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ABSTRACT With the ever-increasing requirement of storage and computation resources, it is unrealistic
for local devices (with limited sources) to implement large-scale data processing. Therefore, individuals or
corporations incline to outsource their computation requirements to the cloud. However, data outsourcing
brings security and privacy concerns to users when the cloud servers are not fully trusted. Recently,
extensive research works are conducted, aiming at secure outsourcing schemes for diverse computational
tasks via different technologies. In this survey, we provide a technical review and comparison of existing
outsourcing schemes using diverse secure computation methods. Specifically, we begin the survey by
describing security threats and requirements of secure outsourcing computation. Meanwhile, we introduce
four secure techniques (i.e., secure multi-party computation, pseudorandom functions, software guard exten-
sions, and perturbation approaches) and their related works. Then, we focus on the theories and evolution of
homomorphic encryption, as well as the applications of the basic operations and application-specific tasks.
Finally, we discuss the security and performance of existing works and give future directions in this field.

INDEX TERMS Secure outsourced computing, privacy preserving, homomorphic encryption, secure

outsourced machine learning, data processing.

I. INTRODUCTION

Cloud computing, as a booming technology, delivers com-
puting services (e.g., servers, storage, databases, analytic and
intelligence) over the internet. With the rapid growth of data
volume and computing scale, individuals or corporations are
incapable or unwilling to afford the heavy storage or compu-
tation burdens. In this case, cloud service providers (CSPs)
with almost unlimited storage space or computing power
become an excellent choice. Using cloud computing tech-
nology, resources (e.g., CPU and storage) are available
on-demand for users’ terminals [1]. Generally, users are able
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to upload their large-scale data processing requirements to
CSP, and then wait for the requested computational results,
which could save abundant local memory space or compu-
tation overhead. Nowadays, cloud computing has found a
tremendous number of fields for practical application, such
as education [2], internet of things (IoT) [3], healthcare [4],
and workflow scheduling [5]. A lot of large information
technology (IT) companies are competing to build more pow-
erful, stable, and reliable cloud service providers [6], such
as Amazon Web Service (AWS), Microsoft Azure, Google
Cloud, and AliCloud. Obviously, it is a win-win transaction
for both the clients and the service providers.

Despite considerable benefits for the users, outsourcing
computation still has an inevitable obstacle: the issue of
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security and privacy. The data outsourced to the cloud may be
valuable or sensitive, and the users lose control of their data
during the process of outsourcing computation. However,
the server may be semi-trustful or even malicious in some
cases, which means it may be motivated to deduce the users’
private information for curiosity or profit. This is a huge threat
to users’ privacy, thereby becoming a non-negligible concern
of outsourcing computation. For example, in a cloud-assisted
e-healthcare system [7], large-scale historical medical data of
patients and medical decision-analytic models are outsourced
to the cloud platform (CP) for the follow-up functions of
diagnosis and treatment. When a new patient consults the
disease state, (s)he sends the symptom data to the cloud.
Depending on the decision model, CP efficiently executes
the diagnosis process and returns the results to the patient.
Apparently, both the patient’s symptom information and the
final diagnosis results have high sensitivity, and are unac-
ceptable to be disclosed to the CP or other unauthorized
parties. Moreover, the historical medical data and medical
decision-analytic models are considered as an asset of the
providers, which are also required to be confidential, either
to the CP or patients. Without adequate security and privacy
protections, healthcare providers and patients will hesitate
to adopt the outsourcing computation solutions. Besides,
the correctness of the computation result is another chal-
lenge for secure outsourcing. It is possible that the server
returns an incorrect result (for time saving, profits gaining,
or due to malicious attacks), which makes the computation
inaccurate or even misleads the users. Thus, the research
on achieving data verifiability/checkability is a hot
topic.

So far, many effective methods are proposed to address
these concerns. Aiming at different application pur-
poses, researchers continuously improve secure outsourc-
ing schemes for various computation tasks. Security and
efficiency are two important tools for evaluating secure
computation schemes, which are always hard to satisfy at
the same time. The tradeoff of security and efficiency is
a commonly used method in many works. The technolo-
gies used for privacy-preserving outsourcing computation
are continuously optimized or combined for higher security
levels or better performance. Among them, secure multi-party
computation (MPC) [8] and perturbation operations [9] are
competent algorithms for secure outsourcing, which pro-
vide satisfactory performance in many application scenarios.
Nevertheless, a majority of these works achieve a relatively
low-security level, which is unacceptable for specific com-
putation tasks with high privacy requirements. Instead, this
survey focuses on a powerful cryptographic tool: homomor-
phic encryption (HE) technique, which has the advantage of
high security and privacy level. It is well known that, in many
cases, the overhead of HE-based outsourcing computation is
comparatively higher than the other methods, especially the
utilization of fully homomorphic encryption (FHE). How-
ever, with the improvement of HE-based algorithms, many
HE-based schemes for large-scale computations show good
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performance, which are expected to be applied in the near
future.

In this survey, we mainly introduce HE-based research
achievements for secure outsourcing computations. We con-
sider two aspects: secure outsourcing of fundamental func-
tions for dealing with common mathematical operations; the
other one, based on the former, is for application-oriented
secure computation outsourcing, where many practical appli-
cations like machine learning or biometric computations are
securely executed by cloud. In summary, this survey aims
to provide a particular perspective for the overview of the
existing secure outsourcing solutions based on HE algo-
rithms. To evaluate these schemes, we compare their secu-
rity and efficiency performances. The design framework of
outsourced computation and the applications are summarized
in Fig. 1, where we focus on secure computation outsourcing,
secure technologies, homomorphic encryption, outsourced
fundamental functions, outsourced application-specific tasks,
security and efficiency comparison, and future research direc-
tions.

The remainder of this paper is organized as follows.
In Section II, we describe the constructions and critical
points of secure computation outsourcing, including system
models, security threats, and general requirements. In addi-
tion, we compare our survey with several other surveys
with similar topics. Next, several commonly used technolo-
gies for secure computations are introduced in Section III.
Then, in Section IV, we discuss the classifications, evolu-
tions, and related works of HE technique. Section V and
Section VI cover the secure outsourcing computations for
fundamental and application-oriented algorithms, respec-
tively. In Section VII, we analyze the security level as well
as the performance of HE-based secure outsourcing schemes.
In Section VIII, we further present open issues and challenges
for secure outsourcing computation. Finally, we draw our
conclusions in Section IX.

Il. SECURE COMPUTATION OUTSOURCING

In this section, we first describe the general system mod-
els for secure computation outsourcing in a lot of related
works. Then, we show common security threats and two
general requirements of the outsourcing computation. Finally,
we compare related surveys (similar but having differ-
ent emphases) with our survey. For ease of reference,
Table 1 lists definitions of abbreviations and notations used
in Tables throughout this survey.

A. SYSTEM MODEL

In general, the computation outsourcing system mainly con-
tains three entities: user (data owner or request user) and
a cloud platform (CP) and cloud service provider (CSP)
[10], [11]. Due to the constrained capability of personal
devices, the client outsources the burdensome computational
task to the cloud. For security concern, the client first protects
the privacy of his computational task through encryption
algorithm and then uploads the encrypted request to the CP.
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FIGURE 1. Road map of secure outsourced computation and its applications.

TABLE 1. Abbreviations and notations used in Tables.

Abbreviation | Definition

Notation

Definition

HE homomorphic encryption

the size of an input set

k
PHE partially homomorphic encryption A security parameter of the adopted OT protocol
SWHE somewhat homomorphic encryption | m the dimension of a square input matrix
FHE fully homomorphic encryption mi the row dimension of the first non-square matrix
SS secret sharing mo the column dimension of the first non-square matrix
PBM perturbation-based method m3 the column dimension of the second non-square matrix
GCs garbled circuits l security parameter of the adopted HE scheme
MPC multi-party computation r the batch number of inner products in a single ciphertext
SE standard symmetric encryption p the iteration number of protocol
oT oblivious transfer q the number of Map slots
PRFs pseudorandom functions

PRPs pseudorandom permutations
ORE order-revealing encryption
OPE order-preserving encryption
DP differential privacy

After that, the CSP interacts with the cloud storage to execute
the required computational task. The final result, also in the
encrypted domain, is returned to the client. Using the decryp-
tion key, the client recovers the result. Note that handling
a computation task may need several rounds of interactions
between the client and the CP.

The model above only considers a simple situation of
computation outsourcing systems. In practical applications,
the system model can be much more complicated: except for
the request user, the model may also contain data owner(s) for
providing the original data. For example, in an online medical
system, diagnosis should be made based on historical medical
data, which are provided by numerous data owners. On the
other hand, the model may involve multiple (typically two)
cloud service providers to solve the problem independently
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or jointly. Moreover, third types of authorities (e.g., attribute
authority (AA), third-party auditor (TPA), and key generation
center (KGC)) may be introduced to distribute secret keys,
or implement other auxiliary functions. The system architec-
ture is shown in Fig. 2.

B. SECURITY THREATS

Although providing a great convenience for users, outsourc-
ing computation is still not a completely-satisfying technique.
The primary reason is the appearance of security and pri-
vacy concerns during data treatments, such as the reveal of
data contents or user privacy. Thus, we should identify and
solve the security threats of the outsourcing computation,
thereby minimizing the risks of destroying data security and
privacy.
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FIGURE 2. System model.

Generally, two types of threats are considered in the envi-
ronment of cloud computing. One is from external attack-
ers, including the threats of remote software or hardware
attacks. The attackers utilize different kinds of techniques
(e.g., network eavesdropping or malware attacks) to access
unauthorized data or intrude cloud servers. The other security
threat is from internal participants. After a user submits his
computational task, the data and computational process will
be out of his control. So the “morality’’ of cloud servers plays
a vital role in data security and privacy. However, most cloud
servers are unable to be deemed as trustful, which means the
servers may solve the computational tasks incorrectly or try
to learn what should not be known. Depending on the server’s
behavior, people usually classify the adversarial models into
two levels: the first is called “‘honest-but-curious™ or *“‘semi-
honest”” model and the second is ‘“‘malicious” model. In the
honest-but-curious model, servers execute the operations
complying with the required computational processes, yet
still curious about the sensitive information of users. On the
other hand, apart from the curiosity of users’ privacy, mali-
cious servers may go against the requested computations
and return incorrect results to save their computing power
or achieve other intentions for benefits. These two threats
(i.e., external and internal attacks) significantly destroys data
confidentiality and integrity of users.

C. REQUIREMENTS FOR SECURE COMPUTATION
OUTSOURCING

In this subsection, we discuss the requirements for a powerful,
or say satisfying, secure computation outsourcing system,
which can be roughly divided into two types: security and
efficiency requirements. The former, directed against the
security threats mentioned in Subsection II-B, is intended
to protect the security and privacy of users’ data. Note that
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the security of information from servers is also a significant
potential issue in many computation outsourcing schemes,
yet we will not discuss much in this survey. The efficiency
requirement refers to the cost of computation and communi-
cation for completing the outsourced tasks.

The evaluation of outsourcing computation security is
made up of three main factors, which are data confidentiality,
data integrity, and data access controllability. As mentioned
before, data confidentiality refers to the ability to prevent
users’ data from revealing to the cloud or unauthorized par-
ties. And the concept of data integrity means guaranteeing
data completeness and correctness, which is also called data
verifiability/checkability. Access controllability is the prop-
erty that authorizes the access permission only to valid users,
which restricts the group of users to obtain the computational
results or defines the permitted data sources from the servers
or data owners. This kind of fine-grained access strategy
provides a flexible access control (like in [12] and [13]),
thus having been of great significance both in the theory and
reality.

Another essential requirement for outsourcing compu-
tation is the efficiency performance, particularly in the
HE-based schemes. It is just because the users are intol-
erant of high computation cost that they choose to out-
source their heavy tasks to the cloud. For this reason,
designing high-efficiency outsourcing schemes is beneficial
to both users and service providers. The major factors to
measure the efficiency are the overhead of computations
before/during/after the outsourced processes (including data
encryption/decryption, processing, verification, etc.) and the
communication cost during data transmission.

However, in an outsourcing computation scheme,
achieving both requirements for great effects is always
impractical. In general, better security requires additional
operations to support, which naturally reduces the efficiency.
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Conversely, an excessive pursuit of high efficiency often
leads to insufficient security guarantees. Thus, a feasible,
or rather say a good-performance, computation scheme is
always the one realizing best tradeoffs between the security
and the efficiency. It has also been an inspiration to design
the algorithms in the research.

D. COMPARISON WITH OTHER SURVEYS

We go through other related surveys regarding secure out-
sourcing computation or especially the ones based on HE
technique, and compare them with ours. The security issues
and their countermeasures of outsourcing computation were
investigated in [14]-[16]. And the works like [17]-[20]
presented a detailed overview of HE technique, from its
evolutions, classifications to implements and more. While
for practical outsourced applications, no or very few spe-
cific schemes were referred to in the surveys [17]-[20].
Scheme [21] and [22] mainly introduced verifiable comput-
ing techniques and some related practical designs. In [23]
and [24], secure outsourcing schemes for a limited number
of functions (e.g., scientific computations) were discussed,
and these surveys consider different techniques including
HE algorithms. Another survey [25] focused on secure out-
sourcing schemes based on HE technology, still just covering
certain computational tasks. Like our survey, [26] provided
a wide scope of outsourced schemes for specific computa-
tional tasks, including fundamental and application-specific
functions. The difference is that we collect and analyze the
schemes based on HE schemes, while in the survey [26] this
line of research was not the emphasis.

Ill. PRACTICAL TECHNOLOGIES FOR SECURE
OUTSOURCING COMPUTATION

Several practical secure technologies have been raised and
widely applied to protect sensitive information in many
outsourcing schemes. In this section, we will list four
secure techniques: secure multi-party computation, pseudo-
random functions, software guard extensions, and perturba-
tion approaches. We briefly explain their theories, progresses,
and practical applications. Since the secure outsourcing
computation based on homomorphic encryption is the main
research contents in this survey, we will later introduce HE
technique separately in Section I'V.

A. SECURE MULTI-PARTY COMPUTATION

One solution for secure computation across different parties is
called multi-party computation (MPC) in which multiple par-
ties jointly compute a function over their inputs while keeping
individual input private (the detailed definitions were referred
to in [8]). MPC is a popular topic in cryptography, which has
been studied for more than twenty years since Yao’s million-
aire protocol [27]. Yao’s millionaire problem describes such
a scenario: supposing there are two numbers a (for Alice) and
b (for Bob), the goal is to get the relationship between these
two values without revealing the actual values to the counter-
parts. The idea of garbled-circuit (GC) based MPC was first
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described by Yao [28] to generate a general function of MPC.
In the design, one party A first creates a “‘garbled circuit”,
and sends the circuit to the other party B. Then B evaluates the
circuit with his inputs and returns the result to A. By exchang-
ing some information, both parties will know the result but
no information about the other side. Unfortunately, his paper
did not provide the details on how to construct this general
circuit. Later, highly efficient garbled-circuit techniques were
designed in the two-party case for saving the running time
and memory space [29], [30]. Despite the success of the
two-party case, multi-party secure computation progress has
been much slower than the two-party setting. Beaver, Micali,
and Rogaway [31] designed a construction for constant-round
multiparty secure function evaluation (consisting of n parties,
n > 2, each of whom possesses a private input x;, 1 <
i < n). The n parties want to collaboratively evaluate a
function f(x1, ..., x,) without revealing their private values.
Ben-Efraim et al. [32] showed that via a multiparty gar-
bled circuit, the constant-round secure multiparty computa-
tion can be achieved with good performance for the case of
semi-honest adversaries. Later, the work presented a new way
of constructing a garbled circuit that can be evaluated with
only a constant number of operations per gate for a large
number of parties. Due to the natural characters of secure
data processing across different parties, a large number of
references use garbled-circuit method to design protocols for
real-world applications, such as biometric identification [33],
private linear branching programs [34], privacy-preserving
remote diagnosis [35], and face recognition [36]. However,
these schemes still suffer from very high computation and
multiple round communication complexities [37].

Another approach to MPC is the secret-sharing based
protocol which generates random shares using secret shar-
ing (SS) technique and distributes the shares to different
parties, and the parties jointly compute objective functions
interactively. Secret sharing (first designed by Shamir [38]
and Blakley et al. [39]) enables a division and a distribution of
confidential information to a certain number of shareholders,
where the decryption can be performed jointly only if enough
parties are gathered. Ben-Or et al. [40] and Chaum ez al. [41]
proposed protocols for securely evaluating any function.
They both designed solutions for computing addition and
multiplication (XOR and AND) on values in (verifiable) secret
shared form, and with the results remaining secret shared.
As these primitives are complete, any function can be eval-
uated gate by gate. General secret sharing based MPC proto-
cols tend to be less efficient than special-purpose protocols
for two reasons. First, the circuits are generally quite large.
Second, the multiplication sub-protocol is rather inefficient
as it requires substantial interactions. Thus, a line of research
has focused on developing efficient MPC protocols for spe-
cific functions. Damgérd et al. [42] presented generic pro-
tocols for comparison, equality test, and bit-decomposition
operations based on common secret sharing mechanisms.
Later, Nishide and Ohta [43] constructed more efficient pro-
tocols for the tests of interval, equality, and comparison of
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shared secrets without relying on bit-decomposition protocol
(though it seems essential to such bit-oriented operations).
More efficient MPC protocols for specific functions were
constructed, such as secure multi-party product [44], scalar
product [45], sorting [46], matrix factorization [47], and
set intersection [48]. These protocols have been used for
privacy-preserving multi-party data mining [49], cooperative
scientific computations [50], database query [51], geometric
computation [52], etc.

Although the secret-sharing based MPC is promising,
it requires multiple parties to store certain redundant data
and requires pairwise secure channels between servers. Very
recently, fully homomorphic encryption (FHE) [53], [54] has
been used to reduce the round complexity (e.g, reduced to
two-round) in MPC [55], [56]. Unfortunately, one of the
biggest drawbacks of fully homomorphic cryptosystems is
the system complexity. The other approach is to use indistin-
guishability obfuscation (IO) [57], [58] to achieve two-round
MPC protocols [59], [60]. Although IO has the power to
broaden the scope of cryptography dramatically, how to con-
struct practical IO is still an open research problem.

There concludes to several drawbacks of the solutions of
MPC. The first is the online requirement: all the parties
are required to be online simultaneously while performing
the secure MPC. The second is the multiple communication
rounds: MPC requires at least two rounds of interaction for
each party for each function. The third one is the local storage
overhead: each party needs to store its own data (even needs to
store other parties’ shares in the secret-sharing based MPC).
The last is about the local computation overhead: all the
parties are required to pre-process the data before the compu-
tations. For example, the parties should first use random num-
bers to randomize the data for secret sharing or “garbled” the
circuit before performing the secure computation.

B. PSEUDORANDOM FUNCTIONS

Pseudorandom function (PRF) technique [61] is another
practical cryptographic method for secure computation in
the delegation setting. In fact, the notation PRF refers to a
pseudo-random function family with the definition as:

Definition 1: Let F : {0, 1}¥ x {0, 1}"* — {0, 1}/ be a fam-
ily of efficient, keyed functions. For k € {0, 1}*, the function
fi : {0, 1) — {0, 1} is defined as fy(x) = F(k, x). We say
F is a pseudorandom function (PRF) if for every probabilistic
polynomial time (PPT) adversary A, |Pr[AF&)(1¢) = 1] —
Pr[Af<(1¢) = 1]| is negligible, where k is uniformly chosen
from {0, 1} and f, is randomly chosen from all possible
functions mapping from m-bit strings to /-bit strings.

In other words, a PRF is a computable keyed function
fi() (k € {0, 1}¥), whose values are indistinguishable from
random values in the defined function range.

The oblivious PRF (or OPRF) [62] is defined as an evalu-
ation functionality Fopgr : (k, x) = (L, fx(x)), correspond-
ing to a PRF function f(-). Using oblivious pseudo-random
functions, the client evaluates a keyed, pseudo-random
function on his input with the server holding the key.
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Finally, the client obtains the result obliviously while the
server will know nothing.

PRF technique has been used for secure computation in
many proposed outsourcing schemes. Benabbas er al. [63]
used closed-form efficient PRFs to achieve verifiable dele-
gation of polynomials and database queries efficiently. Fiore
and Gennaro [64] proposed an extending scheme for poly-
nomial evaluation and matrix-vector multiplication with an
improved PRF algorithm. Wang et al. [65] employed a ran-
dom transformation based approach where all the matrices
and vectors for sampling and secret transformation are gen-
erated by a PRF with random seeds. The sharing of the
private matrices and vectors is simplified to shares of the
random seeds. Kamara et al. [66] introduced a verifiable del-
egated private set intersection (PSI) scheme, secure against
several adversarial models. In the protocol, clients jointly
generate the key to PRF. We can refer to more PRF-based
works for different application domains, such as [67], [68]
for linear algebra, [69] for pattern matching, and [70] for
data search. Moreover, oblivious PRF has also attracted the
attention of researchers. For example, based on the oblivious
PRF algorithm, Freedman et al. [62] described a secure key-
word search scheme, and Hazay and Lindell [71] designed a
protocol for outsourcing private set intersection function.

In addition to PRF and OPRF, another member of the
pseudo-random family is pseudo-random permutation (PRP),
which is an indistinguishably secure encryption scheme of
permutations over operating domains {0, 1}"*. The function
is bijective where the input domain is equivalent to the out-
put domain. We can also find several practical applications
based on PRPs. Evdokimov and Giinther [72] designed an
efficient scheme supporting secure operations on the out-
sourced database. In the work, the search query is protected
using pseudo-random permutations. Ma et al. [73] realized
secure outsourcing modular exponentiation computations by
the randomization ability of the PRP technique. The graph
encryption schemes in [74] employed the PRP and other cryp-
tographic algorithms to support secret approximate shortest
distance queries. The graph encryption schemes are provably
secure under the semi-honest model.

C. SOFTWARE GUARD EXTENSIONS

Recently released, software guard extension (SGX) [75],
[76] is a security extension of Intel processor technique.
Unlike software defense, SGX implements a trusted exe-
cution environment combining both secure hardware and
software. In the design of SGX, a protected memory con-
tainer, called enclave, is reserved as a trusted execution envi-
ronment (TEE) to hide sensitive information (e.g., secret
codes or data) from privileged modules like operating sys-
tem (OS), virtual machine (VM) scheduler or management
engine (ME). Even the root or high-priority programs cannot
access or modify the contents inside the enclave. The data
is available in plaintext within the enclave module and is
protected when written to the system memory (i.e., RAM).
SGX also provides a remote attestation mechanism with proof
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to verify the integrity of the newly generated enclave by
remote entities. The efforts of SGX guarantee the confiden-
tiality and integrity of sensitive data and computations on an
untrusted cloud, even though other system parts are attacked
or compromised.

SGX technique can be applied to secure outsourcing
frameworks, where the computations are executed securely
inside the TEE. Chen et al. [77] proposed a genetic testing
framework which leverages SGX to achieve secure storage
and computation on an untrusted cloud. Before data outsourc-
ing, the data owner and the enclave first conduct an attestation
procedure to prove their integrities and authenticities. Then
the data is encrypted and sent to the cloud server along with
a message authentication code (MAC). The enclave seals
the sensitive data for answering further queries from data
users. When a user queries a command, he will also attest
the remote enclave and establish a secure channel with the
enclave. Receiving the query, the data within the enclave will
be unsealed for query operations. Finally, the encrypted result
will be sent back to the authorized data user. Throughout the
process, the security and integrity of the data are ensured.
A multi-party machine learning scheme [78] was achieved
based on trusted SGX-processors. In the design, each party
independently establishes a secure channel with the enclave
and sends encrypted data to the enclave. The enclave runs
target functions on the whole data set securely and returns
the encrypted result to each party. Scheme [79] ran a secure
SGX-based MapReduce algorithm [80]. Only the core algo-
rithms are running inside the enclave, thereby minimizing
the performance overhead. With a combination of HE and
SGX techniques, Sadat er al. [81] presented a solution for
secure genome-wide association studies (GWAS). The data is
encrypted using Paillier cryptosystem [82] and then put into
statistical tests within a secure enclave. Besides these works,
more SGX-based schemes are popular in cloud computing
and applied in practical fields, like healthcare [83], machine
learning [84], [85], data analysis [86], location-based ser-
vices [87], and many others.

Providing an alternative solution for achieving privacy-
preserving and verifiability in the outsourcing schemes, Intel
SGX, however, is known to be vulnerable to certain soft-
ware and physical attacks. For example, the host OS may
be controlled by an adversary, thereby possibly leaking sen-
sitive data from side-channels [88] (including the attacks
like cache attack [89], [90], branch shadowing attack [91],
controlled-channel attack [92], etc.). Besides, the compro-
mised OS may launch DoS (denial of service) attack to
disrupt the functions of the enclave. Except for the secu-
rity threats, integrity property cannot always be guaranteed,
like in the event of system shutdown [93]. In addition to
these defects, some problems of insufficient performance (for
instance, due to a limited enclave page cache) are also to
be resolved. Although several secure SGX-based solutions
have been designed to settle or partially settle the problems
of security and performance. More ‘“‘perfect” SGX-based
schemes for different applications are required in the future.
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D. PERTURBATION-BASED APPROACHES

Data perturbation is another major technique for
preserving privacy in outsourcing computation. Generally,
by performing linear algebra operations or other conversion
operations, data owners transform the data in certain ways
to distinguish and conceal the original information and then
outsource the perturbed data to the server. The perturbation
methods include swapping values between records [94],
[95], randomization (e.g., adding noise [96]), geometric per-
turbation [97], rotational perturbation [98], [99], replacing
the original database by a sample from the same distribu-
tion [100], [101], etc.

We first introduce three fundamental perturbation-based
approaches for protecting private matrices: matrix addition,
matrix multiplication, and matrix’s row and column permu-
tations. Suppose a private matrix M € R"*" whose elements
should be hidden. Matrix addition is to perform an addition
between the matrix M and a randomly generated matrix
L e R™":

M; =M+ L

The original matrix M cannot be recovered when the ran-
dom matrix L is unknown to the observers. Note that if
the matrix after the transformation has a dense structure,
a large number of unnecessary computations will be intro-
duced. Thus, finding a practical random matrix that leads to
both privacy and sparsity is rather significant. Choosing a
diagonal matrix A € R™*"™ where the non-zero elements are
generated by a pseudorandom function and another diagonal
matrix B € R"*" with the random non-zeros positive, matrix
multiplication-perturbation method can be computed as:

M, = AMB

However, during this transformation, zeros of the original
matrix are still retained. To further hide the structure of the
original matrix (i.e., the positions of the elements), matrix
permutation was introduced. Matrix permutation disrupts the
order of elements in the private matrix by randomly permut-
ing the rows and columns of M, expressed as:

M; = DME

where M3 € R™*" is the permuted matrix, and D € R"™*™
and E € R™" are the pseudorandom orthogonal permu-
tation matrices. The user recovers the original matrix by
performing:

M = D'M;ET
where DT is the transposed form of D, and ET is alike.
The formula holds with the orthogonality property of the
permutation matrices, which is D'D = Iand ETE = I
(I is the identity matrix). Moreover, combining both matrix

multiplication and matrix permutation, the transformation
can be formed as follows:

M, = PMQ
where P = DA and Q = BE.
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Matrix perturbation technique is widely used in many
practical outsourcing computations. We illustrate with sev-
eral proposed schemes. Duan et al. [102] proposed a
secure and verifiable outsourcing scheme for nonnegative
matrix factorization. The input matrix is obscured by per-
forming permutation operations, and the two permutation
matrices are generated by Knuth shuffle algorithm [103].
Yang et al. [104] employed a retrievable data perturba-
tion method for privacy-preserving cloud computing. In the
work, private data is protected by adding a noise matrix
with the property that the perturbed data have the same
mean and covariance as the original one. Lin [105] con-
structed a privacy-preserving kernel k-means clustering out-
sourcing scheme. To encrypt a set of vector instances X =
{x1,...,x,}, alinear transformation for all instances is per-
formed as: z; = Mx;(i = 1, ..., m), where M € R™ ™ is an
invertible random matrix.

Geometric data perturbation (GDP) is a combining tech-
nique including multiplicative transformation (R), transla-
tional transformation (V) and noise additive operation (A):

GX)=RX+ WV + A

X is the original matrix and G(X) is the perturbed one. R, W,
and A are the multiplicative, translation, and additive matri-
ces respectively. The integration of these sub-transformations
shows well utility and privacy guarantees during computa-
tions [106], [107].

Lastly, we briefly describe a special perturbation method
called permutation technique, which is based on a permuta-
tion function to disorder the original elements without chang-
ing the values. Matrix permutation (which we introduced
previously), permuting the rows and columns of a matrix, is a
common case. A permutation function can be expressed as
@) = p; (i = 1,...,n), where the independent variable
i is the original sorting label and m (i) is the rearranged
label. In other words, the element labeled by i at first will
be replaced by the one labeled by p;. For example, sup-
pose we have a private matrix A (in which A[i,j] is the
element locating at the ith row and the jth column of A).
An effective permutation operation can be performed like:
Bli,j1 = A[m(), m2(j)], where m1(-) and mp(-) are two
defined permutation function. The elements in matrix A are
thereby rearranged and reconstructed into a permuted matrix
B. Permutation-based approaches have been applied in many
specific outsourcing schemes, such as linear algebra [108],
[109], image processing [110], and data mining [111].

Due to the limited space, we will not give introductions
to other types of perturbation methods (please refer to [9]
or [112] for more details). In perturbation-based schemes,
randomness of the random values or permutations is deemed
as the secret key of users. Compared with cryptography-based
techniques, perturbation methods usually lead to lower com-
putational complexities due to their relatively simple opera-
tions. However, the ability for privacy protection is generally
inferior to the methods based on cryptography. For exam-
ple, some important information cannot be preserved as the
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limitations of linear transformations. Moreover, the quality
of the random components and functions also matters to the
performance of the transform algorithms.

IV. HOMOMORPHIC ENCRYPTION

To provide better privacy protection for outsourcing compu-
tation, researchers have proposed many cryptographic algo-
rithms. However, traditional encryption schemes such as AES
(advanced encryption standard) [113] require a recovery of
the encrypted data before computation. That is, before pro-
cessing the data, the cloud server should first decrypt the
encrypted data using the secret key, and then perform specific
functions on the plaintexts. In this case, the user’s sensitive
information will be exposed to the cloud server. The raise of
homomorphic encryption (HE) technique well resolves the
concern. HE allows arithmetic operations to be directly per-
formed on the encrypted data without decryption in advance.
The computed result matches the encrypted result (by the
same encryption algorithm) operating on plaintexts.

In this section, we first introduce the foundations of HE
theory. Then, we list classical categories of HE algorithms
and briefly demonstrate their corresponding evolutions and
implements. Lastly, we summarize the benefits and dis-
advantages of HE technique. A comparison of homomor-
phic encryption and other secure techniques (introduced in
Section III) is listed in Table 2.

A. DEFINITION AND BASIC FUNCTIONS OF

HOMOMORPHIC ENCRYPTION

Generally, an HE scheme can be defined as follows:
Definition 2: An encryption scheme is called homomor-

phic over an operation “®,,” if the following equation holds:

E(m)©:E(my) = E(m©,,m3), Vm,my € M

E(-) is the encryption algorithm and E(x) is the corresponding
ciphertext of the message x. M is the set of plaintexts. Opera-
tor “0®,,” or “0®,” denotes some operations over the domain
of plaintexts or ciphertexts, respectively. If the operation
“®,,” is an addition operation, then we say this encryption
scheme satisfies additive homomorphism. Likewise, if “®,,”
is a multiplication operation, the property is known as multi-
plicative homomorphism.

An HE scheme is primarily composed of four operations:
KeyGen, Enc, Dec, and Eval. The first three functions are
much the same as the ones of the traditional encryption
schemes. Eval is an HE-specific function that executes cer-
tain calculations on the ciphertexts. We take the asymmetric
HE scheme as an example to illustrate the algorithm pro-
cesses:

-KeyGen()). Given the security parameter A, the system
generates a public and secret key pair: {pk, sk}. Note that pk is
public while sk should be preserved secretly by the decryptor.

-Enc(pk, m). The algorithm takes as input the public key
pk and a message m € M (M is the domain of plaintexts) and
outputs the corresponding ciphertext ¢ of m.
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TABLE 2. An comparison of homomorphic encryption and other secure techniques.

Secure Cryptographic or Storage Requires
. Typtograp . & nequire Strengthes ‘Weaknesses
technique Non-cryptographic | overhead | interaction
. . Achieving secure computation among | Online requirement and storage
MPC Cryptographic High Yes multiple users without third parties burden of users
. Easy to perform; .. L.
PRFs and PRPs | Cryptographic Low No yop . . . Application scenario limited
providing efficient verification
. . Hardware security: trusted execution Vulnerable to certain software and
SGX Cryptographic High No . y .
environment physical attacks
. More efficient; Application scenario limited;
PBM Non-cryptographic | Low No PP .
easy to perform lower security level
HE Cryptographic High No More secure and general Relatively inefficient
Armknecht and Brakerski and Ducas and
RSA's GM's El-Gamal's  Benaloh's Paillier's BGN's Sadeghi's Gentry's Vaikuntanathan's Gentryetal.'s Micciancio's Méauxetal.'s Chillottietal.'s Brakerski's
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FIGURE 3. Time-flow of some remarkable HE schemes and their security assumptions.

-Dec(sk, c). The ciphertext ¢ can be decrypted using the
secret key sk. After the decryption operations, message m is
restored.

-Eval(pk,f(-,-), c1,c2). Eval performs the supported
function f(-,-) (like an addition operation in additive-
homomorphism schemes) directly over two ciphertexts
(c1, ¢2) using pk, and outputs the encrypted result f(cy, ¢2).
The computational result over the corresponding plaintexts of
(c1, ¢2) can be correctly obtained by decrypting f(c1, ¢2).

Here, we take ElGamal cryptosystem [114] as an example
to illustrate the concrete construction of the above operations.

-KeyGen()). Given a security parameter A, construct a
cyclic group G with order n and generator g (such that |g| =
A). Then choose a random value x € Z and compute & = g*.
Then, output public/private key pairs:

{pk; sk} < {(G, n, g, h); x}.

-Enc(pk, m). The algorithm takes as input the public key
pk = (G, n, g, h) and a message m € G. It chooses a random
y € Z} and computes h; = Hh’. The ciphertext of m is
calculated as:

c=(,")=(g" mh) = (g, mg").

-Dec(sk, ¢). The ciphertext ¢ = (¢, ¢) can be decrypted
using the secret key sk = x. Calculate s = (¢')* = g% Then,
m can be recovered by

" -S_l =mgxy.g—xy —m.

-Eval(pk, mul(-, -), c1, c2). Take as input the public key
pk = (G, n, g, h), the ciphertexts ¢y = Enc(pk, m;) and
¢y = Enc(pk, my), and multiplication function mul(-, -).
It computes the encrypted product of m; and m; as

Enc(pk, my) x Enc(pk, mp) = ¢ * co = (&', mW") %

("2, mah?) = (&2, mymyh*' 1¥2) = Enc(pk, mim),
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where the symbol “x” denotes component-wise multiplica-
tion. It is easy to deduce that ElGamal cryptosystem satisfies
multiplicative homomorphism.

B. HOMOMORPHIC ENCRYPTION SCHEME
CLASSIFICATION AND RELATED WORKS
Like the conventional cryptography, depending on the types
of keys used to encrypt and decrypt data (either by using
the same pair of keys or a different pair), HE schemes are
known as symmetric HE or as asymmetric HE. Due to the
consideration of the poor practicability, key management
overhead, and security flaws of symmetric encryption, fewer
symmetry-based HE schemes (like [115], [116]) were pro-
posed. The researchers nowadays prefer using asymmetric
algorithms to implement HE schemes, such as [82], [117].
On the other hand, according to the homomorphic ability,
homomorphic encryption can be broadly categorized into par-
tially homomorphic encryption (PHE), somewhat homomor-
phic encryption (SWHE), and fully homomorphic encryption
(FHE). Since the operations of addition and multiplication
are functionally complete over finite sets, it is sufficient to
employ these two basic operations to construct arbitrary func-
tions for homomorphic evaluation. The three classifications
for homomorphic computations are in terms of the charac-
teristics of executing addition and multiplication operations,
which will be discussed later. The remarkable PHE, SWHE,
and FHE schemes (as well as their security assumptions) are
summarized in the time-flow in Figure 3 and are explained
with greater detail in this subsection.

1) PARTIALLY HOMOMORPHIC ENCRYPTION (PHE)
Partially homomorphic encryption (PHE) allows only one
type of operations (i.e., addition or multiplication) on the
ciphertexts with an unlimited number of times. Accordingly,
PHE can be divided into two types: additively homomorphic
encryption and multiplicatively homomorphic encryption.

VOLUME 7, 2019



Y. Yang et al.: Comprehensive Survey on Secure Outsourced Computation and Its Applications

IEEE Access

Additively homomorphic encryption (AHE) only allows
performing unlimited times of additive calculations over
the ciphertexts. Goldwasser-Micali (GM) cryptosystem [118]
was the first probabilistic provably secure public-key encryp-
tion scheme based on quadratic residuosity which allows
the addition modulo 2 (i.e., exclusive-or operation) of the
plaintext over the ciphertexts. Benaloh’s homomorphic
encryption function [119], originally designed for elec-
tronic voting and relying on prime residuosity, prefig-
ured the first attempt to exploit the plain resources of
this theory. Later, Paillier [82] proposed a new addi-
tively homomorphic cryptographic building-block based
on composite residuosity which has been widely used
for keyword search on the remote encrypted data [120],
privacy-preserving aggregation [121], etc. There have been
numerous AHE-based schemes proposed for outsourcing
computation. For example, Samanthula et al. [122] designed
a secure interactive multiplication, comparison protocol
between two parties. As this AHE scheme only supports
integer operations, Liu et al. [10] extended the integer-based
outsourced calculation to support rational numbers in the
twin-cloud environment and can be used for process-
ing sensitive health data. The AHE-based scheme is effi-
cient, however, the non-colluding twin-cloud architecture
and interactive communications of the two servers are still
necessary.

Despite a bunch of AHE schemes [123], [124], multi-
plicatively homomorphic encryption (MHE) cryptosystems
are also attractive, which allow multiplicative operations for
unlimited times on the ciphertext space. Rivest et al. [125]
introduced the first wildly used public-key encryption scheme
called RSA (Rivest-Shamir-Adleman) which satisfies mul-
tiplicative homomorphism. Another famous MHE scheme
is called ElGamal cryptosystem [114], which is based on
a well-known open hard problem called discrete logarithm.
Although many practical MHE schemes like [126], [127]
were proposed, there exists an inherent drawback in MHE
schemes: it cannot store the key element O due to its algebraic
structure.

2) SOMEWHAT HOMOMORPHIC ENCRYPTION (SWHE)
Somewhat homomorphic encryption (SWHE) performs finite
steps of homomorphic operations for both addition and
multiplication on the ciphertexts. For example, Boneh-Goh-
Nissim (BGN) cryptosystem [128] supports a limited num-
ber of additively homomorphic operations and only once
multiplicatively homomorphic operation. Armknecht and
Sadeghi [129] proposed an SWHE scheme based on a coding
theory problem. It allows arbitrary times of additions and
a fixed number of multiplications, working over arbitrary
finite domains. However, the scheme is symmetric and the
ciphertext size grows exponentially with the expected total
number of encryptions. Although SWHE supports additions
and multiplications simultaneously, the allowed number of
operations is limited, and it can only be used for small-scale
programs/circuits.
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3) FULLY HOMOMORPHIC ENCRYPTION (FHE)

As an ultimate solution for secure computation, fully homo-
morphic encryption (FHE) allows arbitrary operations (i.e.,
addition and multiplication) with an unlimited number of
times over ciphertexts. Gentry and Boneh [130] gave the
first generation of FHE, constructed an SWHE scheme, and
made it bootstrappable. Specifically, the scheme can perform
at least one more homomorphic operation after evaluating
its own homomorphic decryption circuit over the encrypted
domain. However, according to Gentry and Halevi [131],
a basic bit operation based on the idea of [130] requires
30 minutes, which is unrealistic performance. Although sev-
eral refinements and optimizations [132], [133] were sub-
sequently proposed, these schemes are still impractical for
real-world applications in terms of both the ciphertext size
and the running time. The second generation of FHE was
first constructed by Brakerski and Vaikuntanathan [134],
based on the hardness of the learning with errors (LWE)
problem. In a separate work, Brakerski et al. [135] built a
new efficient tool to reduce ciphertext noise. Furthermore,
Gentry et al. [54] presented a new approximate eigenvector
method to make homomorphic addition and multiplication
run more efficiently. To store data more efficiently, Smart and
Vercauteren [136] outlined a technique to allow the packing
of several ciphertext values in a single ciphertext and operate
on the values in a single instruction multiple data (SIMD)
fashion. To implement the second generation of FHE scheme,
Halevi and Shoup [137] built a library called HEIlib to imple-
ment the BGV (Brakerski-Gentry-Vaikuntanathan) cryp-
tosystem and bootstrapping method [138]. Gentry et al. [139]
also implemented the AES-encryption circuit under HElib.
Although these encryption schemes are almost practical,
it still requires 182.71 seconds to perform the bootstrap-
ping procedure. Ducas and Micciancio [140] constructed the
third generation of FHE scheme with efficient bootstrapping,
and Chillotti et al. [141], [142] gave two optimal methods
for bootstrapping to make the FHE scheme practical. With
the advantages of both block ciphers and stream ciphers
evaluation, Méaux et al. [143] designed an efficient FHE
scheme which leads to low-noise of ciphertexts. Braker-
ski [144] presented a quantum FHE (QFHE) scheme, with
the supporting functions to the ones computable in quantum
polynomial time. The error of the homomorphic evaluation
can be only exponentially small at any polynomial quan-
tum circuit. In the work of [145], the authors constructed a
threshold FHE (ThFHE) scheme with the security assumption
of learning with errors. Moreover, a general framework for
threshold cryptosystems was also given from ThFHE. Due to
the natural advantage of FHE (all the computations can be
executed in a single semi-trusted server), a lot of applications
are designed based on FHE algorithms, such as association
rule mining [146], private information retrieval [147], and
clinical decision support system [148]. However, the high
computation and storage overhead of FHE is still a bar-
rier for wide-scope applications of FHE-based outsourcing
computation.
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4) SUMMARY

Homomorphic encryption is a popular cryptographic tool
used in cloud computing, owing to the operability on
encrypted data at the servers. The processes of data transmis-
sion and computation can be accomplished without decryp-
tion, and the used cryptosystems always provide advanced
security strengths. This is the major reason why abun-
dant outsourcing schemes employ homomorphic encryption
for privacy-preserving, instead of other secure technolo-
gies. According to the characteristics of supporting opera-
tions, HE schemes are generally categorized into three types:
PHE, SWHW, and FHE. Although supporting only one kind
of operation, PHE-based algorithms have received massive
attention and been used in many realistic applications for
its relatively low computation and storage overhead. SWHE
executes both the addition and multiplication operations but
for a limited time, still suitable for some finite application
domains. FHE-based schemes perform arbitrary functions
for arbitrary times, while producing higher computation and
storage overhead. Therefore, more refinements and improve-
ments should be achieved to reduce the heavy burden of
FHE-based schemes.

To sum up, in the meantime of providing stronger privacy
protection, there are three main drawbacks of HE schemes.
1) High computation cost: for most of PHE and SWHW
schemes, it requires several modular exponent arithmetics
for designing the secure computation protocol. Moreover,
FHE algorithms need an essential technique called bootstrap-
ping to reduce the noises from the ciphertext, which will
significantly decrease the efficiency of the whole system.
2) Large storage overhead: the storage cost for ciphertexts
will be expanded for several times compared with the original
plaintext, and the storage needs to be expanded for hundred
or even thousand times for most of the FHE scheme (even
the same for some PHE and SWHW schemes). 3) Trusted
authority (TA) is required: TA is in charge of generating and
distributing the public/private key for all the parties in the
system. At least one TA is required for HE-based schemes.

V. SECURE OUTSOURCING OF FUNDAMENTAL
FUNCTIONS

Generally speaking, the scope of outsourcing computation
can be categorized into fundamental and application-specific
functions. Fundamental functions are considered as some
simple operations for resolving basic arithmetic problems,
like the addition of two scalars or matrices. They are also used
as building blocks of complex tasks. In this section, we give
an overview of existing HE-based outsourcing computation
schemes for fundamental functions, including scalar opera-
tions, set operations, matrix operations, and systems of linear
equations. The schemes’ security levels and performance
evaluations are analyzed in Section VII.

A. SCALAR OPERATIONS

Scalar operations, always seen as the most common
elementary operations, are the building blocks of general
operations. The calculations on scalars can be roughly
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classified into basic and blend arithmetic operations. The
basic scalar operations include single calculations on scalars,
like addition, subtraction, multiplication, division, compar-
ison, sorting, square root, exponentiation, greatest common
divisor (GCD), etc. Blend arithmetic operation is the calcula-
tion of polynomials made up of several operations (i.e., addi-
tion, multiplication, exponential, or other operators). We dis-
cuss existing HE-based outsourcing schemes for secure stor-
ing and processing scalars, from the perspective of basic and
blend arithmetic operations.

Considering secure basic arithmetic operations, several
efficient outsourcing schemes were designed for integer num-
bers. For example, Gong et al. [149] proposed a secure integer
arithmetic framework, supporting the operations of addition,
multiplication, complement, etc. In the protocols, the sensi-
tive values are protected due to fully homomorphic proper-
ties. Based on Paillier cryptosystem, the protocol of [150]
calculated a secure quotient over two encrypted positive inte-
gers, with the encrypted result in a fixed-point format. The
computational complexity grows linearly with respect to the
desired quotient precision. Liu et al. [151] built secure circuits
for commonly-used unsigned and signed integer computa-
tions (e.g., integer multiplication and comparison). In the
work, the operations are performed on encrypted operands by
FHE algorithms. Moreover, the authors also adopted SIMD
technique to support batch computations, thereby largely
reducing the burdens of storage and computation.

However, as many specific application fields require the
data with higher precision, integer processing cannot sat-
isfy their actual needs. Since standard encryption algorithms
only support integer values (in finite domains), some effec-
tive schemes were elaborately designed to complete secure
non-integer computations, which cover different types of
basic operations. Liu et al. [152] proposed a framework for
privacy-preserving outsourced calculation on floating-point
numbers (FPNs). In the framework, real numbers are
expressed or approximated by FPNs, which are encrypted
and outsourced with the specific format and constant-length.
The authors first constructed a secure calculation toolkit for
common integer operations (e.g., multiplication, compari-
son, or modular calculation). Taking these integer proto-
cols as sub-protocols, several protocols for FPN operations
were also introduced (i.e., equivalence testing, sorting with
absolute value, addition, multiplication, and comparison of
FPNs). The framework uses Paillier cryptosystem with par-
tial decryption (PCPD) as a solution to enable direct com-
putations on the encrypted data. To reduce leaking risk of
private key, in the cryptosystem the private key is split into
two partial shares and distributed to the CP and CSP parties
respectively. After the interactions between the CP and CSP,
the required computations are completed securely without
revealing the sensitive values to unauthorized parties. Also,
the framework can handle FPN exceptions (such as overflow
and underflow). Moreover, the interaction between the clients
and the cloud server is kept to the minimal: the client only
needs to send a computational query to the cloud platform,
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and then receive the result in a single round. However, since
the Paillier encryption only supports homomorphic additions,
the work adopts a twin-server model to construct multi-
plicatively homomorphic protocols. Hence, a higher secu-
rity assumption is required. Similarly, the authors further
designed a framework [10] to support basic computations
on integer and rational numbers. In the work, the rational
number is expressed or approximated in a fraction format,
whose numerator and denominator are separately encrypted
and handled.

Arita and Nakasato [153] constructed the first FHE-based
secure protocols for encrypted fixed-point number operations
(i.e., addition and multiplication). Nevertheless, the work
requires a large space for key and ciphertext storage, and
cannot calculate complex functions on the FPNs. To remove
these limitations, Bai et al. [154] designed privacy-preserving
protocols for floating-point number addition and multiplica-
tion, with low ciphertext expansion ratio and small public
key size. Moreover, the calculations can be generalized
to analytic functions (e.g., exponential function and loga-
rithmic function) by utilizing Taylor series. The precision
of the calculations is almost the same as the unencrypted
case. Scheme [155] realized parallel FHE algorithm for
floating-point number operations, based on the MapRe-
duce environment. Moreover, to provide stronger security,
the order of ciphertexts is disrupted to eliminate the relevance
between the child ciphertext and key pair. Basilakis and
Javadi [156] also designed a parallel solution, which securely
performs binary operations (i.e., comparison, addition, and
subtraction operations) over real numbers. By using the pack-
ing SIMD technique, the system’s overall performance can be
significantly accelerated.

When multiple data providers are involved to outsource
their data to the same cloud server, they should be dis-
tributed with individual keys to avoid multi-tenancy related
attacks. However, achieving secure calculations under multi-
ple keys while protecting individual data is another difficulty.
By adopting a new cryptographic method called dis-
tributed two trapdoors public-key cryptosystem (DT-PKC),
Liu et al. [157] built a privacy-preserving outsourced calcu-
lation toolkit of integer numbers for the scenarios involving
multiple data providers (DPs). When a request user (RU)
sends a computational query correlated to the data from
DP a and DP b (we call the encrypted data [x], and [y]p,
respectively), the server will perform the necessary homo-
morphic computations and finally return the encrypted result
[f Gx, ¥)]pk, to the user, where f (-, -) is the requested function
and pk, is a joint public key associated with different DPs and
the RU. If DP a (DP b) allows the RU to access the result, DP a
(DP b) will partially decrypt the encrypted result and send
partial decrypted ciphertext WT, (WT}) to the user. Then the
user executes the second stage of partial decryption using his
own secret key and gets the result in plaintext. The toolkit can
also be extended to store and process real numbers. Across
large-scale multiple encrypted domains, a secure framework
for outsourcing functional computations was proposed by
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Liu et al. [158], called as POFD. In the work, a user defines a
function and obtains the result of the function over encrypted
data from different data providers. Neither the function nor
the input/output will be revealed to unauthorized parties.
In the paper, two versions of POFD are presented: basic
POFD and enhanced POFD (the latter achieves a higher secu-
rity level). Supporting multiple encrypted domains, [159] also
gave protocols for securely non-integer processing, based on
the cryptosystem of [157]. Furthermore, the authors contin-
ued to construct secure algorithms for reinforcement learn-
ing, which can be applied for decision-making in diagnosis
systems.

Researchers have also designed secure solutions to han-
dle blend arithmetic operations. In [160], Gai et al.and Qiu
proposed a solution for blend arithmetic processing on addi-
tions and multiplications over real numbers. The solution
removes all the parentheses and transforms the formula into
a set of binomials joined by addition operators. Hence,
the blend arithmetic operations can be solved using familiar
algorithms, like homomorphic multiplications and additions.
Liu et al. [161] designed an efficient privacy-preserving out-
sourced functional computation framework over public data.
The work adopts switchable homomorphic encryption [162]
with partially decryption (SHED) as the core cryptographic
algorithm. Two coding methods (i.e., message pre-coding
technique and, message extending and coding technique) are
introduced to transform the values into the input domain
of SHED. Yu et al. [163] proposed a verifiable scheme for
outsourced function evaluation over ciphertexts, using the
properties of FHE scheme. To achieve data confidentiality
and verifiability, especially two additional entities are intro-
duced: a trusted authenticator (TA) and a public auditor proxy
(PAP). When the client requests for the evaluation result,
the TA will check the client’s certificate and then re-encrypts
the computational result into another lightweight one if the
verification is satisfied. Interacting with the TA, the PAP
checks the correctness of the encrypted result homomorphi-
cally. If the result is validated, it will be returned to the client.

B. SET OPERATIONS

The set, a commonly used data structure, is served as a
container for different objects. The major operations on sets
include set intersection, set union, and set difference, which
have been served as building blocks in many specific appli-
cations, such as data mining, graph algorithms, and recom-
mendation services. In this subsection, we mainly discuss
outsourcing schemes for set intersection, set union, and their
variant (i.e., set-intersection and set-union cardinality). Since
the records inside a set are often sensitive for users, the secu-
rity of set elements and set-operation results is required to be
guaranteed.

1) SET INTERSECTION

Set intersection is the operation to obtain the intersecting
elements of involved sets. Assume there are n parties (n > 2),
each holding a private set S; (1 < i < n). The desired
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set-intersection output is written as Sy ()S2()...[)Sus
where the elements included are the ones exist in all n sets
simultaneously. In the delegating environments, one or more
clients obtain the intersection result while their individual
sets are kept private. The server executes the set intersection
operations efficiently and learns nothing from the processing.

As proposed Freedman et al. [48] discussed secure
two-party set-intersection protocols in the semi-honest and
the malicious adversary model. In the protocol, the client’s
set is X = {x1,...,x,-}, while the cloud server’s set is
Y = {y1,...,Yng}. Under the semi-honest setting, the client
first defines a polynomial P(y) = (x; — y)(x2 — y) - - -
(tne =) = Y4C aky*, where the roots (i.e., x1, X2, . . . , Xu.)
are his input set members. Then he encrypts the nc + 1
coefficients of the polynomial using a semantically-secure
homomorphic encryption scheme. The encrypted coefficients
{Enc(ap), ..., Enc(a.)} are then sent to the server. For
each value y; (i € {l,...,ng}) in the set Y, the server
does the following calculations. By exploiting HE properties,
the server computes Enc(P(y;)) = Enc(ZZCZO aky’;.‘), and
chooses a random value r; to computes Enc(r;P(y;) + y;).
Apparently, if y; € {x1,...,x,.}, then Enc(r;P(y;) + yi) =
Enc(r; - 0 + y;) = Enc(y;); otherwise, even decrypting
Enc(7;P(y;) + i), the value of y; is still unknown. Afterwards,
the server permutes the ciphertexts Enc(r;P(y;) + y;) (i €
{1, ..., ns}) randomly and sends it back to the client. Receiv-
ing the result, the client decrypts all the ciphertexts, com-
pares with his own private set, and obtains the intersection
X (Y. To reduce the degree of the polynomials, the protocol
also employs the balanced allocation method [164]. Specifi-
cally, the idea is to map the elements to corresponding bins
whose size upper-bounds are limited. Based on the protocol
against semi-honest parties, the authors further extended the
protocol for malicious models. Based on the idea of [48],
Dachman-Soled et al. [165] described a robust protocol for
set intersection, with verifiability in the malicious setting.
The algorithm also employs a Shamir secret sharing tech-
nique to share the server’s set through a k-degree polynomial,
in which k is the security parameter. To verify the correctness
of final results, the server and the client jointly run a cut-
and-choose protocol on the server’s set. Finally, the client
correctly obtains the elements of the server’s set which is also
in his own set.

Apart from privacy and correctness requirements, effi-
ciency is also an important factor to be considered in
the outsourcing schemes. Utilizing leveled FHE scheme,
Chen et al. [166] constructed a private set intersection pro-
tocol considering both security and practicability in the
semi-honest model. By combining various optimizations
(e.g., batching and hashing techniques), the communica-
tion and computation cost is largely reduced. Supposing the
smaller set with the size Ny and the larger one with N,
the communication complexity of the proposed scheme is
O(Nslog N;). With the multiplicatively homomorphic prop-
erty of RSA cryptosystem, Yang et al. [167] presented an
efficient set intersection protocol, secure in the semi-honest
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model. The protocol assumes that two different parties (i.e.,
A and B) hold their individual private sets, which are
encrypted and outsourced to the cloud. When one party A
tries to obtain the intersection result of their sets, he sends
a requesting signal to the other party B. If B agrees to engage
the set intersection, he will send a permit message and some
necessary information to the cloud. Due to homomorphic
properties, the cloud server operates on the encrypted sets and
returns the intersection result (which is also in the encrypted
form) to A. Finally, the party A decrypts the result and
recovers the set intersection without learning B’s private set.
The computation at the clients only involves several simple
modular multiplications. In the case of multiple clients (each
holding a secret set), the cloud will execute the set inter-
section operations among the involved encrypted sets after
receiving permit messages from the owners.

Instead of polynomial representation, Ruan et al. [168]
expressed the sets as bit vectors, and the set-intersection
operation is thereby transformed into vector operations. Sup-
posing one input set S is selected from an n-element set X =
(x1,x2, ..., xp), the vector-representation corresponding to S
is vi,v2,...,vp), Wwhere v; = 1ifx; € Sandv; = 0
otherwise (1 < i < mn). If two input sets are denoted as
A = (ay,ay,...,ay)and B = (b1, by, ..., b,), then the set
intersection (with vector representation) can be computed by
multiplying the elements of both sets at the same position:

AB = (ai.az,....an) ([ b1 b2, ... by)

= (a1b1, azby, ..., ayby)

The process can be securely performed by the cloud server
due to PHE characteristics. Based on GM cryptosystem,
Zhu et al. [169] constructed another set-representation form
based on Bloom filter. The protocol allows multiple clients
to outsource their sets and obtain the set-intersection result
without revealing their private sets.

2) SET UNION
Set union is another fundamental set operation. Assuming we
have n parties each holding an input set S; (1 < i < n),
the set-union operation is to obtain the items which appear in
at least one participant’s input set without knowing anything
else, written as Sy |JS2 ... Sy There has been relatively
little work done for set-union computation by homomorphic
cryptosystems.

Based on AHE scheme, Frikken [170] introduced
a privacy-preserving set-union solution secure in the
semi-honest model. Like most set-operation algorithm,
the work employs polynomials to represent set elements,
where the polynomial coefficients are encrypted by HE algo-
rithm. In the protocol, one participant P (i.e., the client) first
encrypts his polynomially-represented set f(-) as Enc(f(-))
(Enc(-) is the adopted encryption algorithm), where f(x) = 0
if and only if x belongs to P;’s set. The encrypted polynomial
is then outsourced to the other party P> (i.e., the server). After
that, P, computes the tuples (Enc(f (s;) - s; - r;); Enc(f (s;) - 7))
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homomorphically for each element s; in his own set (the
random value r; is uniformly chosen), and sends them to
P in a random order. After that, P; decrypts the tuples and
obtains the elements s; which appear in P,’s set but not in
Py’s (i.e., f(s;) - ri # 0), denoted by a set X. The result of
set union equals to the elements of X along with the original
members of P;’s set. The computation and communication
complexities of the proposed scheme are O(n?) and O(n) (n
is the size of the input sets), respectively. With linear com-
plexities of computation and communication, [171] achieved
private set union based on Bloom filter and AHE scheme. The
framework assumes two parties (i.e., a client and a server)
each holding a private set, whose size is informed to the other
side. The client’s set is transformed into an encrypted bloom
filter and processed homomorphically for union operations
at the server. The input and output privacy is guaranteed for
the semi-honest model. By adding the authorization from a
trusted third party, the protocol also achieves input security
against malicious adversaries.

3) SET-INTERSECTION AND SET-UNION CARDINALITY

In this subsection, we cover existing privacy-preserving
outsourcing schemes of computing set-intersection and
set-union cardinality. The protocols for the cardinality of
set intersection or set union are to compute the size of
the intersection or union result of all involved private
input sets. Assume that there are n data owners with pri-
vate sets S, 52, ..., S,, respectively. The client will learn
the value of [S1 () S2()..-(Sul (or [STUS2UJ..-USuD)
but not the actual elements of the intersection set or the
union set. The contents of the private sets are unknown
to the computing service provider and the unauthorized
parties.

Freedman et al. [48] sketched a protocol of cardinal-
ity set-intersection, which is slightly modified from the
set-intersection protocol for the semi-honest setting in the
work (stated in Section V-B.1). After the computation,
the client learns the cardinality of the final intersection
set, while the server learns nothing. Scheme [168] (stated
in V-B.1) also introduced a secure set-intersection cardinality
protocol, with the sets represented as bit vectors. If two
sets are denoted as vectors A = (aj,a»,...,a,) and B =
(b1, b2, ..., by), the computation of set-intersection cardi-
nality is equivalent to the inner product of both vectors as:
IANBl = [(a1,a2,...,an) (b1, b2, ..., by)| = arby +
azby+. . .+a,b,. In the protocol, supposing one cloud server
owns the set A and one client owns the set B, the server per-
forms the transformed vector operations homomorphically
over its set and the client’s encrypted set. Finally, the client
decrypts the returned result and obtains set-intersection car-
dinality between their sets. In [171] (stated in Section V-B.2),
the authors extended the steps of the original set-union
algorithm to compute the cardinality of set union or set
intersection with linear computation and communication
complexities. Taking advantage of the set property |A () B| =
|A|+|B| — |A | B, one of the cardinalities of set intersection
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and set union can be obtained when the other cardinality value
is known.

With FHE properties, Tajima et al. [172] designed another
protocol for secure outsourced private set intersection cardi-
nality computations. In the work, two data owners transform
their private sets into bloom filters and encrypt the bloom
filters using the public key generated by the client, and then
send them to the cloud. In the query stage, the cloud operates
on the encrypted bloom filters homomorphically and sends
the resulting bloom filters to the client. The client recovers
the result using his secret key and obtains the intersection
cardinality of the input sets. The authors described two secure
solutions, with the burdens at the client of O(N,) and O(N/L)
(Ny is the size of the smaller set and L is the slots of a single
ciphertext), respectively. In the second solution, the server
aggregates the resulting bloom filters to decrease the num-
ber of returned ciphertexts. Thus, the computation cost of
the client is lightened by delegating more workloads to the
server.

C. MATRIX OPERATIONS

Linear algebra, a branch of mathematics, has become a
widely used tool in various application fields (especially
in scientific and engineering fields). Nowadays, numerous
applications involve large amounts of data, which is arranged
in the matrices with large dimensions. Undoubtedly, comput-
ing on such large-scale matrices is a heavy burden for weak
devices. Hence, outsourcing expensive matrix operations is
desirable to most individuals. In this subsection, we mainly
discuss secure delegation schemes of matrix multiplication
and several other matrix operations, and analyze their prop-
erties of efficiency, privacy, and verifiability.

1) MATRIX MULTIPLICATION

Matrix multiplication is an operation between two matri-
ces, which is frequently used as a building block no matter
in specific applications or other matrix operations. In the
outsourcing schemes for matrix multiplication, supposing
matrix A and B are input matrices, after the computation
by the server side, the client will finally obtain the multi-
plication result from C = AB with minimum overhead.
The server will never know the original input matrices nor
the final multiplication result. When operating on the (n x
n)-dimension matrices, the best known theoretical upper
bound for matrix multiplication is O(n®) (v = 2.38).
In practice, however, the computation complexity often closes
to O(n3).

Outsourcing schemes for matrix multiplication with verifi-
ability have been studied in many works. Benjamin and Atal-
lah [173] designed protocols for secure outsourcing matrix
multiplication to two cloud servers. Each input matrix is
randomly split into two shares and outsourced to both servers,
respectively. During intermediate stages of the protocol,
when dealing with matrix multiplication between n x n-
matrices X and Y, the computation can be securely executed

159439



IEEE Access

Y. Yang et al.: Comprehensive Survey on Secure Outsourced Computation and Its Applications

as:

Enc(X - Y)[i, j1 = Enc(}_ X7, KTY[k, j1)
k=1

n
= ]‘[ Enc(X[i, k]) Yk
k=1

M[i, j] denotes the element locating at the i-th row and the
Jj-th column of the matrix M. The symbol Enc(-) represents the
homomorphic encryption algorithm. Except for guaranteeing
the input and output privacy, the work realizes checkability
regarding the returned matrix. Specifically, any possible cor-
ruption behavior can be detected by the client with a high
probability, even when the servers collude. After receiving
the result matrix C (i.e., C = AB), the cheating-detection
mechanism will be carried out: the client first generates a
random (n x 1)-dimension column vector v. After that, he cal-
culates x = Cv and y = A(Bv). If the vector x is not equal
to y, then the servers are proved to be dishonest. Maintaining
strong checkability, Atallah and Frikken [174] proposed an
improved solution utilizing only one server by the combi-
nation technique of extending Shamir’s secret sharing and
semantically-secure AHE scheme. Scheme [175] analyzed
the verifiability of the delegating homomorphic matrix mul-
tiplication, based on different HE schemes. In the work, it is
proved that if the adopted HE scheme satisfies two proper-
ties (i.e., associativity and distinctiveness), the computational
result can be verified with O(n?) complexity.

With a novel packing method, Duong et al. [176] proposed
an efficient scheme for secure matrix multiplication. In the
protocol, the entries of input matrix are packed into a sin-
gle polynomial and encrypted using SWHE scheme [177].
In the protocol, the multiplication between two matrices only
requires one homomorphic multiplication operation over the
ciphertexts. As [176] only supported multiplication oper-
ation between two matrices, an advanced work [178] for
multiple-matrix multiplication was further presented, based
on BGV cryptosystem. In addition, the method was imple-
mented under HElib, showing great efficiency performance.
Lu et al. [179] also presented a secure matrix multiplication
protocol with higher efficiency. To reduce the overhead of
computation and communication, several optimizations were
introduced. On the one hand, with the Chinese-remainder-
theorem (CRT) packing, an efficient packing technique is
designed to compute a batch of inner products at the cost of
a single homomorphic operation. On the other hand, a pre-
computed table is constructed at the beginning of the protocol
and reused multiple times by the client, thus largely reducing
the client’s workload. The scheme was proved to work well
even with a high concurrency.

2) OTHER MATRIX OPERATIONS

In the following, we briefly introduce several outsourc-
ing schemes for other matrix operations, which are also
computation-intensive. Based on the secure delegating pro-
tocol for matrix multiplication described Mohassel [175]
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further proposed efficient and constant-round constructions
for several other matrix operations, such as matrix inversion
or minimal polynomial of a matrix. The work also gives
secure solutions to test matrix singularity and compute matrix
rank and determinant, which are reduced to computing matrix
minimal polynomial (based on the ideas of [180]). By adopt-
ing a weave ElGamal encryption scheme, Chen et al. [181]
designed secure and efficient outsourcing protocols for cer-
tain matrix operations over Z,. In the protocols, the cloud
performs the functions of Gaussian elimination and its related
algebraic computations (i.e., Gaussian-Jordan elimination,
matrix determinant, linear system solver, and matrix inver-
sion) without learning any non-zero element of the matrix.
The encrypted matrix can be transformed into a row/column
echelon form through certain elementary row/column opera-
tions. Moreover, the linear system solver and matrix inver-
sion protocols enable the clients to verify the returned
results.

Finding the matrix’s eigenvalues and eigenvectors is also
a crucial sub-task in many scientific and engineering compu-
tations. In general, the direct computation consumes O(n>)
complexity (operated on a matrix with n x n-dimension),
which is not practical when n is large. Moon et al. [182]
and [183] presented efficient iteratively-processing solutions
offloading expensive computations to the cloud. The aim
of [182] is to find the largest eigenvalue and its corresponding
eigenvector of an encrypted matrix. The confidentiality of
private matrices is guaranteed by Paillier cryptosystem, and
the computational result is verifiable. [183] also lightens
the client’s cost and hides the real values of the involved
matrices. Through secure iterations between the cloud and
the client, the protocol focuses on finding the approximate
top-k eigenvectors and the corresponding eigenvalues of an
encrypted matrix.

Matrix factorization is to decompose an original large
matrix into the product of several small matrices, the algo-
rithms including triangular factorization, QR factorization,
singular value decomposition (SVD), etc. It is a popular
method used in recommendation systems to apply the prob-
lems to much smaller matrices. Due to this property, people
have designed several secure matrix factorization schemes
for recommendation functions. Nikolaenko et al. [184] were
the first to propose a solution realizing matrix factorization
over encrypted data, using a combining approach of AHE and
GCs. Given a matrix containing users’ item-rating pairs and
some unobserved vacant elements, the recommendation sys-
tem and the cloud server predict other unrated entries by exe-
cuting matrix factorization cooperatively. However, the pro-
tocol leaks the number and profile of the rated items. Hence,
attackers may infer the preference of the users intentionally.
The computational complexity of the protocol is @(Mlog*M)
(where M is the number of ratings), which needs to be further
reduced. Achieving an enhanced security level and lower
complexities, Kim et al. [185] realized privacy-preserving
matrix factorization using AHE and FHE schemes as cryp-
tographic methods. Besides, the authors also consider the
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security of rated items by adding fake ratings. Moreover,
a novel data structure which enables parallel computations
is adopted for improved performance. The computation and
communication overhead of the work is linear to R/S (R and
S are separately the numbers of ratings and the slots the FHE
scheme supporting).

D. SYSTEM OF LINEAR EQUATIONS

A system of linear equations (SLE) is a collection of two or
more linear equations with the same set of variables. For sim-
plification, the SLE problem is often expressed as the matrix
form of Ax = b, where x is an unknown vector, with given
conditions: a matrix A and a constant vector b. The solution
of SLE is to determine the variables of vector x satisfying
all the equations simultaneously (if the system is solvable).
SLE problem is a fundamental block in linear algebra and
works well in modern application fields, such as engineering,
computer science, and physics. However, many practical SLE
problems are large-scale, which means figuring out the solu-
tions is often a time-consuming and storage-exceeding task.
Therefore, it urges customers with weak devices to outsource
their expensive SLE tasks to the cloud. The issues of privacy
and verifiability in the outsourcing schemes are analyzed in
related references.

Considering the matrix form of an SLE problem, denoted
as Ax = b, we further discuss the solutions on condition that
the matrix A is non-singular or not. Kiltz et al. [180] intro-
duced two PHE-based solutions aiming at the non-singular
and general case, respectively. When matrix A is a
non-singular square matrix, A~! can be computed through
matrix inversion. The problem is then transformed to deter-
mine x = A~!b in a privacy-preserving way, which can be
calculated by Enc(A~")Enc(h) = Enc(A~!'b) = Enc(x),
where Enc is an encryption algorithm of the adopted HE
scheme. By decrypting Enc(x), the client learns the vec-
tor x privately. Considering the case of general matrix A,
the authors adopted a transform-based approach [186] to
convert the problem into the non-singular case. The pro-
posed schemes are valid if the SLE problem is solvable.
By utilizing AHE scheme, Wang et al. [187] proposed a
different iterative approach for securely outsourcing SLE
problems. The algorithm is to seek successive approxima-
tions to the solution continuously until the required accu-
racy is reached, with only O(n) local computation over-
head of each round. The work also raises an efficient
cheating-detection mechanism, which allows the clients to
verify the correctness of previous-iteration answers with high
possibility.

VI. APPLICATION-ORIENTED SECURE COMPUTATION
OUTSOURCING

In this section, we give a further overview of existing out-
sourcing schemes for specific applications, which cover a
wide range of practical fields. Like Section V, we only focus
on the underlying techniques based on HE.
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A. MACHINE LEARNING AND DATA MINING

Machine learning (ML) is an essential part of the field of
artificial intelligence (AI), which involves multiple disci-
plines like probability theory, statistics, convex analysis, and
algorithmic complexity theory. It usually requires a certain
amount of training data set to build “knowledge” (or say
“model”’) and applies the trained model to predict new data.
Data mining is a process of transforming the original infor-
mation into valuable structures or rules. The aim is to discover
patterns or interesting trends from large-scale datasets. Nowa-
days, the techniques of machine learning and data mining
are served as powerful tools in real life. For example, many
business companies have relied on such algorithms to make
decisions.

According to the types of training data, machine learn-
ing and data mining tasks can be generally categorized into
three subclasses: supervised learning, unsupervised learning,
and semi-supervised learning. The data of the training set
of supervised learning is all labeled, thereby guiding the
machine to find the relation between the features and labels.
Classical algorithms of the supervised learning include deci-
sion trees, naive Bayesian classification, regression analysis,
support vector machine (SVM), k-nearest neighbor (KNN),
etc. Unsupervised learning uncovers the inner relationships
and patterns by learning from unlabeled training samples.
The most studied and used algorithm of such learning tasks is
clustering analysis, like k-means clustering. Association rule
mining (ARM) is another commonly used method of unsuper-
vised learning. Combining supervised learning and unsuper-
vised learning, semi-supervised learning method makes use
of both labeled and unlabeled training samples to improve
prediction performance.

Usually, the size of the training data or the model is large,
leading to a considerable burden of computation and storage
for users. A realistic strategy is to outsource the data and
the training/predicting/analyzing tasks to the cloud. The data
samples (whether for training or testing) are often sensitive,
like personal images or financial information, and the trained
models (analyzing structures) are seen as the owner’s prop-
erty. Thus, the issues of data security cannot be ignored.
Apart from this, efficiency performance and the correctness
of the predicting (analyzing) results are also crucial for the
outsourcing schemes. We collect delegating schemes for clas-
sic machine learning and data mining algorithms and analyze
them in terms of security and efficiency features. The model
of outsourced machine learning and data mining tasks is
shown in Fig. 4. A summary of the papers surveyed in this
subsection is given in Table 3.

1) REGRESSION ALGORITHMS

Regression analysis is a set of algorithms for estimating the

relationships among variables. Roughly speaking, given the

independent variables, regression analysis aims to estimate

the conditional expectation of the corresponding result.
Linear regression is one of the most popular techniques

to learn predictive models. In linear regression, the variable
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FIGURE 4. The framework of secure outsourced machine learning and data mining tasks. It contains learning phase
(labeled with blue) and prediction phase (labeled with green). Assume multiple data owners (or clients) in the system
share the same key pairs of HE scheme. In the learning process, the data owners upload encrypted data to the cloud
database(s). The encrypted model vector can be obtained by the interactions between the cloud storage and cloud
service provider(s). In the prediction process, the data owners upload encrypted query feature vectors to the cloud
database(s), which can securely compute their corresponding prediction results based on the trained model

parameters.

relation is modeled by training data using a linear approx-
imation function. The linear predictor function f(-) can be

expressed as f(x) = wix; + waxa + - - - + wpx, + b,
in which the weights wy, - - -, w, and the constant b are the
model parameters, and x = (x1,x2,- - -, X,) is the input

variable. In order to alleviate the over-fitting problem of
linear regression, its variants (e.g., ridge and lasso regression)
are introduced as improved versions of linear regression by
adding a regularization term in loss function for more accu-
rate estimates. Using a secure technique combining both HE
scheme and differential privacy, Aono et al. [188] proposed
a privacy-preserving scheme for linear regression. Receiving
the encrypted training data from a client (using his public
key), the cloud server performs necessary computations on
the encrypted data and returns the encrypted model param-
eters to the client. Finally, the client recovers the trained
model by the decryption. In the protocol, the coefficients of
the model’s cost function are randomized by adding noises
from Laplace distribution, and then be encrypted by an HE
scheme (revised from [227]). Moreover, the protocol is also
extended for secure ridge and lasso regressions. Nevertheless,
the use of differential privacy sacrifices some accuracy of
the system results. Morshed et al. [189] also developed a
secure scheme for linear regression on encrypted data and
applied the model for disease prediction. The work is based
on a multi-core framework, enabling parallel computations
to largely reduce the running time. Another secure linear
regression outsourcing framework [190] made use of a vector
HE scheme to lower computation and communication over-
head. While in the scheme, only the features of training data
are encrypted, and the corresponding objective values remain
unhidden.
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Nikolaenko et al. [191] presented a practical system
for privacy-preserving ridge regression. The scheme uses a
hybrid approach in which HE scheme is applied to calculate
the linear processing and Yao’s GCs method to handle the
heavy non-linear part. By only utilizing linear HE (LHE)
scheme, Giacomelli er al. [192] also realized secure ridge
regression with lower computation and communication com-
plexities. Compared with previous work [191], the work
abandons the use of Yao’s protocol, and only adopts LHE
properties to compute the system of linear equations Aw =
b, where matrix A and vector b are the encrypted known
parameters, and the vector w is the model parameter which
can be securely calculated. Hu er al. [193] designed an
efficient multiplication protocol over encrypted real num-
bers utilizing Paillier encryption. Based on the multiplica-
tion protocol, the authors further presented a lightweight and
privacy-preserving ridge regression scheme. In the solution,
the ridge regression training problem is transformed into a
system of linear equations, securely solved through Gaussian
elimination and Jacobi iterative method.

Logistic regression, another subclass of regression anal-
ysis, is a powerful method used to classify data. Given
the input vector x, the regression output fi(x) is a dis-
crete value indicating the classification result, i.e., fz(x) =
g(f(x)). f(x) is the linear function just like the expres-
sion of the linear regression, and g(-) is usually the sig-
moid function g(z) = 5 Tt A secure outsourcing scheme
called homomorphism-aware logistic regression via func-
tion approximations was given in [194]. The storage and
computation overhead is O(Nd?) at the server side, while
light-weight O(d 2 at the client (N is the number of records
and d is the dimension of each record). However, when
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TABLE 3. An overview of the surveyed machine learning and data mining literature.

Task Scheme Secur_e Threat Verifiability
techniques model
[188] PHE+DP semi-honest | No
[189] SWHE semi-honest | No
Linear or ridge [190] Vector HE semi-honest | No
regression [191] Linearly HE+GCs | malicious Yes
Regression [192] Linearly HE sem%-honest No
analysis [193] PHE semyhonest No
[194] PHE semi-honest | No
[195] SWHE semi-honest | No
Logistic regression [196] Approximate HE semi-honest | No
[197] Approximate HE semi-honest | No
[198] SWHE+SGX semi-honest | No
[199] PHE+SS+GCs semi-honest | No
Support vector [200] PHE semi—honest No
machine [201] PHE semi-honest | No
[202] PHE semi-honest | No
[203] PHE semi-honest | No
Classification . verify the learned
algorithms [204] FHE semi-honest | 46 probabilistically
Other algorithms, [205] PHE semi-honest | No
like naive Bayesian [206] PHE+OT semi-honest | No
and decision trees [207] FHE semi-honest | No
[208] PHE semi-honest | No
[7] PHE semi-honest | No
[209] PHE semi-honest | No
[210] FHE semi-honest | No
[211] FHE semi-honest | No
Artificial Neural networks [212] PHE+SS semi-honest | No
[213] FHE semi-honest | No
[214] PHE semi-honest | No
[215] PHE semi-honest | No
[216] FHE semi-honest | No
[217] PHE+FHE semi-honest | No
K-means clustering | [218] FHE semi-honest | No
and its variants [219] FHE semi-honest | No
Data mining [220] FHE semi-honest | No
[221] FHE semi-honest | No
[222] Approximate HE semi-honest | No
[223] PHE semi-honest | No
Association rule [224] PHE semi-honest | No
mining [225] SWHE semi-honest | Yes
[226] PHE semi-honest | No

the data dimension rises, the result of the proposed system
tends to show a lower accuracy than the scheme without
cryptosystem. Bonte and Vercauteren [195] constructed a
secure homomorphic logistic regression learning scheme on
the encrypted data. The work adopts a light-weight itera-
tive method which simplifies the standard Hessian method.
Another privacy-preserving scheme for logistic regression
learning was proposed by Kim et al. [196], based on the cryp-
tosystem of approximate homomorphic encryption [228].
To find the local extremum of the function, the protocol
uses the Nesterov’s accelerated gradient method [229] with
a better convergence rate (compared with the typical gra-
dient descent method). Moreover, the work also introduces
an encoding method to reduce the storage burden. Precisely,
the method is to encrypt a matrix-represented training dataset
into a single ciphertext. Similarly, Cheon ez al. [197] uti-
lized a new ensemble gradient descent method to reduce the
iteration number of logistic regression learning. Through a
hybrid cryptographic framework combining both SWHE and
SGX techniques, Sadat et al. [198] presented a scheme for
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performing regression analysis, achieving a better balance
between security and efficiency. In the protocol, some com-
plex calculations (which cannot be efficiently handled by
existing HE schemes, like the matrix inversion and division)
are performed in the plaintext form inside secure hardware
at the server side. Moreover, the accuracy quality of the final
result is guaranteed.

2) CLASSIFICATION ALGORITHMS

Classification is to identify the category of a new sample,
based on the sorting model learned from the empirical data
set. There are multiple outstanding classification algorithms,
such as logistic regression (which was discussed before), sup-
port vector machine (SVM), decision trees, etc. Classifiers
are widely used in numerous fields, like computer vision,
statistics, and biometric identification.

Graepel et al. [204] presented solutions to realize confi-
dential machine learning on encrypted data based on leveled
FHE scheme. The work focuses on solving binary classifi-
cations, like linear means (LM) classifier and Fisher’s linear

159443



IEEE Access

Y. Yang et al.: Comprehensive Survey on Secure Outsourced Computation and Its Applications

discriminant (FLD) classifier, using low-degree polynomial
approximations. Bost et al. [205] constructed secure homo-
morphic protocols for achieving three classification algo-
rithms: hyperplane decision, naive Bayesian classification,
and decision trees. Moreover, the authors also analyzed a
more general classification function using AdaBoost technol-
ogy [230]. Gao et al. [206] proposed a secure scheme for con-
structing naive Bayesian classifier. In the work, by combining
a novel “double-blinding” technique, the AHE scheme, and
oblivious transfers, the privacy of both the client and the
server can be protected. Moreover, most computations of the
protocol are executed offline by the server, thus demanding
less overhead of online computation and communication for
both parties.

By employing an optimized ring LWE-based variant of
HE scheme, Khedr ef al. [207] introduced a secure scheme
for practical Bayesian application: encrypted Bayesian spam
filters [231]. Using Bayesian rule, the proposed spam fil-
ter determines whether the given email is spam by com-
puting over its included encrypted words. Based on the
hardware-assisted PHE-based technique, Bian er al. [208]
also proposed a secure email filter system based on naive
Bayesian filter. To reduce the number of homomorphic
operations, two optimization approaches are adopted. The
first one is the weight-embedding technique, which simply
embeds rounded exponent weight (instead of a fixed-point
pattern) into the result. The second is the batch filter-
ing technique, allowing for packing more bits (from the
binary-decomposed words) into one ciphertext. Through the
hardware implementation, one email with an average-length
can be classified in 0.5 second. Another realistic exam-
ple based on naive Bayesian classification was proposed
in [7], achieving a patient-centric clinical treatment system
in a privacy-preserving way. By utilizing an elaborate AHE
scheme, the naive Bayesian classifier is trained using histori-
cal clinical data in the encrypted form. After that, the trained
model can be applied to homomorphically predict k most pos-
sible diseases for a new patient. Adapted from the work [7],
Alabdulkarim et al. [209] also implemented a secure clinical
decision system utilizing decision tree algorithm. The simu-
lation experiment shows that the proposed scheme achieves
better results than the one using naive Bayesian algorithm [7].

SVM method constructs a hyperplane or a set of hyper-
planes in a high (or infinite) dimensional space to divide sam-
ples. The algorithms efficiently perform linear classification
and are further extended for non-linear classification using
kernel tricks. Laur et al. [199] proposed privacy-preserving
protocols for the evaluation of kernel matrix and the pro-
cesses of kernel-based classifier’s training and prediction,
using cryptographic techniques of AHE, secret sharing, and
secure circuit evaluation. After the training phase, each client
holds a secret share of the trained model. While in the
testing phase, all of the clients need to collaboratively per-
form the classification using their individual model shares.
The computation requires the participation of all the client
parties, hence only suitable for certain particular scenarios.
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Gonzélez-Serrano et al. [200] proposed a privacy-preserving
scheme for learning SVM over multiple distributed data.
The work utilizes an AHE scheme of Bresson, Catalano,
and Pointcheval (BCP) cryptosystem [232] with multiple
keys. The algorithm is robust against finite word-length
effects. Based on the privacy-preserving outsourced calcula-
tion framework of [157], Sun ef al. [201] also constructed
secure protocols for SVM training and predicting over mul-
tiple encrypted domains. To protect data privacy, two servers
interact multiple rounds with each other to perform the tasks
on the multi-key encrypted data. Scheme [202] was the first
to realize privacy-preserving SVM protocols for two-class
and multi-class classification. In the framework, the server
trains the classifier and the client uploads his sample to
get the corresponding classified label as a service. Com-
pared with the conventional approach (without using cryp-
tosystem), the result of the proposed scheme is accurate to
an equal degree. Applying the SVM algorithm to practice,
Liu et al. [203] proposed an outsourced drug discovery frame-
work based on their designed secure SVM protocols. In the
scheme, the decision model is trained using multiple drug
formulas, where a secure sequential minimal optimization
algorithm is adopted to refresh the model parameters. By the
privacy-preserving computations at the cloud server, users
determine the activity property of given chemical compounds
from the trained model.

3) ARTIFICIAL NEURAL NETWORKS

Machine learning based on artificial neural networks (ANNs)
has dramatically pushed the advance of Al. Simulating the
nervous system in the biological brain, the framework of
ANN contains a set of connected units or nodes. Deep neural
network (DNN) with multiple hidden layers between the
input and output layers is one kind of ANNSs. Recurrent neural
network (RNN) and convolutional neural network (CNN) are
two practical examples of DNNs. To substantially cut down
the burden of clients, training and applying ANN models
are usually performed at cloud servers. For privacy require-
ments, the servers should never know any private data during
executions.

Scheme [210] and [211] achieved privacy-preserving pre-
diction of neural networks over encrypted data. In the pro-
tocol, the client sends the encrypted sample feature (by HE
algorithm) to the cloud for the prediction from the trained
model. Both the input data and the prediction result are con-
fidential to the cloud. Ma et al. [212] proposed the first fully
non-interactive (between the cloud servers and the client)
neural network prediction scheme. In the protocol, the trained
model is split into two random parts using secret sharing
technique, which are separately sent to two non-colluding
servers. Due to additive privacy homomorphism, the servers
apply neural networks interactively on the client’s input data
(encrypted by an AHE scheme) and return the encrypted
prediction shares to the client. Finally, the client decrypts
and recovers the corresponding prediction of his data sam-
ple by combining the result shares. The computation and

VOLUME 7, 2019



Y. Yang et al.: Comprehensive Survey on Secure Outsourced Computation and Its Applications

IEEE Access

communication overhead at the client’s side is independent
of the size of the neural network model.

The works [210], [211], and [212] only focused on the
prediction stage, assuming the neural network model was pre-
viously trained. Considering the training phase of neural net-
works, CryptoDL [213] was designed to run the well-known
CNN algorithms on encrypted data securely. To Break the
limitations from HE algorithms, the protocol approximates
the activation functions with low-degree polynomials and
trains the CNN model using the approximation polynomials.
The trained model is then implemented over encrypted data
for prediction. Tang et al. [214] proposed a distributed deep
learning scheme with security guarantees and high accu-
racy. In the protocol, data requesters outsource the encrypted
gradients to the data service provider for a new round of
updates of the model weights and request the newly updated
values. A new party (i.e., key transform server) is adopted
to re-encrypt the encrypted gradients. Meanwhile, the data
service provider makes the re-encrypted gradients additively
homomorphic and performs the updating computations on the
ciphertexts. At last, each data requester obtains the updated
weights and decrypts them. In the algorithm, extra communi-
cation cost is added, yet still tolerable.

4) CLUSTERING AND ASSOCIATION RULE MINING

Clustering is a process of performing grouping tasks for a
collection of data. The items in the same group are similar and
are relatively different from other groups’. The algorithms
are available to handle numerous data of real-world fields,
like in commerce, biology, social network, etc. We discuss
the proposed HE-based schemes on k-means clustering (as
well as its variants). Depending on the similarity measure,
k-means clustering runs a series of iteration procedures
to group the analyzed data into k clusters. Saman-
thula et al. [215] proposed a secure k-means clustering
scheme under multi-user setting. In the system architecture,
multiple users (i.e., data owners) outsource their encrypted
data to obtain the combined clustering result, and two
non-colluding cloud servers are in charge of the total clus-
tering computations. The servers generate new clusters itera-
tively based on HE properties until the termination condition
is satisfied. The main contributions of the proposed work
are two folds. On the one hand, an efficient transforma-
tion method was developed to enable clustering processing
to operate over encrypted integers (instead of fractions).
On the other hand, the servers achieve a secure comparison
of Euclidean distances (between data records and current
clusters) based on the order-preserving property. Similarly,
in [216] the encrypted distance values are also comparable
due to the use of order-preserving encryption (OPE) together
with trapdoor information. Different from [215], the system
model only contains one data owner and one cloud server.
In each k-means clustering iteration, the data owner gen-
erates the new trapdoor information from updated cluster
centers. Hence, the clustering processes require certain com-
putation and communication burdens for the data owner.
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An extending homomorphic scheme of [216] was designed by
Liu et al. [217], involving two data owners holding horizontal
partitions of the dataset. In each clustering round, the server
allocates each encrypted data record to the nearest cluster,
and the two data owners compute new cluster centers and
uploads the encrypted clusters to the server for the next
clustering operation. The iterative processes will terminate if
the assignments of data records have not changed.

Based on an LWE-based homomorphic cryptosystem,
Theodouli er al. [218] introduced a privacy-preserving
k-means clustering framework, and also described three
user-server interactive algorithms for computing new clus-
ters. Receiving the encrypted distances (between data records
and current clusters), the client decrypts the distances and
compares the distances to obtain the individual minimum for
each data record. By the comparison results, the new clusters
are computed. In the first version of the proposed algorithms,
the new clusters are found by the user, while incurring plenty
of computation and storage burdens for the user. In the second
version, the client sends unencrypted cluster identifiers which
have minimum distances to the server. The server homomor-
phically computes the new clusters with the assistance of the
client. The design decreases the client’s computational and
storage complexities, while with some information leakage.
To solve the privacy flaw, the authors further presented the
third version, by loading more computations to the server to
protect the confidentiality of the cluster identifiers. The three
algorithms achieve different tradeoffs between the security
and the consumed resources of the client and the server. In
practical applications, the above schemes [216]—-[218] still
require nonnegligible computation burdens for the users,
whether for computing the trapdoor information or decrypt-
ing all distance values. To reduce the participation amount
of the users, Almutairi et al. [219] proposed a homomorphic
k-means solution by employing a structure called updatable
distance matrix (UDM) for storing the information of data
records. During the algorithm processes, the server needs to
update the UDM for further clustering in each iteration. For
updating the UDM, the server calculates the encrypted differ-
ences between the clusters of the previous and current rounds
and sends them to the user. The user only needs to decrypt the
encrypted differences and organize them into a shift matrix,
which is then uploaded to the server for UDM update. The
computation and storage overhead of the proposed scheme is
lower, compared to the previous works. The authors of [220]
introduced an FHE-based k-means clustering protocol also
with a low client workload. In the secure solution, to lighten
the clients burden, the comparison operations (which are ini-
tially performed by the client) are completed by an additional
entity-a trusted and auditable server.

The variations of k-means algorithm also have outstanding
clustering performance and can be securely applied in the
cloud computing environment. Zhang et al. [221] employed
the BGV cryptosystem to design a privacy-preserving
weighted possibilistic c-means algorithm. Compared with
k-means clustering, this variant algorithm considers the
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TABLE 4. An overview of the surveyed image processing literature.

Task Scheme Secur‘e Characteristics or underlying algorithms
technique
SIFT (scale-invariant Sgﬂ ggg Image contents can be deduced by the cloud server.
feature transform) [235] SWHE Preserve the robustness and distinctiveness of the original SIFT scheme.
Image [236] PHE Protect the confidentiality of the location of image keypoints.
feature' SURF (speeded-up (237] PHE Execute intere_st points extfaction, accurate keypoint localization, and descriptor extraction over
extraction robust features) the encrypted image domain. - _
; [238] SWHE Preserve the robustness and distinctiveness of the original SURF scheme.
HOG (histogram of [239] SWHE Two solutigns based on single-server and two-server models, respectively.
oriented gradients) [240] Vector HE More efficient.
[241] FHE Higher accuracy.
[242] PHE Image color, texture and shape features for similarity measurement.
Content-based image retrieval [243] PHE Discrete wavelet transform (DWT) histograms for similarity measurement.
[244] FHE Achieve fine-grained access control.
[245] PHE ‘Walsh-Hadamard transform (WHT) based method.
[246] PHE Discrete wavelet transform (DWT) based method.
Image watermarking [247] PHE Discrete wavelet transform (DWT) and discrete cosine transform (DCT) based method.
[248] PHE Discrete wavelet transform (DWT) and discrete cosine transform (DCT) based method.
[249] PHE Adaptively scanned wavelet difference reduction (ASWDR) compression [250] based method.

membership of every point and achieves soft clustering.
However, the exponential and division operations of the
algorithm cannot be directly evaluated using FHE scheme.
Hence, the scheme adopts Taylor theorem to approximate
the complex functions to the polynomials containing addi-
tions and multiplications. A homomorphic version of the
mean-shift clustering algorithm (which is a non-parametric
clustering technique) was designed by Cheon et al. [222].
During the mean-shifting, the protocol executes over several
randomly sampled points instead of all the points, which
reduces the computation complexity of quadratic to linear.
To enable the efficient utilization of homomorphic cryptosys-
tem, non-polynomial kernels of the original algorithm are
replaced by a polynomial kernel function.

Association rule mining (ARM) is a method to discover
valuable correlations of certain dimensions amongst a large
collection of data. Once arule X — Y (X and Y are respec-
tively the antecedent and consequent of the correlation rule)
satisfies the threshold of both the support and confidence
parameters, then it can be considered as an ‘‘interesting”
association rule. Based on the ElGamal encryption scheme,
Liu et al. [223] proposed a secure outsourcing ARM scheme
over encrypted data. In the protocol, data owners encrypt their
data and send them to the cloud server. If an initiator launches
an ARM request, the server will homomorphically perform
necessary computations for computing frequent itemsets by
interacting with the involved data owners. After that, the data
owners query whether a given rule holds or not. The authors
first designed an algorithm involving only one data owner,
then extended it to support the scenario for multiple data
owners. The original data and the miming results are confi-
dential to the server. Yi et al. [224] adopted a N -server com-
puting framework (N > 2) for collectively accomplishing
ARM tasks based on partially homomorphic property. In the
framework, the data owner outsources its encrypted data to a
database and chooses several data mining servers for the ser-
vice of ARM computations. For achieving different security
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levels, the authors described three secure ARM solutions for
protecting the privacy of the involved items, transactions, and
database, respectively. The security features can be realized
when at least one server behaves honestly. Supporting ver-
tically partitioned databases, an efficient solution for ARM
tasks was presented by Li er al. [225] through the use of
symmetric HE scheme. However, the scheme requires the
users to stay online during the processing and reveals some
privacy of the raw data. Removing these limitations, Liu et al.
[226] proposed a homomorphic outsourcing ARM scheme
with multiple encrypted keys. The protocol protects data
confidentiality using BCP cryptosystem [232].

B. IMAGE PROCESSING

With the size and the number of images rapidly growing, out-
sourcing the tasks of image processing is a promising choice.
Since users’ image data (no matter the original images or
the processed images) is usually sensitive, achieving efficient
image computations which satisfy the security requirements
has become a popular research direction. We discuss exist-
ing outsourcing schemes for three specific image processing
tasks (i.e., image feature extraction, content-based image
retrieval, and image watermarking) and draw the correspond-
ing algorithm flowcharts (see Fig. 5-7).

1) IMAGE FEATURE EXTRACTION

Image feature extraction is a significant procedure through
image analysis, processing, and recognition. It aims to extract
useful features from original image data, as an expres-
sion or a description of the analyzed image. Image extrac-
tion algorithms have found extensive application scenarios,
such as cloud-assisted e-healthcare system [251] and bio-
metric system [252]. As follows, we analyze secure out-
sourcing schemes for three popular image feature extraction
algorithms: scale-invariant feature transform (SIFT) [253],
speeded-up robust features (SURF) [254], and histogram of
oriented gradients (HOG) [255].
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FIGURE 5. The framework of secure outsourced image feature extraction tasks. After privacy-preserving image
processing for the task of SIFT (scale-invariant feature transform), SURF (speeded-up robust features), or HOG (histogram
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FIGURE 6. The framework of secure outsourced content-based image retrieval task. After privacy-preserving similarity
measurement between image samples, the cloud platform returns image results similar to the query image submitted by

the owner.

SIFT is an algorithm used to detect and describe local
features in the image, with a powerful attack-resilient fea-
ture point detection mechanism. Hsu et al. [233] presented
secure and robust outsourcing protocols for SIFT computa-
tion, achieving SIFT feature extraction and representation in
the encrypted domain. The proposed algorithm contains four
major parts: difference-of-Gaussian (DoG) transform, feature
point detection, feature description, and descriptor matching,
which are all executed in the ciphertext form by means of
Paillier cryptosystem. Extending the work, Hsu et al. [234]
further explored a similar HE-based secure SIFT outsourced
scheme. The algorithm is secure against ciphertext-only
attack (COA) and known-plaintext attack (KPA), based on
the discrete logarithm problem and RSA problem. However,
the works [233] and [234] introduce a large computation
complexity and certain insecurities from the privacy per-
spective [256]. To remove these limitations, an advanced
protocol was proposed in [235]. Instead of encrypting the
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initial image by Paillier cryptosystem, the work first addi-
tively splits the original image into two random shares and
uploads the encrypted sub-images to two independent cloud
servers. The comparison process is improved by an SWHE
scheme together with the batch technique of SIMD. Besides,
the privacy-preserving SIFT scheme well preserves important
characteristics like the original SIFT scheme (without cryp-
tosystem) concerning distinctiveness and robustness. Pro-
viding a stronger privacy, Li et al. [236] presented another
secure SIFT feature extraction scheme, by means of Paillier
cryptosystem with partial decryption (PCPD) of [152].
SUREF is reckoned as an enhanced version of SIFT. It can
be performed faster and be more robust against different
image transformations than SIFT. The steps and theories
of SUREF algorithm are basically identical with the ones of
SIFT, with some different details (such as scale space, fea-
ture point detection and direction determination, and feature
descriptors) between them. For example, the SIFT algorithm
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FIGURE 7. The framework of secure outsourced image watermarking tasks. It contains the processes of encrypted
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detects feature points by finding local extreme points in the
scale space of DoG, while the SURF algorithm detects by
computing determinant of the constructed Hessian matrix.
Bai et al. [237] presented an outsourcing solution for SURF
feature extraction, executed in the encrypted domain. The
computations are supported by HE properties of Paillier
cryptosystem. However, since the operations require multiple
interactions between the client and the server, considerable
communication overhead is generated. Apart from this, it also
has a poor ability to preserve key characteristics of the origi-
nal SURF. Motivated by these observations, Wang et al. [238]
introduced a practical outsourcing protocol for SURF com-
putations. The idea of the work is similar to [235], which
employs two non-colluding servers to compute the encrypted
feature descriptors of the input image jointly. In the algorithm,
efficient interactive sub-protocols of multiplication and com-
parison operations are designed based on SWHE and SIMD
techniques, which not only supports the secure computations
but reduces the overall communication overhead.

HOG is another image feature descriptor widely used
in computer vision and image processing fields, which is
formed by calculating gradient orientation histograms of
local regions. Wang et al. [239] designed secure outsourc-
ing schemes for HOG computations. The work introduces
privacy-preserving protocols for HOG computations in the
encrypted domains under two different models: single-server
and two-server settings. For the single-server model, the orig-
inal image is encrypted utilizing SWHE integrated with
SIMD technique, achieving both security and efficiency
requirements. The encrypted feature descriptors are securely
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calculated and returned to the client. For the two-server
model, the image is first split randomly into two shares,
and the encrypted shares are then sent to two independent
servers separately. After that, the two servers jointly com-
pute their individual encrypted feature descriptors. In the last
step, the client decrypts and recovers the feature descrip-
tors combining both portions returned from the servers. Uti-
lizing a more efficient homomorphic method (i.e., vector
homomorphic encryption (VHE) [257]), Yang et al. [240]
also proposed a privacy-preserving scheme for extracting
HOG features. The encryption is performed directly on the
image vectors, which can be well applied for image pro-
cessing. Based on an FHE scheme, Shortell and Shokoufan-
deh [241] also designed a secure framework enabling SURF
and HOG computations in the encrypted domain. In the pro-
tocols, SURF and HOG tasks are implemented over rational
and fixed-point binary numbers, respectively. Experimental
evaluations demonstrated that the proposed solutions [239],
[240], and [241] reach comparable performance to the origi-
nal HOG solution.

2) CONTENT-BASED IMAGE RETRIEVAL

CBIR (content-based image retrieval) is a practical image
retrieval technique for the application of image analysis.
Instead of exploiting the searching indexes like keywords,
tags, or descriptions of the images, CBIR carries out the task
of image retrieval directly based on the image contents. The
similarity measure among the images is a decisive parameter
in the algorithm. For practical considerations, the image data
and CBIR tasks are usually outsourced to the cloud. Thus,
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it is essential to protect the image contents and obtain the
matching results as in the traditional CBIR method.

Zhang et al. [242] proposed a secure outsourcing image
retrieval method based on the CBIR framework. Given an
input image, to search for similar images in the cloud requires
similarity measures between image features of the input and
database image samples. The first step of the algorithm is to
extract three kinds of features from the input image, including
color, texture, and shape features. After that, the features
are encrypted by Paillier cryptosystem for security and sent
to the cloud. The cloud computes the similarities of the
encrypted features between the input image and the image
samples of the database, exploiting the properties of the
HE scheme. After sorting the encrypted similarity results,
the cloud returns the most similar images to the client. The
retrieval performance is almost consistent with the conven-
tional CBIR method. Supposing there are N images with
M-dimension features in the database, the proposed algo-
rithm implements O(MN) times of multiplication and expo-
nentiation operations. Unlike the work [242] which exploits
local image features, the method in [243] was the first secure
CBIR scheme over global image features, based on the
wavelet transform [258]. The operations of image retrieval
are performed by the cloud server on the encrypted domain,
due to the additively homomorphic property of the Pail-
lier cryptosystem. Supporting image sharing among multiple
users, Zhang et al. [244] presented a secure and efficient
outsourcing CBIR scheme with fine-grained access control.
In the scheme, the users are only capable of searching for
specific images which are authorized by the corresponding
image owners. To avoid revealing the privacy of image data,
the work uses a lightweight multi-level HE algorithm [259]
as a building block to support the operations in the encrypted
form. Moreover, the scheme is speeded up with efficient
methods of distributed and parallel computation.

3) IMAGE WATERMARKING

A digit watermark is a signal typically indicating the copy-
right information, which is usually embedded in media data.
Like traditional physical watermarks, digit watermarks are
visible in certain conditions. Therefore, people have applied
the technology to fields like copyright protection, source
tracking, and content management on networks. When the
task of image watermarking is outsourced, the confidential
of the original and watermark images, as well as the water-
marked images, should be guaranteed.

Since the images on the cloud are often encrypted for pri-
vacy, how to embed/extract encrypted watermarks to/from the
encrypted images without decryption is a challenging issue.
Zheng and Huang [245] raised one of the solutions, based
on Walsh-Hadamard transform (WHT) [260]. Exploiting HE
properties, the algorithm enables the encrypted watermark
to be embedded over the encrypted input image. In addi-
tion, the authors proposed secure protocols for blind water-
mark extraction in both decrypted and encrypted domains.
Subramanyam et al. [246] introduced a robust algorithm
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for watermarking encrypted, compressed JPEG2000 images
based on HE scheme and discrete wavelet transform (DWT).
Moreover, the work allows image watermarking detection in
the compressed or decompressed domain. Guo et al. [247]
presented another robust watermarking scheme by com-
bining the discrete wavelet transform (DWT) and discrete
cosine transform (DCT) methods in the encrypted domain.
In the work, operations on the encrypted images are sup-
ported by Paillier cryptosystem. Based on the encrypted
DWT-DCT domain, Priya et al. [248] also constructed a
robust scheme for image watermarking computations (con-
sisting of watermarking embedding and extraction). The
watermark images are protected through the shuffling of
the image pixel positions. Meanwhile, the original images
and shuffled watermark images are encrypted by Paillier
homomorphic cryptosystem. Likewise, based on additive
privacy homomorphism, Mishra et al. [249] designed an
image watermarking scheme in the compressed domain.
It achieves robustness concerning selected image processing
attacks.

C. BIOMETRIC COMPUTATION

Recent advances in biometric computations and increasing
use of biometric data prompt the evolvement of medicine
and biology. According to the application scenarios, different
biometric identifiers are used. Specially, personal genomic
data is used in the field of genome analysis. In addition,
the tasks of biometric authentication are based on different
biometric characteristics, like facial features, DNA, iris, and
fingerprint. Obviously, the computation and storage burdens
for large-scale biometric tasks are too heavy for local devices.
Thus, the cloud servers are always responsible for implement-
ing the biometric computations as well as storing biometric
data. However, due to the sensitiveness of personal biometric
data, the security issues (like the possible reveal or misuse of
biometric data) cannot be ignored. In this subsection, we ana-
lyze the existing privacy-preserving outsourcing schemes for
genome analysis and biometric authentication. A summary of
the papers surveyed is given in Table 5.

1) SECURE GENOMIC DATA ANALYSIS

With the techniques of genetic testing and analysis contin-
uously developing, various research on genomic data has
attracted much attention from the public, like disease pre-
diction and treatment. Nowadays, numerous researchers have
designed secure outsourcing solutions for different genome
analysis techniques via HE schemes.

Genome-wide association study (GWAS) technique is a
common approach applied in genetics. It focuses on find-
ing sequence variations at the genome-wide level to fil-
ter the single nucleotide polymorphisms (SNPs) related to
particular diseases, thereby predicting some potential dis-
eases. Zhang et al. [261] presented a framework to securely
outsource GWAS task based on HE algorithms. Given
two groups’ genotypes containing several SNPs, the algo-
rithm calculates the chi-square statistic x> homomorphically
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TABLE 5. An overview of the surveyed biometric computation literature.

Task Scheme Secur'e Threat model
techniques
[261] FHE semi-honest
[262] FHE semi-honest
Genome-wide association study [263] FHE semi-honest
Secure genome [264] SWHE semi-honest
[265] PHE+SGX semi-honest
analysis Whole genome sequencing [266] PHE+FHE semi-honest
Edit distance or Hamming [267] SWHE semi-honest
distance of genetic data [268] SWHE semi-honest
Pattern matching on genetic data | [269] SWHE semi-honest
[270] PHE+GCs semi-honest
[271] PHE+GCs semi-honest
semi-honest
Biometric authentication [272] SE+PBM single server
Biomets SWHE+PBM | Scmi-honest
1ometric two servers
[273] PHE semi-honest
authentication [274] PHE+PBM semi-honest
[36] PHE+OT+GCs | semi-honest
Face recognition [275] SWHE semi-honest
[276] PHE+OT semi-honest
[277] FHE semi-honest
[278] PHE semi-honest
Fingerprint or iris recognition [279] PHE semi-honest
[280] PHE+OT+GCs | semi-honest

between them. Suppose the symbol O; ; is the observed jth
allele count from the case group (i = 1) or the control group
(i = 2), and E; is the expected one. Typically, x? can be
securely calculated as:

X2 = Z Z (Oi,jE E; )
i

ij

Meanwhile, two main division protocols (i.e., errorless divi-
sion protocol and approximation division protocol) are exe-
cuted over homomorphically encrypted data in the algorithm.
Moreover, parallel computation is also supported to improve
the system efficiency. Another scheme for secure outsourcing
GWAS computation was proposed by Lu ez al. [262]. Exploit-
ing the ring-LWE-based HE scheme, the cloud efficiently
calculates x 2 hypothesis testing at the client’s request without
learning any sensitive information. Extending the work [262],
a general solution supporting more types of genomic hypoth-
esis testing was developed in [263]. The protocol evaluates
frequency tables to calculate typical GWAS-related statistics,
based on the encrypted genomic data. Using the packing
technique associated with FHE, the work presents a practi-
cal scheme for secure outsourcing x? test, Hardy-Weinberg
equilibrium (HWE), and linkage disequilibrium (LD) on
genomic data. A cryptographic version of outsourced Fisher’s
exact test was designed by Poon er al. [264]. By using
BGN’s encryption algorithm, the test is securely executed
on the encrypted genomic data. Utilizing a secure hybrid
technique, which combines Paillier cryptosystem and Intel
SGX, Sadat [265] also proposed a secure outsourcing GWAS
scheme. The work performs four statistical tests: linkage
disequilibrium (LD), Hardy-Weinberg equilibrium (HWE),
Cochran-Armitage test for trend (CATT), and Fisher’s exact
test (FET) over federated encrypted genomic datasets.
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Another popular analyzing method on genomic data, called
whole genome sequencing (WGS), has also been analyzed in
many related works. It refers to the process of analyzing struc-
tural differences between different individual genomes using
the bioinformatics. Ziegeldorf et al. [266] proposed solutions
for genetic disease testing based on the bloom filter. The
authors employed two cryptographic methods (i.e., FHE and
PHE) to design the secure algorithms ensuring data privacy.
For the FHE-based scheme, the data owner first encodes the
SNPs data in the patient database as bloom filters and uploads
the encrypted ones (i.e., Enc(B;), where Enc(-) denotes the
encryption algorithm satisfying fully homomorphism and B;
(1 < i < n) represents the bloom filter for each patient) to the
cloud. In the online phase, the client transforms his query into
abloom filter (called Q) likewise. He then generates a key pair
and consequently encrypts the query bloom filter, denoted
by Enc(Q), and uploads it to the cloud. After that, the cloud
executes the matching operation by computing Enc(B;) ©
Enc(Q), where © is the FHE component-wise multiplication
operation, and returns the aggregated results to the client.
Finally, the client decrypts the results and reconstructs the
matching list. While for the PHE-based scheme, the bloom
filter is confused using a keyed hashing method, in order
to speed up the matching process and compress the packing
results. The FHE-based protocol was proved to be secure in
the semi-honest setting while the PHE-based protocol makes
a slight sacrifice of the access pattern privacy but achieves
much improved performance.

A solution focusing on calculating edit distances on the
encrypted genomic data was proposed by Cheon et al. [267].
For two given strings, the edit distance is the minimum
number of single-character editing operations (i.e., insertion,
deletion, and substitution) required to convert one string
to the other. Receiving two encrypted genomic sequences,
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template of a client, the system carries out biometric authentication computations with the assistance of cloud storage
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the proposed protocol calculates their edit distance in the
encrypted form with an SWHE scheme. Besides, an opti-
mized scheme was also presented to reduce the circuit depth
in the algorithm. The key idea is to divide the edit distance
matrix into sub-blocks, calculate the edit distance inside each
block, and then integrate all the results. Kim and Lauter [268]
also presented efficient protocols for outsourcing genomic
testing computations. In addition to executing basic genomic
tests for GWAS, the work considers secure comparisons of
encrypted DNA sequences based on their Hamming dis-
tance and approximate edit distance. Particularly, the authors
implemented the secure protocols by the utilization of the
BGYV scheme [139] and the YASHE scheme [281], respec-
tively. By comparison, the BGV-based scheme has better
performance than the YASHE-based scheme. Pattern match-
ing of DNA sequences is a practical approach to search
specific DNA sequences in a genome database. With the
symmetric-key variant scheme of SWHE [177] and a pack-
ing method, Yasuda et al. [269] proposed privacy-preserving
protocols for pattern matching and implemented the secure
wildcards pattern matching (i.e., wildcard characters can be
included in the queried pattern) on DNA sequences. The
proposed protocol has a favorable performance with low
communication complexity.

2) BIOMETRIC AUTHENTICATION

Biometric authentication is such a technique that utilizes
the inherent physiological and behavioral characteristics
of humans in the goal of identification or access control.
By comparing the biometric identifiers between the target
sample and the samples in the database, the system suc-
ceeds to identify the individual if the comparison result
falls within a certain limit. In this subsection, We discuss
several HE-based schemes for biometric authentication in the
outsourcing environment. The factors should be considered
include efficiency performance, accuracy, cost, as well as data
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privacy. Hence, researchers have devised efficient outsourc-
ing schemes for diverse biometric authentication types, which
protect users’ sensitive information simultaneously. Fig. 8
shows the general system model of the related schemes.

Utilizing a hybrid approach of AHE and GCs,
Chun et al. [270] presented a privacy-preserving scheme to
outsource the tasks of biometric authentication. The work
employs a cloud server to store the encrypted biometric data
and another independent server to keep the decryption key.
The two servers operate interactively during the protocol, and
neither of them will learn the sensitive biometric information
and the intermediate results. Given vectors x and y (both with
length m), Euclidean distance can be computed as:

D (i) — y(i)?

i=1

ED(x,y) =

Hamming distance can be obtained from:

m
HD(x.y) = m — Y (x(i) - y(0))

i=1
Suppose w; (1 < i < n) and u are biometric feature
vectors, where w; represents the individual data in the cloud
database and u is the query data. In the scheme, the servers
calculate two similarity parameters (i.e., the Euclidean dis-
tance and the Hamming distance) between w; (1 < i < n)
and u in the encrypted form due to additively homomor-
phic property. The calculated distance values are securely
compared with a pre-defined threshold to filter the matching
biometric samples. However, the proposed scheme is not
practical due to the expensive communication cost between
the two servers. Sedénka et al. [271] introduced another
outsourcing scheme for biometric authentication with scaled
Manhattan and scaled Euclidean verifiers. The work first
presents an algorithm based on GCs method, then modifies
it to an AHE-based scheme for a higher security guarantee.
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To improve authentication accuracy, the authors used the idea
of principal component analysis (PCA), yet increasing the
overhead of computation and communication.

For better efficiency performance, Hu et al [272]
described two different solutions for outsourcing biomet-
ric identification tasks respectively for single-server and
two-server (assuming the two servers are non-colluding)
models. The single-server protocol disguises the data using
a symmetric-key encryption scheme and mathematical trans-
formations. At the end of the protocol, the server ranks the
Euclidean distances between the input record and database
records, and returns the closest record to the client. While the
two-server protocol achieves a higher security standard using
a public-key SWHE scheme integrated with SIMD model.
After homomorphically calculating the distances, the servers
shuffle the indexes and return the permuted index with a min-
imum distance of the input record to the client. Thus, the real
index of the result and its related distance are unknown to
the servers. For the semi-honest model, the former protocol is
secure under known-sample attack (KSA), and the latter one
achieves the security under known-plaintext attack (KPA).
Achieving both the requirements of data security and verifi-
ability, Salem et al. [273] proposed a privacy-preserving bio-
metric recognition system. Based on the property of additive
homomorphism, the recognition process is operated on the
encrypted features. Moreover, an additional task of real/fake
biometric data detection is carried out by the client, which
enhances the strength of integrity and correctness of the
system result.

Face recognition is one of the widely used realistic meth-
ods for biometric authentication, also as a specific appli-
cation in the field of image processing. Since the face
images are highly private, the privacy issues involved dur-
ing face recognition cannot be ignored. Researchers have
designed privacy-preserving outsourcing schemes for face
recognition, which can be applied in practice. Based on a
strong cryptographic technology combining MPC and AHE,
Erkin et al. [274] constructed a privacy-preserving protocol
for the face recognition system. The work uses the idea
of a standard Eigenface recognition algorithm from [282],
operating on the encrypted face image data. In the scheme,
the images are projected to a low-dimension face space
spanned by the Eigenfaces. The Euclidean distances between
features of the input image and the stored image samples are
computed homomorphically to indicate the image similari-
ties. After that, a series of comparison procedures are securely
performed on these distances to find the most matching result.
However, the protocol requires O(log N) rounds (supposing
there exist N samples in the database) and expensive homo-
morphic operations. For this reason, an improved scheme
with better communication and computation efficiency was
presented by Sadeghi et al. [36], utilizing a hybrid approach
which combines the techniques of AHE and GCs. The dif-
ference lies in that the client and the server jointly compare
the distances by employing a more efficient protocol based
on GCs method. Moreover, the scheme offloads most of the
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computation and communication workloads to a pre-
computation phase. Yang et al. [275] also proposed an
Eigenface-based face recognition scheme, based on an
improved SWHE scheme. In the scheme, the clients
obtain accurate online face recognition service in a
privacy-preserving way.

Another secure homomorphic system for face identifica-
tion, called SCiFI, was introduced by Osadchy et al. [276].
By using an elaborately-designed representation for images,
the system is robust to common environmental changes
such as illumination changes, occlusions, and shadows. Fur-
thermore, the algorithm computes the Hamming distances
between the image samples, which is superior to computing
the Euclidean distances used in the Eigenfaces algorithm.
The system of [277] achieved practical face matching with
several optimization strategies to increase efficiency. On the
one hand, the work adopts a more efficient FHE scheme (i.e.,
FV cryptosystem [283]) to lighten the computation burdens.
On the other hand, a batch technique is used to assemble
multiplication operations over multiple numbers into one
single multiplication. Besides, the authors also applied the
method of PCA (principal component analysis) for dimen-
sionality reduction of the face templates. The experimental
proof showed that the proposed scheme achieves a reason-
able balance between matching accuracy and computational
complexity.

Fingerprint and iris recognition are also the biometric
authentication technologies frequently used in the systems
of attendance, access control, criminal identification, etc.
Meanwhile, several secure outsourcing schemes have been
proposed for fingerprint and iris recognition tasks, based on
HE algorithms. By exploiting PHE schemes and the finger-
print templates called Fingercode [284], Barni et al. [278]
proposed a privacy-compliant system for outsourcing fin-
gerprint recognition. Since the matching operations are per-
formed homomorphically, the server will never learn the
fingerprint template of the client, nor the recognition result.
However, the fingerprint templates stored on the server are
not encrypted, thus becoming a potential threat to privacy.
Apart from this, another drawback of the scheme lies in
the low-accuracy of the recognition result. Higo et al. [279]
introduced an enhanced scheme for homomorphic fingerprint
authentication computations, which takes advantage of the
information of fingerprint minutiae (i.e., feature points in the
fingerprints). Suppose two fingerprint minutiae are denoted
as ((x1, y1), t1) and ((x2, ¥2), t2), where the former pair in the
tuple is the location of one minutia and the latter is its direc-
tion. The two minutiae are judged to match if their locations
and orientations are close enough. Scheme [280] focused on
secure outsourcing solutions for both the iris and fingerprint
recognition. The matching processes are homomorphically
conducted with the distance computations between the sam-
ples, for iris recognition adopting the Hamming distance and
for fingerprint recognition adopting the Euclidean distance.
Particularly, the comparison operations are performed using
GCs evaluation for better efficiency.
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TABLE 6. An overview of the surveyed graph computation literature.

Task Scheme | Secure techniques Threat model | Interaction
K-nearest neighbor [285] PHE semi-honest No
[286] PHE semi-honest No
[287] SWHE+PBM semi-honest Comp
Shortest Approximate shortest distance | [74] SE+SWHE+PRFs semi-honest No
th Exact shortest distance [288] PHE+GCs+PRFs+OT | semi-honest No
pa Obstructed shortest distance [289] PHE+MPC+OT semi-honest Comp
query Constrained shortest distance [290] ORE+SWHE+PRFs semi-honest No
Group location services [291] SWHE+PBM semi-honest No
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FIGURE 9. A simple example of outsourced k-NN computation system model. The inputs of the system are a specific
graph and a specific k-NN query, which are both in the encrypted form. The outputs of the system are the encrypted
location points satisfying the defined conditions. The client recovers the system results by a decryption.

D. GRAPH COMPUTATION

In general, a graph structure expresses mutual relationships
among a set of objects. Mathematically, the objects are
denoted as vertices and the related pairs of vertices are con-
nected by edges. Thus, a graph G can be represented as G =<
V,E > where V denotes the vertice set and E denotes the
set of the edges between the connected vertices of the graph.
The value of a single edge is usually measured by the cost
or the strength of the connection. Graphs are used in a wide
range of application domains, such as social networks, online
knowledge discovery, computer networks, and location-based
services. Among them, we focus on the graphic applications
of the location-based service (LBS), which is booming up
with the rapid growth of the global positioning system (GPS)
and mobile devices. We discuss several existing secure out-
sourcing schemes for LBS computations, considering the
factors of security and efficiency performance. In Table 6,
we summarize the schemes analyzed in this subsection.

K -nearest neighbor (K-NN) querying has been frequently
applied for many practical graphic applications. The systems
provide a service where the user obtains top-k nearest points
of interest (POIs) by comparing the distances between his cur-
rent location and the POIs nearby (we illustrate an outsourced
k-NN computation model in Fig. 9). A privacy-preserving
solution of location-based k-NN query was introduced by
Lien et al. [285]. In the framework, the POIs of the graph are
connected into a circular structure based on the Moore curves,
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and operated for specific k-NN computations securely due to
the homomorphism of Paillier cryptosystem. The proposed
scheme is capable of defending against the correlation attack
and background knowledge attack. Another practical k-NN
query scheme [286] for LBS took into account the type of
POIs. In the system, the user specifies the query which asks
for k nearest POIs exactly in need without revealing the
query type to the server. Considering a (n x n)-cell region
with m types of points, the response of k-NN query with
one type takes O(m + n) communication complexity. The
computation complexities of the user and the cloud LBS
provider are O(m + n) and O(n>m) respectively. For a higher
security level, Kesarwani er al. [287] adopted a semi-honest
twin-cloud architecture for secure k-NN query computa-
tions. In the protocol, due to SWHE homomorphic prop-
erties [135], the squared Euclidean distances are computed
between encrypted points by one of the cloud servers, and
the permuted encrypted distance results are sent to the other
server. The second cloud, which holds the secret key decrypts
the distances, is responsible for sorting the distances. The
confidentiality of specific distance values and query results,
as well as access and search patterns, can be protected against
the clouds.

Shortest path querying is another popular graph appli-
cation for LBS services. The query Q(x,y) is intended to
calculate the length of the shortest path between the nodes
x and y. During this process, the source/destination location
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and the distance values should be kept secret. Meng et al. [74]
described three graph-structured encryption schemes which
support approximate shortest distance queries. The first con-
struction, which is computationally efficient, makes use of
a symmetric-key encryption scheme. To reduce the commu-
nication overhead, the second construction which employs
an SWHE scheme is further presented, while increasing the
computation burden. The third algorithm, modified from
the second one, achieves an optimal balance between the
complexities of computation and communication. However,
the proposed schemes only provide an estimate of the shortest
distance and deal with graphs in a static pattern. To remove
these limitations, Wang et al. [288] designed a new graph
encryption scheme, which supports the exact shortest dis-
tance computation and graph dynamic update. The construc-
tion employs a hybrid approach combining an AHE scheme
and Yao’s GCs method for satisfying the security and effi-
ciency requirements. In addition to this, fibonacci heap [292],
an advanced data structure for priority queues, is used to
assist the shortest distance computation by Dijkstra’s algo-
rithm [293]. Another auxiliary data structure, query history
(used to store the previous queried results), is also applied
to accelerate the computations. The graph updates, like the
addition or removal of the edges, can be supported in the
design.

To compute the shortest path with obstructions (such as by
a traffic jam) in a graph, Zhang et al. [289] proposed a secure
outsourcing solution using combined cryptographic methods,
including MPC, Paillier cryptosystem, and oblivious transfer.
In the proposed scheme, the LBS server and cloud server
iteratively calculate the shortest path by communicating with
each other, based on Floyd-Warshall algorithm. When some
obstructions occur in the chosen sub-path, the LBS server
uploads related regional information to the cloud server and
then collaborately recomputes the shortest path. The shortest
path is piecewise determined until the destination is reached.
The protocols protect the privacy of both the users and the
LBS server. However, the computation overhead of the sys-
tem [289] should be further reduced.

Constrained shortest distance (CSD) querying is another
variation of the shortest distance query. The query pattern
aims to find the shortest path in a graph between two
given vertices with a constraint that the total cost is no
more than a predefined threshold. Since the CSD request
over plain graph was proved to be an NP-hard problem,
the approximate CSD problem has been guiding the research
direction. Shen et al. [290] proposed a graph encryption
scheme that enables approximate CSD querying based on
a tree-based ciphertext comparison protocol. In the system,
a user first encrypts the graph and outsources the ciphertexts
to the cloud server. Specially, the user constructs a secure
searchable index for the graph and encrypts the vertices by
particular PRFs, and also encrypts the costs and distances
of the graph by order-revealing encryption (ORE) [294]
and SWHE, respectively. When receiving CSD query from
the user, the cloud matches the entries in the secure index
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homomorphically with the query token and finally returns
the querying result to the user. The construction shows good
performance and reaches the security under the chosen-query
attack security model [295].

Considering group location services, a secure solu-
tion based on distributed architecture was presented by
Wang et al. [291]. It is applicable for the scenarios of
user groups collaboratively completing certain LBS tasks
in a privacy-preserving way. Based on BGN cryptosystem,
three typical group’s services are achieved in the scheme:
group nearest neighbor query, optimal group collection point
determination, and group friend’s distance query, without
revealing any group user’s location information. Besides,
the scheme can well resist distance interaction attacks and
collusion attacks.

E. SQL QUERYING

In this subsection, we continue to discuss a practical applica-
tion for completing data commands on the encrypted database
storages, which is structured query language (SQL) querying
specifically. As the development of cloud computing and
Database-as-a-service (DBaaS) model, increasing individu-
als and enterprises tend to store their sensitive data in the
cloud database and outsource the database operations to the
server side. SQL, a kind of programming languages, is often
used to access, query, update, and manage the data in the
relational database system. Generally, when a client wants
to do some operations on the database, he will send a SQL
request to the cloud server. Receiving the request, the server
accordingly executes on the database and then returns the
query result to the client. Since both the database and the
querying results should be confidential, how to efficiently and
securely outsource the SQL queries becomes a practical issue.

Popa et al. [296] proposed a system, called CryptDB, for
executing SQL queries over encrypted data on the remote
server. The authors employed encryption strategies (like
order-preserving encryption (OPE) [297] and HE schemes) to
achieve different encryption levels based on the SQL query-
ing types. The system requires no query processing at the
client-side. However, in the framework, the same data needs
to be re-encrypted to fit for different types of operations.
Based on [296], Tu ef al. [298] designed the first system
executing analytical queries on the encrypted data in large
databases. The work allocates as much as possible work at
the server side and leaves the remaining work to the client.
In addition, several optimization techniques are adopted to
improve overall performance.

Since both the schemes of [296] and [298] employed differ-
ent encryption methods aiming at diverse operations, queries
with data interoperability (i.e., supporting piping the output
of one operation to another as the input) cannot be directly
supported. For this reason, a practical system [299] achieved
different query operations based on the same encryption
scheme, which allows a broader range of queries on the
encrypted domains. Unlike the previous systems, the system
encrypts the sensitive data using a secret sharing scheme
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TABLE 7. An overview of several surveyed schemes of Section VI-E
and VI-F.

Task Scheme | Secure techniques | Verifiability
[296] PHE+OPE+PRPs | No
SQL querying [298] PHE+OPE No
[301] FHE+OPE+PBM | No
[302] PHE No
[308] FHE No
Keyword search B }g §EE+PRPS g:s
[314] PHE Yes

(based on the ideas of [300]) and the row-identifying numbers
using AHE. Liu e al. [301] also designed a secure outsourc-
ing system for SQL queries with data interoperable, incur-
ring a lower complexity on computation and communication
than [299]. In particular, the work employs a homomorphic
OPE scheme, which allows the operations of addition, mul-
tiplication, order comparison, and equality check directly on
the ciphertexts.

Supporting outsourcing numerical range queries (>,
“<”,“=", “BETWEEN", etc.) to the cloud, some outsourc-
ing schemes like [302] and [303] were proposed. In [302],
the system uses a non-colluding twin-cloud architecture,
in which the information of the stored database and the
query is split into two parts and distributed to the respec-
tive cloud server. The numeric-related operations are exe-
cuted on the encrypted domain jointly by the servers, due to
the homomorphic properties of Paillier cryptosystem. When
implementing on the real-world datasets, the scheme shows
good performance with the advantage of parallel computa-
tions. Based on the distributed homomorphic cryptosystem
of [158], Cheng et al. [303] also employed a two-cloud archi-
tecture to support range queries under multiple encrypted
domains. In order to improve efficiency, the work adopts a
well-designed data packing technique to accelerate the linear
processing.

F. KEYWORD SEARCH

Keyword search is also a practical application on encrypted
databases frequently used in our daily life. It is a potent tool
to find one’s desired data from a vast data memory space
by specifying the searching keywords. When the searching is
implemented on the massive encrypted datasets, constructing
efficient keyword searching systems with privacy-preserving
has aroused great interest from the researchers. We give an
overview of the existing HE-based outsourcing techniques
for the function, and summarize several surveyed schemes
of SQL querying (mentioned in VI-E) and keyword search
in Table 7.

To obtain the desired data, clients often uploads one or
more encrypted keywords to the cloud server side. Accord-
ingly, the server searches on the ciphertexts stored and sends
back the relevant data to the clients. One solution which
supports outsourced keyword searching was introduced by
Hou et al. [304]. To preserve data privacy, two search-
ing schemes are constructed based on HE and commuta-
tive encryption schemes, respectively. However, the system
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only looks for the data matching a certain keyword instead
of simultaneous multiple keywords. An enhanced version
of [304] was proposed in [305], which enables the server
to match multiple keywords. The work designs both dis-
junctive and conjunctive multi-keyword search algorithms
by the use of HE technique. Scheme [306] achieved
conjunctive-keyword searches in a privacy-preserving way,
supporting valid search authorization for a limited time
period. The system can be resistant to chosen-keyword
chosen-time attack and off-line keyword guessing attack.
Since most schemes only support exact or fuzzy search,
Yang et al. [307] described a more practical secure search
solution from the keyword semantic perspective. Depend-
ing on the semantic information, the system returns relevant
results with semantically related keywords to the users.

Yu et al. [308] proposed a two-round top-k multi-keyword
retrieval scheme, which adopts a vector space model (VSM)
to represent the file, and a modified FHE scheme [309]
to encrypt the index/trapdoor. When receiving the multi-
keyword query, the server calculates the file relevance scores
(depending on the rules of term frequency-inverse document
frequency (TF-IDF) [310]) and returns the encrypted scores
to the client. Then, the client decrypts the scores and exe-
cutes a top-k sorting algorithm locally. Finally, the client
sends the k highest-scoring files’ identifiers to the server and
accesses their corresponding files. Nevertheless, the system
is inefficient for practical applications on mass encrypted
data on account of the efficiency limitations of FHE. Simi-
larly, Strizhov and Ray [311] also achieved a multi-keyword
search system with the returning results sorting by the scores.
The proposed scheme reaches an optimal sublinear search
time and is secure against adaptive chosen-keyword attacks
(CKAs). Zhang et al. [312] designed a secure ranked keyword
search scheme with verifiability. Once the server misbehaves,
it will be detected with a high possibility. With the Paillier
cryptosystem with threshold decryption (PCTD) in [157],
Yang et al. [11], [313], [314] also proposed secure top-k rank
systems for multi-keyword search. In [313], wildcards are
allowed in the queried keywords. Besides, the keywords can
be joined by the logical operator AND or OR. By using a
standard encoding technique (i.e., Unicode [315]), the system
of [11] is capable of searching on the encrypted data in
arbitrary languages. Moreover, the clients can set preference
scores for queried keywords in order to get more satisfying
results. For more expressive queries, [314] supports different
querying patterns, such as single/conjunctive keyword query
and mixed boolean query. In the schemes of [11], [313],
[314], searching on the data from multiple data owners only
requires one trapdoor. In addition, flexible search authoriza-
tion and revocation are also realized in the works.

In recent years, plenty of the proposed keyword search
schemes employ VSM method to support file relevance
computations, while a considerable computation complexity
will be introduced as the data dimension increasing. For this
reason, Yao et al. [316] proposed a secure index scheme for
ranked multiple keywords search based on counting bloom
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TABLE 8. Efficiency and security comparison of schemes for outsourcing fundamental functions.

Task Scheme | Threat model Sccur'e Ve.r l.ﬁ_ Computation complexity Commu91cat10n Interaction
techniques ability complexity
(48] semi-honest PHE+PBM No O(klnlnk) O(k) No
malicious PHE+PBM Yes O(kInlnk) O(k) Verf
Set intersection [165] malicious PHE+SS Yes O(k?logk + klog?k) | O(klog?k) Comp, Verf
[167] semi-honest PHE+PRFs No O(k) O(k) No
[169] semi-honest PHE+SS+OT No O\ +k) O(N) Comp
Set union [170] semi-honest PHE No O(kloglog k) O(k) No
[171] semi-honest PHE+PBM No O(k) O(k) No
Set intersection or | [171] semi-honest PHE+PBM No O(k) O(k) No
union cardinality [172] semi-honest FHE No O(k) O(k) No
[173] semi-honest PHE Yes O(m3) O(m?) Comp
Matrix [174] malicious PHE+SS+PBM | Yes O(m?) O(m?) No
multiplication [175] malicious PHE/SWHE Yes O(m?) O(m?) No
[179] semi-honest SWHE+PBM No O(mimams/l) O(mims/r) No
Matrix eigenvalues | [182] malicious PHE+PBM Yes O(pm?) O(m?) Comp
and eigenvectors [183] semi-honest PHE+PBM No O(m?/q) O(m) Comp

filter (CBF) with a lower computation overhead. Moreover,
the major ranking computations are executed by the server,
thus further reducing the workloads on the client side. Per-
vez et al. [317] proposed an oblivious similarity based search
(OS2) scheme for the encrypted data, achieving secure ranked
keyword search by utilizing encrypted bloom filter and HE
algorithms.

VII. SECURITY AND PERFORMANCE COMPARISON

We compare the security level and efficiency performance of
several existing outsourcing schemes in Table 8, which are
analyzed below.

A. THREAT MODEL

For secure outsourced schemes, the threat models are gen-
erally classified as ‘“‘honest-but-curious” (or say ‘‘semi-
honest’’) model and “malicious” model. The security level
of the “semi-honest” model is inferior to the “malicious”
model, where the server in the latter model may return an
incorrect result to the client. Most of the existing works
are designed based on the semi-honest model, which are
unable to defend malicious server adversaries. In Table 8§,
the schemes [48], [165], [174], [175], and [182] are secure
in the malicious model, while the other schemes can only
be secure in the semi-honest model. Take the two schemes
in [48] as examples, which are respectively secure in the
semi-honest model and malicious model. In the semi-honest
setting, the client represents the private set as a polynomial
and sends the polynomial’s coefficients (encrypted by an HE
scheme) to the cloud server. The server (which is assumed
to hold the cryptosystem’s public key) cannot recover the
plaintexts of the polynomial’s coefficients. Then, the server
performs necessary computations directly on the ciphertexts
using the homomorphic properties and returns the compu-
tation result to the client. In the scheme constructed for the
malicious model, additional parameters are set in the protocol
to participate in the verifying procedures. The client accepts
the returned result only if it passes the verification. As the
elements of the private sets are obscured in both the protocols,
data privacy of the client and the server is preserved.
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B. VERIFIABILITY

As mentioned before, the verifiability of computational
results is an important security guarantee for many out-
sourced schemes (e.g., [173], [312], and [318]), which checks
the correctness of remote computations. In scheme [173],
a verification mechanism for matrix multiplication is
designed by comparing the values between A(Bv) and Cv at
the client (the column vector v is randomly generated by the
client). The input matrices are A and B, and the matrix C is the
result of matrix multiplication returned by the server. If the
equation A(Bv) = Cv holds, the computational result can be
proved to be correct. The verification involves products of a
(n x n)-dimension matrix and a (n x 1)-dimension column
vector, leading to O(n?) workload at the client. In most of
outsourcing schemes [165], [173]-[175], [182], [191], [225],
[314], the verification algorithms are elaborately designed to
lower computation and communication complexities.

C. COMPUTATION AND COMMUNICATION COMPLEXITY

Another aspect for evaluating outsourcing computation
schemes is efficiency. A well-constructed scheme is not sup-
posed to disturb users nor add excessive burden to servers.
To measure the efficiency of related works [167], [170],
[171], [179], [182], [183], we consider the overhead of the
involved operations (including the time and resources con-
sumed for data encryption/decryption, data processing, data
transmission and result verification), which are generalized
as computation and communication complexities. Take the
scheme [170] and [171] as examples to analyze the com-
plexities of their private set union protocols. In the protocols,
the set size of both client and server is assumed to be n. In the
set-union protocol of [171], the client performs n encryptions
and 2n decryptions, and the server performs O(nloglogn)
homomorphic operations. The amounts of transmitted cipher-
texts are n and 2n for the client and the server, respectively.
Therefore, the protocol requires O(nloglogn) computation
and O(n) communication. The protocol of [171] adopts bloom
filters (instead of the polynomials in [170]) to represent pri-
vate sets. On the one hand, the client computes B encryptions
(B is the number of bits in a bloom filter, which is reckoned

VOLUME 7, 2019



Y. Yang et al.: Comprehensive Survey on Secure Outsourced Computation and Its Applications

IEEE Access

as n in complexity analysis), 2n decryptions, and n element
inverses, with the total computation complexity as O(n). And
the server performs O(n(k + 1)) homomorphic operations,
where k (deemed as a constant) is the number of hash func-
tions. On the other hand, in the protocol, the client sends B
ciphertexts to the server, and the server sends 2n ciphertexts
back to the client. Hence, the protocol’s complexities of both
computation and communication are linear with respect to the
set size of n. Apparently, the set-union protocol of [171] is
more efficient than the one in [170].

D. INTERACTION

In addition to the computation and communication complex-
ities, interaction also influences the efficiency performance
of related schemes, in terms of transmission costs, numbers
of interactions, etc. The interactions generally occur between
the client and the server (or between the servers). Many
HE-based outsourcing schemes [152], [167], [171], [208],
[245], [263], [291] involve one single interaction between
the client and the server, which means the client only needs
to send his encrypted computational request to the server
and waits for the server to return the computational result.
The computation processes are entirely performed by the
server, thereby minimizing the client’s burden. However,
some works [165], [169], [173], [182], [183], [219] require
additional interactions between the parties of the client and
server to complete outsourced tasks or execute result veri-
fication. In [182], the algorithm iterations are carried out by
the interactions between the client and the server. During each
interaction, the server returns the current computational result
(in an encrypted form) to the client. Receiving the result,
the client decrypts the ciphertexts using his secret key and
computes on the plaintexts to update the result. After that,
the updated result (also in the encrypted form) is sent to the
server for the next iterative round. The interactions continue
until the result is converged. To verify the correctness of
the result from outsourced computation, the client and the
server of [165] sacrifice the efficiency to implement the nec-
essary interactions. In the scenarios of multiple cloud servers
(typically two) collaboratively completing the outsourced
tasks, the servers’ interactions (e.g., exchanging necessary
encrypted data) are also essential, like the schemes in [201]
and [239].

Compared with the other techniques (mentioned in
Section III), homomorphic encryption is always used for
privacy-preserving computations with a higher security
requirement. For a fixed secret key, if a plaintext is
always encrypted into the same ciphertext, we say the
corresponding encryption scheme is deterministic. If an
encryption scheme produces different ciphertexts for the
same plaintext and secret key, the scheme is called probabilis-
tic cryptosystem. In general, the probabilistic HE schemes
enjoy a stronger security level than deterministic ones. For
example, RSA [125] is not secure against chosen plain-
text attacks (CPA) as its encryption algorithm is determin-
istic. In terms of different HE-based algorithms, various
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security levels are realized. For instance, the security of
Goldwasser-Micali (GM) cryptosystem [118] relies on the
quadratic residuosity problem, El-Gamal encryption algo-
rithm [114] based on the hardness of the Diffie-Hellman
problem (DHP), and Brakerski and Vaikuntanathan (BV)
scheme [177] based on the hardness of ring learning with
error problem (ring-LWE).

For most HE-based outsourcing schemes, relatively lower
efficiency is the main shortcoming. Nevertheless, there are
numerous PHE schemes which can be well used in practi-
cal applications due to its acceptable overhead (e.g., some
performing the encryption/decryption operations only in mil-
liseconds [17]). Besides, some related works based on FHE
are also efficient in use. While for most FHE-based outsourc-
ing schemes, the overhead for storage and computation is
still costly. For example, large-size keys and ciphertexts are
generated during the process of FHE algorithms, thus leading
to longer response time to user’s requests [18]. Although
some HE-based schemes (especially FHE) currently suffer
from poor performance, as the evolvement of modern accel-
erating techniques and the progress of designed algorithms,
the efficiency performance will be continuously improved to
meet users’ needs.

VIIl. FUTURE RESEARCH DIRECTIONS

Among the existing secure outsourcing works, there are still
some areas for improvement and exploration to fit actual
needs. We discuss several open issues and challenges as pos-
itive directions for further outsourcing computation designs
(especially HE-based ones):

Computation without Central Trusted Authority. For
HE-based outsourcing schemes, trusted authority (TA) is nec-
essary for the system to generate and distribute keys for all
parties in the system. In the real environment, it may be hard
for all the users to trust the central TA. Moreover, if the TA is
compromised, all parties’ data will fall into danger.

Secure Complex Cure Processing Efficiently. Most of the
secure data processing is to handle some linear functions
or simple comparison functions. In the real scenario, a lot
of applications rely on complex non-linear functions, such
as Tanh function used for neural network [319] or Sigmoid
function for logistic regression [320]. How to process these
complex cures securely without occupying too many compu-
tational resources is still an important question.

New Encrypt-Data format Balancing Secure and High-
Precision Computation. In order to increase the precision of
outsourced computations, some data formats (such as rational
number or floating-point number format) have already been
used in the schemes. However, the existing schemes either
have a relatively low-security level (like the MPC-based
scheme of floating-point number format [321]) or occupy
too many computation and communication resources (like
the HE-based schemes of outsourced rational number [10]
and floating-point number format [152]). Thus, achieving a
secure and efficient data format has become a significant
issue to be resolved.
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Solve Secure Computation Overflow. As all the data is
encrypted during the processing, it is impossible for any
party to judge whether the data is overflow/underflow in
the midway. Without any safeguard procedures, the possible
overflow/underflow problems will lead to an unreasonable
or wrong result, which is a disaster to the system. Since
few existing works have taken this factor into considera-
tion, efficient strategies for testing and solving the over-
flow/underflow problem are to be broadly implemented in the
follow-up works.

Support Large Scale of Multiple Users. Although previous
techniques [55], [56], and [158] have considered secure com-
putations over two different parties, the system complexity
significantly increases when large-scale of users are involved.
Therefore, more secure techniques should be designed for
answering massive users efficiently.

Efficiency-Enhancement with Software or Hardware Sup-
port. Since the data is always stored individually (i.e., each
ciphertext only stores one plaintext) and the computations
are usually executed individually. Some new secure SIMD
techniques can be designed to perform the same secure oper-
ation on multiple encrypted data simultaneously. In addition,
many existing secure computation implements are focused
on programming in the CPU-based testbed, and some secure
computations even do not support multiple threading pro-
grams. To further save the running time, researchers can also
use GPU-based programming and environment to accelerate
secure computation.

IX. CONCLUSION

In this survey, we provide a comprehensive overview of
existing works for secure outsourcing computations based on
homomorphic encryption technique for the backgrounds of
fundamental functions (e.g., scalar operations, set operation,
and matrix operations) and application-specific tasks (e.g.,
machine learning, image processing, and biometric computa-
tion). Two main factors are considered in the schemes, which
are the security issues (including data security, privacy, and
correctness) and the efficiency performance. In addition to
these, we give a brief introduction to the secure outsourcing
computation and four other standard secure techniques (i.e.,
secure multi-party computation, pseudorandom functions,
software guard extensions, and perturbation approaches).
Meanwhile, we explain the theories and evolutions of homo-
morphic encryption technique. To further provide overall
understandings of existing HE-based outsourcing solutions,
we also analyze and compare the security levels and effi-
ciency performance of these works. Finally, we discuss sev-
eral open research directions for further research.
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