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ABSTRACT The coarray techniques, e.g., nested and coprime arrays, can significantly improve degrees of
freedom (DOFs) via constructing a so-called difference coarray, which enables underdetermined direction-
of-arrival (DOA) estimation within reach in the presence of unknown nonuniform noise. There are repeated
lags in the difference coarray, which also contain useful statistical information. In this paper, the repeated
lags are properly used for DOA estimation algorithm design in unknown nonuniform noise environments.
Specifically, the number of repeated lags in the difference coarray is rigorously given. Then these repeated
lags and unique lags are judiciously rearranged to form a pseudo data set, which is composed of linearly
independent vectors. Based on the pseudo data set, we propose two algorithms for DOA estimation in the
presence of unknown nonuniform noise. One is a searching algorithm without source number knowledge
(SASNK), and the other is a multi-snapshot compressive sensing method (MSCS) with better DOA
estimation performance. The MSCS also does not require source number information. Numerical results
are included to showcase the effectiveness of the proposed algorithms.

INDEX TERMS Direction-of-arrival (DOA) estimation, nested array, coprime array, repeated lags, pseudo
data set, unknown nonuniform noise.

I. INTRODUCTION
Underdetermined direction-of-arrival (DOA) estimation,
i.e., estimatingK DOAs fromN < K sensors, is a problem of
significance in engineering and science [1]–[4]. One way to
deal with this problem is to construct a virtual array that offers
more degrees of freedom (DOFs) than the physical array.
The coarray techniques [5]–[12], e.g., nested and coprime
arrays, play such a role. It has been shown that given an
N -sensor such array, one can obtain a difference coarray
which offers O(N 2) DOFs through simply vectorizing the
sample covariance matrix (SCM) of the received data [5], [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Huawei Chen.

Thus, up to O
(
N 2
)
DOAs can be resolved from an N -sensor

array.
The basic idea of coarray technique is to employ

two or more uniform linear arrays (ULAs) with specifically
selected number of sensors and inter-sensor spacings, such
that the DOFs in the difference coarray can be significantly
increased. For example, let us consider an N -sensor nested
array consisting of two ULAs. Assume that the first ULA
has N1 sensors with inter-sensor spacing d , and the second
ULA has N2 sensors with inter-sensor spacing (N1 + 1)d ,
where N = N1 + N2 and N1 = N2. Then (N 2/2 +
N − 1) unique lags in total can be found in the difference
coarray [5], [13]. Thus the number of identifiable sources can
be larger than the number of sensors, and many algorithms
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have been designed for underdetermined DOA estimation,
e.g., [14]–[17] and references therein.

In some practical cases, the noise power at each sen-
sor is different, yielding nonuniform noise. Thus, the noise
covariance matrix is a diagonal matrix with unequal diagonal
elements [18]. In this case, the DOA estimation performance
of many existingmethods based on nested and coprime arrays
suffer severe degradation. Somemethods have been proposed
to improve the DOA performance for such arrays in the pres-
ence of unknown nonunform noise. One simple compressive
sensing (CS) based method is proposed in [19] for efficient
DOA estimation. However, its DOA estimation performance
is not very good since it directly eleminates the diagonal ele-
ments of the covariance matrix. Recently, the authors in [20]
propose a covariance matrix reconstruction based CS method
(CMRCS) for robust estimation performance by averaging
the diagonal elements. However, the DOA performance still
needs to be improved in small sample or low signal-to-noise
ratio (SNR) cases.

It is seen in the above nested array example that there are
actually N 2 lags in the difference coarray. However, only
(N 2/2 + N − 1) of them are unique, which implies that
there are redundant/repeated entries in the difference coarray.
In the ideal case, there is no extra signal or noise variance
in these redundant lags, and the unique lags have sufficient
information to estimate DOAs. However, in practice, only the
SCM is available. All the entries in the estimated difference
coarray have auto- or cross-correlations of the signal or noise
covariance estimates. In small sample or low SNR cases,
the signal or noise variance corruption is much more severe
than that in the high SNR or large sample scenarios. The
repeated entries contain such correlation information, which
can be used for alleviating the noise and enhancing the robust-
ness of DOA estimation algorithms. However, some existing
algorithms, such as [5] and [7], ignore most repeated entries,
whichmeans that only partial statistical information about the
received data is employed. As a result, many of them do not
perform satisfactorily in low SNR or small sample scenarios.
The method in [21] averages all the covariance values corre-
sponding to each repeated lag to estimate DOAs, but it needs
source number knowledge a priori. The methods in [10]–[12]
also use all the covariance values for DOA estimation with-
out source number knowledge under the assumption that
the noise is uniform, i.e., noise power at each sensor is the
same. However, they do not consider nonuniform noise. The
CSmethods in [13], [14] estimate DOAs in nonuniform noise
environments, but they need to estimate the noise power.
In the presence of unknown nonuniform noise, estimating all
the noise power increases the number of estimation parame-
ters and thus the DOA estimation performance degrades.

To fully utilize the correlations of the received data and
overcome the aforementioned difficulties, we propose two
efficient algorithms in this paper. Specifically, we first study
the number of repeated lags appearing more than once and
twice in the difference coarray. Then we construct a pseudo
data set by properly rearranging these repeated and unique

entries, such that the useful correlation information about the
received data is contained in this pseudo data set. Finally,
based on the pseudo data set composed of multiple snapshots,
two algorithms are developed for DOA estimation. It is worth
highlighting that the proposed methods do not require source
number information while the MUSIC methods [21], [22] do
require such information a priori. The proposed algorithms
are valid when the noise is uniform or nonuniform. In the case
of nonuniform noise, the proposed algorithms have better
estimation performance improvement, because the proposed
pseudo data set chooses small noise power to form vec-
tors, and removes the big noise power. Numerical results
are included to showcase the effectiveness of the proposed
algorithms.

The rest of the paper is organized as follows. Section II
presents the data model and briefly summarizes the existing
coarray configurations. In Section III, the number of repeated
lags in the difference coarray is studied. Section IV presents
the pseudo data set and the proposed algorithms. Numerical
examples are included in Section V. Finally, Section VI draws
the conclusion of this paper.

Throughout the paper, scalars are denoted by
lowercase letters, e.g., a. Vectors are denoted by boldface
lowercase letters, e.g., a. Matrices are denoted by boldface
uppercase letters, e.g.,A.We list some notational conventions
which will be used in the paper.
• bac: a number rounded to the nearest integer a and
bac ≤ a

• dae: a number rounded to the nearest integer a and
dae ≥ a

• diag(a): a diagonal matrix whose diagonal elements are
given by a

• ||a||1: the l1 norm for the vector a
• ||a||2: the Euclidean norm for the vector a
• ‖A‖F : the Frobenius norm of A
• A∗: complex conjugate of A
• AT : transpose of A
• AH : conjugate transpose of A
• A−1: inverse of A
• A†: pseudo-inverse of A
• E[A]: mathematical expectation of A
• vec(A): vectorizing matrix A
• max eig{A}: the maximum eigenvalue of A
• A� B: Khatri-Rao product of A and B

II. PRELIMINARIES
A. DATA MODEL
Assume that there is anN -sensor linear array receivingK nar-
rowband signals from directions {θ1, . . . , θK }. The received
data is given as

x(t) = As(t)+ n(t), (1)

where s(t) is the signal vector, n(t) is the noise vector, and
A = [a (θ1) , . . . , a (θK )] is the arraymanifoldwith its (i, k)th
element being [A]i,k = ej2πdi1 sin θk/λ, in which di is the
sensor position and1 = λ/2 is the inter-sensor spacing with
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FIGURE 1. (a) A nested array with Nn
1 + Nn

2 sensors. (b) A PCA with
Np

1 + Np
2 − 1 sensors. (c) A coprime array with 2Nc

1 + Nc
2 − 1 sensors.

λ being the wavelength. We assume a nonuniform Gaussian
noise environment, i.e., the noise power at each sensor is
different and unknown. Then the noise covariance matrix is

Rn = diag{σ 2
1 , σ

2
2 , . . . , σ

2
N }, (2)

where σ 2
n is the noise power of the nth sensor.

Suppose that the sources are independent and uncorrelated
with the noise. Then the covariance matrix of x(t) is

R = E[x(t)xH (t)] = ARsAH
+ Rn, (3)

whereRs = E[s(t)sH (t)] is the source covariance matrix. The
vectorization of the covariance matrix R is expressed as

v = vec(R) =
(
A∗ � A

)
α + e, (4)

where α = [α21, . . . , α
2
K ]

T , with α2k being the power of the
kth source, and e = vec(Rn) = [eT1 e

T
2 . . . e

T
N ]

T with en being
a vector of all zeros expect σ 2

n at the nth position. We suppose
that all signals are of equal power.

B. REVIEW OF COARRAYS AND IMPORTANT NOTATIONS
To make the paper self-contained, we now briefly review
the existing coarray configurations, i.e., nested array [5],
prototype coprime array (PCA) [6] and coprime array [13].
Note that, we use the superscripts (·)n, (·)p and (·)c stand for
nested array, PCA, and coprime array, respectively. We also
define L as the set that contains all the consecutive lags
and D as the set containing all the lags in the difference
coarray, while Ls,1, Ls,2, and Lc represent the self-difference
set of the first ULA, the self-difference set of the secondULA,
and cross-difference set between the first and second ULAs,
respectively.

1) NESTED ARRAY
Assume a nested array withN n

= N n
1+N

n
2 sensors, including

two concatenated ULAs, where the first ULA has N n
1 sensors

with spacing 1 and the second ULA has N n
2 sensors with

spacing (N n
1 + 1)1. The nested array is shown in Fig. 1 (a).

Let dn = [dn1 , . . . , d
n
N n
1+N

n
2
]T be the sensor position vector of

the nested array. It is easy to check that the (i, j)th entry in
R matches lag (dni − d

n
j ). Thus, by varying i and j from 1 to

(N n
1 + N

n
2 ), we can construct the following set that contains

all the lags:

Dn
=

{
dni − d

n
j , 1 6 i, j 6 N n

}
, (5)

where there are (N 2n
− 2)/2 + N n (N n is even and N n

1 =

N n
2 ) or (N

2n
− 1)/2 + N n (N n is odd and N n

2 = N n
1 + 1)

consecutive lags within the range Ln. For the nested array, all
the lags are in the consecutive range. So the number of unique
lags equals to that of consecutive lags.

2) PROTOTYPE COPRIME ARRAY (PCA)
Consider a pair of coprime integers N p

1 and N p
2 , where 2 <

N p
1 < N p

2 . A PCA is composed of two ULAs, where the first
ULA has N p

1 sensors with spacing N p
21 and the second ULA

has N p
2 sensors with spacing N p

11, as shown in Fig. 1 (b). Let
dp = [dp1 , . . . , d

p
N p
1+N

p
2−1

]T be the sensor position vector of
the PCA. The difference coarray of the PCA is determined by

Dp
=

{
dpi − d

p
j , 1 6 i, j 6 N p

1 + N
p
2 − 1

}
, (6)

where there are (N p
1N

p
2 + N

p
1 + N

p
2 − 2) unique lags. There

are (2N p
1 + 2N p

2 − 1) consecutive lags within the range
Lp
=
{
lp
∣∣−N p

1 − N
p
2 + 1 ≤ lp ≤ N p

1 + N
p
2 − 1

}
.

The difference sets of the PCA are defined as follows:

Lp
s,1 =

{
lps,1

∣∣∣lps,1 = ±(np1N p
2 )
}
, (7)

Lp
s,2 =

{
lps,2

∣∣∣lps,2 = ±(np2N p
1 )
}
, (8)

Lp
c =

{
lpc
∣∣lpc = ±(np2N p

1 − n
p
1N

p
2 )
}
, (9)

where 0 ≤ np1 ≤ N
p
1 − 1 and 0 ≤ np2 ≤ N

p
2 − 1.

3) COPRIME ARRAY
A coprime array contains two ULAs, where the first
ULA has 2N c

1 sensors with spacing N c
21, and the second

ULA has N c
2 sensors with spacing N c

11, as shown
in Fig. 1 (c). Note that 2N c

1 and N c
2 are coprime integers. Let

dc = [dc1, · · · , d
c
2N c

1+N
c
2−1

]T be the sensor position vector of
the coprime array. The difference coarray is determined by
the sensor position set

Dc
=

{
dci − d

c
j , 1 6 i, j 6 2N c

1 + N
c
2 − 1

}
, (10)

where there are (3N c
1N

c
2 + N

c
1 − N

c
2 ) unique lags. There are

(2N c
1N

c
2 + 2N c

1 − 1) consecutive lags within the range Lc
={

lc
∣∣−N c

1N
c
2 − N

c
1 + 1 ≤ lc ≤ N c

1N
c
2 + N

c
1 − 1

}
.

Similarly, we can write the difference sets of the coprime
array as

Lc
s,1 =

{
lcs,1
∣∣lcs,1 = ±(nc1N c

2 )
}
, (11)

Lc
s,2 =

{
lcs,2
∣∣lcs,2 = ±(nc2N c

1 )
}
, (12)

Lc
c =

{
lcc
∣∣lcc = ±(nc2N c

1 − n
c
1N

c
2 )
}
, (13)

where 0 ≤ nc1 ≤ 2N c
1 − 1 and 0 ≤ nc2 ≤ N

c
2 − 1.
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FIGURE 2. Weight function value of lags for (a) nested array, (b) PCA, and
(c) coprime array.

III. REPEATED LAGS IN DIFFERENCE COARRAY
In this section, we will derive the number of repeated lags
in the difference coarrays of nested array, the PCA, and the
coprime array, respectively. Here, we consider the lags which
appear more than once and twice, since they will be used
to form a pseudo data set composed of linearly indepen-
dent vectors in the next section. Before proceeding to the
derivations, let us define w(n) as the weight function value
(WFV) which records the number of repetitions of the lag
n in the difference coarray [5]. Specifically, we note that if
lag n in the difference coarray appears only once, then WFV
w(n) = 1, while if lag n appears more than once, w(n) ≥ 2.

Fig. 2 (a), (b), and (c) show the WFVs of lags in the
difference coarray of nested array, PCA, and coprime array,
respectively. In Fig. 2(a), a nested array with N n

1 = 4 and
N n
2 = 4 is considered. It can be seen that there are 39 unique

lags, including 11 lags appearing more than once and 7 lags
appearing more than twice. The numbers of lags appearing
more than once and twice are the same in the sets Dn and
Ln. Fig. 2(b) plots the WFVs of lags of a PCA with N p

1 = 4
and N p

2 = 5, where there are 27 unique lags in Dp, including
23 lags appearing more than once and 7 lags appearing more
than twice. There are 17 unique lags in Lp, including 17 lags
withWFV greater than one and 7 lags withWFV greater than
two. Fig. 2(c) plots the WFVs of lags of a coprime array with
N c
1 = 2 and N c

2 = 5, where there are 27 unique lags in Dc,
including 17 lags with WFV greater than one and 9 lags with
WFV greater than two. In Lc, 17 lags appear more than once,
and 9 lags appear more than twice.

Motivated by the results in Fig. 2, we have the following
propositions which show the numbers of lags with WFV
greater than one and two in nested array, PCA, and coprime
array, respectively.
Proposition 1: Given a nested array with N n sensors,
(a) There are (2N n

− 5) lags with WFV greater than one.
(b) There are (2N n

− 9) lags with WFV greater than two.
Proof: See Appendix A.

For the nested array, the numbers of lags appearing more
than once and twice in Ln are the same with those in Dn.

Proposition 2: Given a PCA with (N p
1 + N

p
2 − 1) sensors

where 2 < N p
1 < N p

2 ,
(a)There are (2N p

1 + 2N p
2 − 1) lags with WFV greater than

one in Lp.

(b) There are
(
2
⌊
N p
2

N p
1

⌋
+ 5

)
(N p

1 > 3) or
(
2
⌊
N p
2

N p
1

⌋
+ 3

)
(N p

1 = 3) lags with WFV greater than two in Lp.
Proof: See Appendix B.

For the PCA, from Proposition 1 we know that all the
lags in Lp appear more than once in the difference coarray.

Moreover, there are at least (4N p
1 +4N p

2 −2
⌈
N p
2

N p
1

⌉
−11) lags

with WFV greater than one in Dp.
Proposition 3: Given a coprime array with (2N c

1+N
c
2−1)

sensors,
(a) There are at least (N c

1N
c
2 + N c

1 − 1) lags with WFV
greater than one in Lc .

(b) There are (2N c
1+2N

c
2−3) (N

c
2 > 2) or (2N c

1+2N
c
2−5)

(N c
2 = 2) lags with WFV greater than two in Lc.
Proof: See Appendix C.

For the coprime array, as the lags appearingmore than once
and twice in (Dc

−Lc) are relatively few compared with those
inLc. So we do not consider additional calculations for them.
Remark 1: Unfortunately, there is no closed-form solution

for some calculations of the number of lags withWFV greater
than one or two in PCA and coprime array. However, in prac-
tical applications, since we know the number of sensors of
the given PCA and coprime array, it is viable to pre-calculate
the number of lags appearing more than once and twice and
store them in the system.

IV. PROPOSED ALGORITHMS
We have given the number of lags appearing more than once
and twice of the nested array, PCA, and coprime array in the
above section. In the following, we will show how to make
use of these repeated lags for DOA estimation by constructing
a pseudo data set.

A. PROBLEM FORMULATION
In the ideal case with white Gaussian noise, the noise covari-
ance matrix is diagonal with equal diagonal elements, so the
covariance values obtained from R corresponding to one
repeated lag are equal. Many conventional coarray based
DOA estimators vectorize R to get a measurement vector on
which they operate. Note that only one covariance value for
one repeated lag is used to form the vector, which is enough
to utilize all the source and noise information.

However, the noise power at each sensor may be different
in many cases, e.g., nonuniformity of sensor noise or array
imperfection. In such nonuniform noise case, the difference
between noise power is considerable. The ideal covariance
matrix R is not available in practice. We can only approach
it, e.g., by using the SCM which takes the form of

R̂ =
1
T

T∑
t=1

x(t)xH (t), (14)
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where T is the number of snapshots. In this case, all the
entries in the SCM contain auto- or cross-correlation terms
of signal or noise. So the covariance values obtained from R̂
corresponding to one repeated lag are different. Rationally
utilizing the information of repeated lags can alleviate the
effect of noise and maintain the source information.

B. PSEUDO DATA SET
In this subsection, we utilize the different covariance values to
construct a pseudo data set composed of linearly independent
vectors. Without loss of generality, we take the nested array
with N n sensors (N n is even) as an example to show how
to form the pseudo data set {ŷ1, ŷ2, . . . , ŷ2N n−6} by using
(2N n

− 5) lags with WFV greater than one and (2N n
− 9)

lags with WFV greater than two.
Let Ns be the number of single lags (appearing only

once) in the difference coarray. Assume the corresponding
covariance values of all the single lags form a set as =
{a1, a2, . . . , aNs}. First, we consider the (2N n

− 5) lags
appearing more than once, including (N n

− 3) negative lags,
(N n
−3) positive lags, and lag 0. We arrange the negative and

positive lags and let their corresponding covariance values
in R̂ be

b−(N
n
−3)
= {b−(N

n
−3)

1 , · · · , b−(N
n
−3)

mNn−3
},

· · ·

b−1 = {b−11 , b−12 , · · · , b−1m1
},

b1 = {b11, b
1
2, · · · , b

1
m1
},

· · ·

bN
n
−3
= {bN

n
−3

1 , · · · , bN
n
−3

mNn−3
}, (15)

where mi is the WFV of the ith positive repeated lag, and
bi contains its corresponding covariance values. In (15),
b−(N

n
−3), . . . ,b−1 correspond to the negative repeated lags

in order from small to big, and b1, . . . ,bN
n
−3 correspond to

the positive repeated lags in order from small to big. The
number of values in b−i is the same with that in bi since
w(−n) = w(n). It should be noted that the covariance values
in bi is arranged in ascending order of magnitude of the
covariance values corresponding to the ith repeated lag.

We choose b11 from b1 and its corresponding conjugate
value b−11 from b−1. Then, we respectively choose one value
b21, b

3
1, . . ., b

N n
−3

1 from b2, . . ., bN
n
−3, and their correspond-

ing conjugate values b−21 , b−31 , . . ., b−(N
n
−3)

1 from b−2, . . .,
b−(N

n
−3). For lag 0, there are N n covariance values, and the

gap between different noise power is big. We first choose the
minimum value in order to alleviate the noise. Then we let
the above chosen values and the values in as form a vector ŷ1
in order of lags. After replacing only two items in ŷ1, which
means we only replace b11 and b−11 with b12 and b−12 respec-
tively, we get ŷ2. Similarly, after replacing only the values b21
and b−21 with b22 and b

−2
2 , we get ŷ3. Correspondingly, ŷN n−2

means that only the value of bN
n
−3

1 and b−(N
n
−3)

1 are replaced
by bN

n
−3

2 and b(−N
n
−3)

2 . Thus we can get (N n
− 2) vectors:

ŷ1, ŷ2, . . . , ŷN n−2.

In the above paragraph, we use the lags appearing more
than once to form vectors. Next, we form more vectors
by using the lags appearing more than twice. Since there
are (2N n

− 9) lags with WFV greater than two, including
(N n
− 5) negative lags, (N n

− 5) positive lags, and lag 0,
we can form (N n

− 5) new vectors by using the same way
as forming ŷi (1 ≤ i ≤ N n

− 2). For example, if m1 > 2,
we form ŷN n−1 by replacing b11 and b

−1
1 in ŷ1 with b13 and b

−1
3 .

At last, we only replace the value in ŷ1, which corresponds to
lag 0, with the second minimun value in the N n covariance
values to form ŷ2N n−6. Thus we get the pseudo data set
{ŷ1, . . . , ŷN n−2, . . . , ŷ2N n−6}.
Note that, the covariance values are complex expect those

corresponding to lag 0. According to the linearly independent
property of complex, we know that {ŷ1, ŷ2, . . . , ŷ2N n−6} in
the pseudo data set are linearly independent. Any new formed
vector will be linearly dependent with them, i.e., any new
formed vector can be expressed by a linear combination of
the vectors in the pseudo data set. For example, if m1 > 3,
we can form a new vector ŷ2N n−5 by replacing b11 and b−11
with b14 and b

−1
4 , respectively. Then ŷ2N n−5 = ŷ1 + q1(ŷ2 −

ŷ1)+ q2(ŷN n−1 − ŷ1)+ 0(ŷ3 − ŷ1)+ . . .+ 0(ŷ2N n−6 − ŷ1),
where q1 and q2 are not equivalent to zero.
For the i-th diagonal element of covariance matrix, its

value is positively correlated with the noise power at the
i-th sensor. Among the N n covariance values corresponding
to lag 0, the minimum two are chosen to form vectors, which
means the minimum two noise power are chosen. In this way,
the effect of nonuniform noise can be mitigated. Moreover,
for each repeated lag, we can obtain a set, e.g., bi. Two ele-
ments with two minimun amplitudes in every set are chosen
to form vectors.

Similarly, when N n is odd, we can get the pseudo data set
with (2N n

−6) linearly independent vectors. For the PCA and
coprime array, we have similar properties. Specifically,

• Given a PCA with (N p
1 + N p

2 − 1) sensors where
2 < N p

1 < N p
2 , we can obtain a pseudo

data set with
(
N p
1 + N

p
2 +

⌊
N p
2

N p
1

⌋
+ 3

)
(N p

1 >

3) or
(
N p
1 + N

p
2 +

⌊
N p
2

N p
1

⌋
+ 2

)
(N p

1 = 3) linearly

independent vectors in Lp. In addition, it is easy to infer
that we can obtain at least (2N p

1 + 2N p
2 − 3) (N p

1 >

3) or (2N p
1 + 2N p

2 − 4) (N p
1 = 3) linearly independent

vectors in Dp.
• Given a coprime array with (2N c

1 + N c
2 − 1) sensors,

we can obtain a pseudo data set with at least (N c
1N

c
2/2+

3N c
1/2 + N c

2 − 1) (N c
2 > 2) or (N c

1N
c
2/2 + 3N c

1/2 +
N c
2−2) (N

c
2 = 2) linearly independent vectors in bothLc

and Dc.

C. DOA ESTIMATION
In the above section, we have formed a pseudo data set. Note
that, each vector in the data set can be considered as one snap-
shot of the virtual array. The proposed data set can provide
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multiple snapshots, while the existing methods in [14], [20],
[21] only obtain one snapshot for the virtual array. Thus the
proposed data set can also be applied to the DOA estimation
methods which are invalid or suffer performance loss/down
in the condition of single snapshot for the virtual array, such
as the proposed searching algorithm without source number
knowledge (SASNK) in the following. We now propose two
algorithms based on the pseudo data set composed ofmultiple
snapshots. We assume T ′ is the number of snapshots in the
pseudo data set.

1) SEARCHING ALGORITHM WITHOUT SOURCE NUMBER
KNOWLEDGE (SASNK)
Assume the number of consecutive lags in the difference
coarray is (2M + 1). Then each ŷi is one snapshot of the
(2M+1)-sensor array. Thus, after spatial smoothing [5] or the
technique in [21] used for ŷi, a covariance matrix can be
obtained as

R̂ss,i = AssRsAH
ss + R̂nn, (16)

where Ass = [ass(θ1), . . . , ass(θK )] is the steering matrix
of a virtual (M + 1)-sensor ULA. It is obvious that one
vector, ŷi, forms one covariance matrix. Therefore,
the pseudo data sets of the nested array, the PCA, and
the coprime array can respectively form the corresponding
numbers of covariance matrices.

In [5], a MUSIC algorithm has been proposed for DOA
estimation. The drawback of this method is that it requires
knowledge of the source number. However, we may not know
the source number in practice. Although there are many
detection methods, such as [23]–[25], that can be applied to
find the source number, in the low SNR regime, the probabil-
ity of detection of these methods is still not optimistic.

Unlike MUSIC, a searching algorithm which does not
require source number knowledge is proposed in [26]. How-
ever, this method can not be directly applied to the difference
coarray because there is only one snapshot in the virtual array.
Moreover, the performance of the method in [26] suffers
serious degradation when SNR is low. It is because that only
one formed covariance matrix is conjugate symmetric while
the others are not in the presence of noise. We have formed
a pseudo data containing a number of snapshots, and each
snapshot can be uesd to form a covariancematrix, e.g., R̂ss,i ∈

C(M+1)×(M+1) as in (16). In our paper, the matrix R̂ss,i is
always conjugate symmetric since we choose one covariance
value of a negative repeated lag and simultaneously choose
the conjugate covariance value corresponding to the positive
lag to form each ŷi. In the following we use the matrices to
estimate DOAs without source number knowledge.

For the kth source, there always exists a vector ck ∈
C(M+1)×1 which is orthogonal to the space spanned by the
other (K − 1) steering vectors, and thus we have

K∑
m=1

aHss(θm)ck = aHss(θk )ck . (17)

Algorithm 1 SASNK
1: Obtain x(t), t = 1, . . . ,T ;
2: Calculate the sample covariance matrix R̂ as in (14);
3: Form the pseudo data set {ŷ1, ŷ2, · · · , ŷT ′}, and form the

corresponding covariance matrices;
4: Construct F and G by using the covariance matrices;
5: Estimate DOAs by finding the peaks of P(θ ) as in (21);
6: return the estimated DOAs θ̂1, θ̂2, · · · , θ̂K .

If there is no noise, we have the following result

R̂ss,ick =
K∑
m=1

α2kass(θm)a
H
ss(θm)ck = giass(θk ). (18)

From (18), we know that if θ is a true DOA, there always
exists a scalar gi which makes R̂ss,ic = giass(θ ). In the pres-
ence of noise, we have the following optimization problem:

min
θ,g,c

J(θ, g, c) =
M+1∑
i=1

‖R̂ss,ic− giass(θ )‖
2

s.t. ‖g‖2 = 1, (19)

where g = [g1, . . . , gM+1]T ∈ C(M+1)×1. Since c and g
are unknown parameters, we first expand the cost function
in (19), and then utilize aHssass = M + 1 and let the first
derivative of the expanded cost function with respect to c be
zero. Thus (19) is reduced to

min
θ,g

J(θ, g) = M + 1− gHGH (θ )F†G(θ )g

s.t. ‖g‖2 = 1, (20)

where F =
∑M+1

i=1 R̂H
ss,iR̂ss,i and G = [R̂H

ss,1ass(θ ), . . . ,
R̂H
ss,M+1ass(θ )]. Only if g is the eigenvector ofG

H (θ )F†G(θ )
corresponding to the maximum eigenvalue, we can get the
minimum of J. Thus we obtain the pseudo output power
spectrum for the virtual array as

P(θ ) =
1

M + 1−max eig{GH (θ )F†G(θ )}
. (21)

We call this searching algorithm without source number
knowledge SASNK. The implementation of SASNK is sum-
marized in Algorithm 1.

2) MULTI-SNAPSHOT COMPRESSIVE SENSING
METHOD (MSCS)
Wehave formed the pseudo data set with linearly independent
snapshots. Here we use these snapshots in set D to estimate
DOAs in the presence of unknown nonuniform noise. In this
way, all the DOFs and all the useful information of the
received data can be utilized. Now we use the pseudo data
to solve the following problem:

min
S′

1
2

∥∥Y− BS′
∥∥2
F + η

∥∥s′∥∥1 , (22)

whereY = [ŷ1, ŷ2, · · · , ŷT ′ ],B is a sensingmatrix composed
of the searching steering vectors and is defined over a finite
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FIGURE 3. Spatial spectra (T = 400, SNR = 0dB).

grid θ1, . . . , θG, s′(n) =
∥∥[S′(n, 1),S′(n, 2), . . .S′(n,T ′)]∥∥2,

and η is a parameter which controls the tradeoff between the
sparsity of the spectrum and the residual terms. To reduce
the computational complexity [27], the above problem can
be solved as

min µ+ ηγ

s.t. ‖[z1, z2, . . . , zT ′ ]‖22 ≤ µ,

‖S′(j, :)‖2 ≤ rj, ‖r‖1 ≤ γ, (23)

where zTi = Y(:, i)−BS′(:, i) with i = 1, 2, . . . ,T ′, and r rep-
resents the sparse entries in the search grids to be estimated.
The corresponding spatial spectrum is

P′(θi) = ‖S′(i, :)‖2, i = 1, 2, . . . ,G. (24)

We call this improvedmethodMSCS. Essentially, we improve
the performance of DOA estimation by increasing the number
of snapshots in the pseudo data set. Since the number of
linearly independent vectros in the pseudo data set is not big,
the computational complexity is acceptable.

The computational complexities of the proposed algo-
rithms are shown in Table 1. The complexities of MUSIC,
CS and CMRCS are also given.
Remark 2: SASNK uses all the useful consecutive lags in

set L for DOA estimation, while MSCS uses all the useful
lags in set D to estimate DOAs. For nested array, there is no
difference since Ln

= Dn. But for PCA and coprime array,
they are different since there are holes in their difference
coarrays. Note that, for PCA and coprime array, we can first

TABLE 1. Computational complexity.

use matrix completion technique [20], [28] to fill holes and
then use all the DOFs to estimate DOAs.

V. NUMERICAL EXAMPLES
In this section, we evaluate the performance of the SASNK
and MSCS by comparing them with the SORTE-MUSIC,
MUSIC [21], CS [14], and CMRCS [20] methods. The
MUSIC-SORTE method means that the number of sources
is estimated by the SORTE method [29]. We assume that the
MUSIC method knows the number of sources a priori. For
the CS, CMRCS and MSCS, a grid interval of 0.2◦ is used to
form the dictionary. The SNR is defined as

SNR = 10log10
trace(Rs)

(σ 2
1 + σ

2
2 + · · · + σ

2
N )
. (25)

Without loss of generality, we consider an 8-sensor nested
array with N n

1 = 4 and N n
2 = 4 as an example to showcase

the performance of the proposed algorithms. According to
Proposition 1, there are 11 lags with WFV greater than one
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and 7 lags withWFV greater than two. In this case, the pseudo
data set has 10 linearly independent vectors, which means
we can obtain 10 snapshots for the virtual array. Throughout
of the simulations, the covariance matrix of the nonuniform
noise is

Rn = diag{30, 20, 5, 13, 6, 7, 1, 0.1, 9, 0.01}, (26)

and the root mean square error (RMSE) is defined as

RMSE =

√√√√√ 1
McK

K∑
i=1

Mc∑
j=1

(
θ̂i,j − θi

)2
, (27)

where Mc is the number of Monte Carlo runs.

A. SPATIAL SPECTRA
We first consider 17 uncorrelated narrowband sources uni-
formly distributed between −60◦ and 60◦. The number of
snapshots is set to be 400 and the SNR is set as 0 dB.
The normalized spatial spectra of SORTE-MUSIC, MUSIC,
CS, CMRCS, SASNK, and MSCS are shown
in Figs. 3(a), (b), (c), (d), (e) and (f), respectively, where
the vertical dot lines show the true DOAs. It is observed
that the SORTE-MUSIC method fails to identify 17 sources
accurately, while MSCS has the best estimation performance.
For MUSIC, CS, CMRCS, and SASNK, 17 peaks can be
seen, but they have more estimation error. The MUSIC and
SASNK has similar RMSE, while MUSIC needs source
number knowledge.

B. RMSE AND PR
We now examine the RMSE and probability of resolution
(PR) performance of the MUSIC-SORTE, MUSIC, SASNK,
CS, CMRCS andMSCS. The PR is defined as the event when
all DOAs are estimated within 1.5◦ of their corresponding
true values, which means that the difference between the true
value of every DOA and its estimated value is less than 1.5◦.
In the following examples, the number of independent

Monte Carlo runs is Mc = 200. Assume that there are
13 uncorrelated sources which are uniformly selected from
[−60◦, 60◦]. The Cramér-Rao Bound (CRB) [20], [30] is also
included.

Fig. 4 shows RMSE performance as a function of SNR.
The number of snapshots is 400. It can be observed that
the MUSIC-SORTE achieves the worst estimation accuracy,
mainly because it sometimes fails to estimate the correct
source number. The performance of SASNK approaches that
of MUSIC when SNR > −5 dB. Compared with SASNK,
the slightly better performance of MUSIC is because that
it knows the exact number of sources while SASNK does
not. Therefore, MUSIC can get exact information of noise
subspace for DOA estimation. The spectrum obtained by
SASNK does not rely on the source number as well as any
signal/noise subspace. Note that, it is hard to obtain the num-
ber source knowledge in reality. Thus the SASNK is more
applicable in practice. The MSCS algorithm has the smallest

FIGURE 4. RMSE versus SNR (T = 400).

FIGURE 5. PR versus SNR (T = 400).

FIGURE 6. RMSE versus number of snapshots (SNR = −5 dB).

RMSE, followed by CMRCS. Compared to CS and CMRCS,
the better performance of the MSCS is due to the proposed
pseudo data set which mitigates the nonuniform noise effect
by specifically selecting the covariance values to form the
linearly independent vectors. Fig. 5 shows the corresponding
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FIGURE 7. PR versus number of snapshots (SNR = −5 dB).

PR performance versus SNR. It is seen that MSCS has the
highest PR. When the SNR approaches 5 dB, the PRs of
MSCS, CMRCS, MUSIC, CS, and SASNK reach 100%,
except for the MUSIC-SORTE method.

Similar results can also be found in Figs. 6 and 7, where the
RMSE and PR performances are plotted versus the number
of snapshots. In the simulation, the SNR is -5 dB and the
remaining parameters keep the same as Fig. 4. It can be
seen from Figs. 6 and 7 that SORTE-MUSIC has the worst
performance. TheMSCS algorithm has the best performance,
followed by CMRCS, MUSIC, and SASNK.

VI. CONCLUSION
In this paper, we derived the number of repeated lags in the
difference coarrays of the nested array, PCA, and coprime
array in the presence of unknown nonuniform noise. To per-
form DOA estimation, we employed the repeated lags to
form a pseudo data set that consists of multiple virtual lin-
early independent measurement vectors which contain all
the useful information of the SCM. Two algorithms, named
‘‘SASNK’’ and ‘‘MSCS’’, are included for DOA estimation
based on the multiple virtual snapshots from the pseudo data
set. Numerical examples showed the good performance of
SASNK and MSCS. In the future, we plan to extend the
results to more sparse linear arrays and consider the case
when there is mutual coupling.

APPENDIX A
PROOF OF PROPOSITION 1
A. PROOF OF (A)
We define that an integer valued function η (i) denotes the
number of single lags in the difference coarray formed by the
ith sensor in the nested array.

1)
When N n is even, it is easy to find that a positive lag in the
difference coarray is single only if the lag belongs to the
set Dn

1 =

{
dni − d

n
j ,N

n
1 + 1 6 i 6 N n

2 , 1 6 j 6 N n
1

}
. Then

for the positive lags, the following properties are true for the
function η (i) [1]:
(1) η (i) = 0 for i 6 N n

1 .
(2) η (i) = 1 for i = N n

1 + 1.
(3) η (i) = N n

1 for N n
1 + 1 < i < N n

1 + N
n
2 .

(4) η (i) = N n
1 + 1 for i = N n

1 + N
n
2 .

The corresponding negative lags in the set −Dn
1 have the

same results. According to properties (1), (2), (3), and (4),
the number of single lags in the difference co-array is

Nue = 2
[
1+

(
N n
2 − 2

)
N n
1 + N

n
1 + 1

]
=
N 2n

2
− N n

+ 4.

(28)

From [5], we know that the number of consecutive lags in the
difference coarray is N 2n

−2
2 + N n. Then the number of lags

which appear more than once is

Nme =
N 2n
− 2
2

+ N n
− (

N 2n

2
− N n

+ 4) = 2N n
− 5.

(29)

2)
When N n is odd, we have N n

1 + N n
2 = N n,N n

1 + 1 = N n
2 .

After a similar process as the even case, the number of single
lags is

Nuo = 2N n
1N

n
2 − 2N n

1 + 4. (30)

Then the number of lags whose WFVs are greater than 1 is

Nmo =
N 2n
− 1
2

+ N n
− 2N n

1N
n
2 + 2N n

1 − 4 = 2N n
− 5.

(31)

From (29) and (31), we can see that for both even and old
numbers of sensors in a nested array, the number of lags
whose WFV is greater than one is (2N n

− 5).

B. PROOF OF (B)
1)
When N n is even, N n

= 2N n
1 .

For positive lags,w(n) = N n
1+1−nwhen 1 ≤ n ≤ N

n
1 . It is

easy to know that there are (N n
1 − 2) lags with WFV greater

than two when n ∈ [1,N n
1 ]. In the rest of the positive range

(N n
1 + 1,N 2n

1 + N
n
1 − 1], there are (N n

1 − 3) lags with WFV
greater than two located at {N n

1 + 1, 2(N n
1 + 1), . . . , (N n

1 −

3)(N n
1 + 1)}.

The negative lags have the same results.
In conclusion, the number of lags appearing more than

twice is 4N n
1 − 9 = 2N n

− 9.

2)
When N n is odd, N n

2 = N n
1 + 1.

For positive lags, w(n) = N n
1 + 1 − n when 1 ≤ n ≤ N n

1 .
Thus there are (N n

1 −2) lags withWFV greater than two when
1 ≤ n ≤ N n

1 . In the rest of the positive range (N
n
1 + 1,N 2n

1 +

2N n
1 ], there are (N n

1 − 2) lags with WFV greater than two
located in {N n

1 + 1, 2(N n
1 + 1), . . . , (N n

1 − 2)(N n
1 + 1)}.
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The negative lags have the same results.
In conclusion, the number of lags appearing more than

twice is 4N n
1 − 7 = 2N n

− 9.
From the above derivation, we know that for both even and

old numbers of sensors in a nested array, the number of lags
whose WFV is greater than two is (2N n

− 9).

APPENDIX B
PROOF OF PROPOSITION 2
(1) The lag 0 is located in the range Lp. It is easy to find that
w(0) = N p

1 + N
p
2 − 1 > 2.

(2) Only one positive lag in the set Lp
s,1, i.e., N

p
2 , is located

in the range Lp. For the lag N p
2 , w(N

p
2 ) = N p

1 − 1, because
there exist

N p
2 − 0 · N p

2 = N p
2 ,

2N p
2 − N

p
2 = N p

2 ,

· · ·

(N p
1 − 1)N p

2 − (N p
1 − 2)N p

2 = N p
2 . (32)

So if N p
1 = 3, then w(N p

2 ) = 2, and if N p
1 > 3, then

w(N p
2 ) > 2. Similarly, the negative lag −N p

2 in the set Lp
s,1

has the same result.
(3) The following positive lags in the set Lp

s,2, i.e.,

Lp
s,2,p =

{
N p
1 , 2N

p
1 , . . . ,

(
1+

⌊
N p
2

N p
1

⌋)
N p
1

}
, (33)

are located in the range Lp. From the above paragraph, it is
easy to induce that

w(N p
1 ) = N p

2 − 1,

· · ·

w

((
1+

⌊
N p
2

N p
1

⌋)
N p
1

)
= N p

2 − 1−

⌊
N p
2

N p
1

⌋
. (34)

Note that onlywhenN p
1 = 3 andN p

2 = 4,N p
2−1−

⌊
N p
2

N p
1

⌋
= 2,

otherwise N p
2 − 1−

⌊
N p
2

N p
1

⌋
> 2.

So the WFVs of N p
1 , 2N

p
1 , . . . ,

(⌊
N p
2

N p
1

⌋)
N p
1 are greater

than two.
Also, the set −Lp

s,2,p in the set L
p
s,2 has the same result.

(4) Given an arbitrary lag li in the set L
p
c . Let

li = n1N
p
1 − m1N

p
2 = −n2N

p
1 + m2N

p
2 , (35)

where n1,m1, n2,m2 6= 0 are integers satisfying 1 ≤
n1, n2 ≤ N

p
2 − 1 and 1 ≤ m1,m2 ≤ N

p
1 − 1. Then we have

(n1 + n2)N
p
1 = (m1 + m2)N

p
2 . (36)

There exist {
n1 + n2 = N p

2

m1 + m2 = N p
1 ,

(37)

so the WFV of li is at least two. Assume another two integers
n3,m3 6= 0 satisfying

li = n1N
p
1 − m1N

p
2 = −n3N

p
1 + m3N

p
2 , (38)

then we have {
n1 + n3 = N p

2

m1 + m3 = N p
1 .

(39)

According to (37) and (39), we have n2 = n3 and m2 = m3.
Thus the lag li appears only twice. So w(li) = 2.
Since −Lp

s,2,p ∪
{
−N p

1

}
∪ {0} ∪

{
N p
1

}
∪Lp

s,2,p ∪L
p
c = Lp,

the WFVs of all the lags in Lp are greater than one. So the
number of lags appearing more than once is (2NP

1 + 2NP
2 −

1). And according to the above derivation, the number of

lags appearing more than twice is
(
2
⌊
N p
2

N p
1

⌋
+ 5

)
(N p

1 >

3) or
(
2
⌊
N p
2

N p
1

⌋
+ 3

)
(N p

1 = 3).

APPENDIX C
PROOF OF PROPOSITION 3
A. PROOF OF (A)
We first consider the positive lags in Lc. It has been shown
in [13] that for a coprime array, the single lags in Lc are
located at (a1N c

1 + a2 N c
2 ), where a1 > 0 and a2 > 0 are

integers. The maximum value of a1 can be given as follows:

a1N c
1 + N

c
2 ≤ N c

1N
c
2 + N

c
1 − 1

a1 ≤ N c
2 + 1−

N c
2 + 1

N c
1

a1 < N c
2 + 1. (40)

Similarly, the maximum value of a2 is given by

N c
1 + a2N

c
2 ≤ N c

1N
c
2 + N

c
1 − 1

a2 ≤ N c
1 −

1
N c
2

a2 < N c
1 . (41)

Therefore, a1 ∈
[
1,N c

2 + 1
)
and a2 ∈

[
1,N c

1

)
. The distri-

bution of a1 and a2 are shown in Fig. 8. The boundary and
interior of part R1 represent all the integer combinations of
a1 and a2 satisfying a1N c

1 + a2N c
2 ≤ N c

1N
c
2 + N c

1 − 1. It is
easy to see that the number of integers in part R2 is more
than that in part R1. We calculate the number of integers
in R2, which is (N c

2 +1)N c
1/2. Thus the number of integers in

part R1 is smaller than (N c
2 + 1)N c

1/2, which means that the
number of positive single lags is smaller than (N c

2 + 1)N c
1/2.

Similarly, the number of negative single lags has the same
result. In total, the number of single lags in Lc is smaller
than (N c

2 + 1)N c
1 .

In this case, the number of lags whose WFVs are greater
than one is at least

2N c
1N

c
2 + 2N c

1 − 1− (N c
2 + 1)N c

1 = N c
1N

c
2 + N

c
1 − 1. (42)
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FIGURE 8. The geometry of Nc
1 and Nc

2 .

B. PROOF OF (B)
We first consider the positive lags in Lc.

(1) The positive lags in the set Lc
s,1, i.e., N

c
2 , . . . ,N

c
1N

c
2 ,

are located in the range Lc, and w(N c
2 ) = 2N c

1 −

1, . . . ,w(N c
1N

c
2 ) = N c

1 . Since w(N
c
2 ) > w(2N c

2 ) > · · · >
w(N c

1N
c
2 ) = N c

1 , the number of positive lags inLc
s,1 appearing

more than twice is N c
1 (N c

2 > 2) or N c
1 − 1 (N c

2 = 2).
(2) The positive lags in the set Lc

s,2, i.e., N
c
1 , . . . ,N

c
2N

c
1 ,

are located in the range Lc. As w(N c
2N

c
1 ) has been known in

the above paragraph, here we consider the other N c
2 − 1 lags,

and w(N c
1 ) = N c

2 , . . . ,w
(
(N c

2 − 1)N c
1

)
= 2. So the number

of positive lags in Lc
s,2 appearing more than twice is N c

2 − 2.
(3) According to APPENDIX B, the lags in Lc

c appears no
more than twice.

(4) w(0) = 2N c
1 + N

c
2 − 1 > 2.

In conclusion, the number of lags with WFV greater than
two is 2N c

1 + 2(N c
2 − 2) + 1 = 2N c

1 + 2N c
2 − 3 (N c

2 >

2) or 2(N c
1 − 1)+ 2(N c

2 − 2)+ 1 = 2N c
1 + 2N c

2 − 5 (N c
2 = 2).
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