pp. 4548–4557.

[39] T. Kohonen, ‘‘The self-organizing map,’’ Proc. IEEE, vol. 78, no. 9,
pp. 1464–1480, Sep. 1990.

[40] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, ‘‘Pointwise convolutional neural
networks,’’ in Proc. CVPR, 2018, pp. 984–993.

[41] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, ‘‘Spectral networks and
locally connected networks on graphs,’’ 2013, arXiv:1312.6203. [Online].
Available: https://arxiv.org/abs/1312.6203

[42] M. Henaff, J. Bruna, and Y. LeCun, ‘‘Deep convolutional networks
on graph-structured data,’’ 2015, arXiv:1506.05163. [Online]. Available:
https://arxiv.org/abs/1506.05163

[43] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. NIPS,
2016, pp. 3844–3852.

[44] R. Levie, M. Federico, X. Bresson, and B. Xavier, ‘‘CayleyNets: Graph
convolutional neural networks with complex rational spectral filters,’’
IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97–109, Jan. 2019.

[45] C. Wang, B. Samari, and K. Siddiqi, ‘‘Local spectral graph convolution for
point set feature learning,’’ in Proc. ECCV, Sep. 2018, pp. 52–66.

[46] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein, ‘‘Geometric deep learning on graphs and manifolds
using mixture model CNNs,’’ in Proc. CVPR, Jul. 2017, pp. 5115–5124.

[47] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[48] M. Gadelha, R. Wang, and S. Maji, ‘‘Multiresolution tree networks for 3D
point cloud processing,’’ in Proc. ECCV, Sep. 2018, pp. 103–118.

[49] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[50] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/
abs/1412.6980

[51] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2016, arXiv:1603.04467. [Online]. Available:
https://arxiv.org/abs/1603.04467

[52] T. Le and Y. Duan, ‘‘PointGrid: A deep network for 3D shape understand-
ing,’’ in Proc. CVPR, Jun. 2018, pp. 9204–9214.

SEON-HO LEE (S’18) received the B.S. degree
in electrical engineering from Korea University,
Seoul, South Korea, in 2018, where he is currently
pursuing the Ph.D. degree. His current research
interests include computer vision and machine
learning, especially the problems of point cloud
compression and 3D deep learning.

HAN-UL KIM (S’14) received the B.S. degree
in electrical engineering from Korea University,
Seoul, South Korea, in 2014, where he is currently
pursuing the Ph.D. degree. His current research
interests include computer vision and machine
learning.

CHANG-SU KIM (S’95–M’01–SM’05) received
the Ph.D. degree in electrical engineering from
Seoul National University, with a Distinguished
Dissertation Award, in 2000. From 2000 to 2001,
he was a Visiting Scholar with the Signal and
Image Processing Institute, University of Southern
California, Los Angeles, CA, USA. From 2001 to
2003, he coordinated the 3D Data Compression
Group with the National Research Laboratory for
3D Visual Information Processing, SNU. From

2003 and 2005, he was an Assistant Professor with the Department of Infor-
mation Engineering, Chinese University of Hong Kong. In September 2005,
he joined the School of Electrical Engineering, Korea University, where
he is currently a Professor. He is also an APSIPA Distinguished Lecturer
from 2017 to 2018. He has published more than 270 technical articles in
international journals and conferences. His current research interests include
image processing and computer vision. He is a member of the Multimedia
Systems &Application Technical Committee (MSATC) of the IEEE Circuits
and Systems Society. He was a recipient of the IEEK/IEEE Joint Award for
Young IT Engineer of the Year, in 2009, and the Best Paper Award from
the Journal of Visual Communication and Image Representation (JVCI),
in 2014. He served as an Editorial Board Member of JVCI, an Associate
Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING, a Senior Area Editor
for JVCI, and an Associate Editor for the IEEE TRANSACTIONSONMULTIMEDIA.

VOLUME 7, 2019 156581


