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ABSTRACT Electroencephalogram (EEG) is a common tool for medical diagnosis, cognitive research, and
managing neurological disorders. However, EEG is usually contaminated with various artifacts, making it
difficult to interpret EEG data. In this study, a recursive least square (RLS) notch filter was developed to
effectively suppress electrocardiogram (ECG) artifacts from EEG recordings. ECG artifacts were estimated
and modeled using the instantaneous frequency of the cardiac cycle. Then it was adaptively estimated
using a RLS filter and directly subtracted from contaminated EEG data. Based on the validation mea-
sures of improvement of normalized power spectrum (INPS), mean square error (MSE) and information
quantity (IQ), the performance of ECG artifacts suppression was compared among the proposed RLS
approach, independent component analysis (ICA) and blind deconvolution method under information
maximization (Infomax) on simulated and animal experimental data. Simulation data demonstrated that
INPS of RLSmethod (19.75(18.37,20.95) dB) was significantly higher than that of ICA (4.35(3.35,5.41) dB)
and Infomax (5.76(4.60,6.88) dB). Meanwhile, MSE of RLS method (0.20(0.08,0.53) µV2) was con-
siderably lower than that of ICA (5.59(2.35,19.79) µV2) and Infomax (3.21(1.01,10.69) µV2). Animal
experimental data showed that INPS was 1.76(0.42,9.40) dB for RLS method, which was dramatically
higher than that of ICA (0.02(0.00,0.14) dB) and Infomax (0.57(0.08,2.45) dB). The calculated IQ for
RLS method (0.331(0.021,0.584)) was relatively lower than that of raw EEG (0.350(0.070,0.586)), ICA
(0.350(0.069,0.581)) and Infomax (0.341(0.050,0.585)). The RLS notch filter can effectively eliminate ECG
artifacts from EEG and preserve the majority of EEG information with little loss.

INDEX TERMS ECG artifacts, EEG, notch filter, recursive least square.

I. INTRODUCTION
Electroencephalogram (EEG) is an electrophysiological
monitoring tool to record brain activity with the charac-
teristics of convenient acquisition, noninvasive access, and
high temporal resolution [1]. Quantitative EEG is a common
method for medical diagnosis, cognitive research, and man-
aging neurological disorders. In practical applications, EEG
can be very easily contaminated by various artifacts due to
its small amplitude and randomness. Interfering signals from
technical or physiological sources firstly make the analysis
and interpretation of EEG signals difficult, then corrupt the
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quantitative EEG results, and eventually affect the diagnosis
of cortical activity [2].

Technical interference often contains bad contact of elec-
trode, power induction, or electromagnetic interference,
which can be readily solved during recording. Physiologi-
cal interference is often caused by ocular movements, eye
blinks, muscle artifacts, or cardiac electrical fields from the
heart beat [3]. Electrocardiogram (ECG) artifacts, even below
the visible level, have been shown to significantly degrade
the quality of quantitative EEG measures [4], [5]. Further-
more, cardiac interference recorded by EEG electrodes often
presents spiky, quasi-periodic signals, which can seriously
affect EEG basic rhythm waves (0-30Hz) [6]. Hence, it is a
huge challenge to analyze and interpret brain activity under
ECG artifacts in practices.
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To remove ECG artifacts, numerous methods have been
developed. Traditional filters work well to eliminate elec-
trical line noise and other high-frequency artifacts, but they
can result in the loss of EEG components because ECG
artifacts have a spectral overlap with underlying EEG sig-
nals [7], [8]. For the cardiac artifact correction methods in
the time domain, such as Wiener filter and adaptive filter,
the ECG artifacts may be overestimated and some useful
EEG information may be lost after rejection because there
is a cross-interference between ECG and EEG and these
two kinds of signals can be influenced by each other [9].
Independent component analysis (ICA)was also used to elim-
inate the ECG artifacts from EEG waveform by researchers
[2], [8], [10]. Devuyst et al. proposed a modified blind
deconvolution approach based on information maximization
(Infomax) theory in cancelling cardiac artifacts from single-
channel EEG, but its filter length and filter coefficient are
required to be estimated for each segment [11]. However,
some limitations still need to be improved for above methods.
Firstly, those methods were found to be inefficient and the
artifacts were still visible after removing ECG interference
since the real cardiac interference exhibit remarkably differ-
ent waveforms compared to ECG, which may be difficult for
deconvolution or adaptive filtering methods [12]. Secondly,
many EEG channels were required for thosemethods to better
remove cardiac interference and their performance may not
work very well for single EEG channel situation. Lastly, some
methods suggest that EEG signal should be split into various
short segments, and for each segment, specific parameters,
such as the filter length and weight coefficients, need to be
determined repeatedly before removing artifacts, which is
very time consuming and tedious [11].

In this paper, a recursive least square (RLS) algorithm,
which is derived from a modification of the notch filter based
on the least mean squares (LMS) method, was proposed. The
RLS algorithm can effectively suppress cardiac interference
only using a single-channel EEG and ECG, and does not need
to estimate any parameters. In order to verify its effectiveness
in terms of the performance of ECG artifacts suppression
and preservation of underlying EEG rhythms, including the
improvement of normalized power spectrum (INPS), mean
square error (MSE) and information quantity (IQ), other two
established methods, ICA and Infomax methods, were imple-
mented and compared to the new algorithm on simulated and
animal experimental data.

II. MATERIALS AND METHODS
As a classic adaptive filter, LMS algorithm has been widely
employed to remove various artifacts including ocular move-
ments, eye blinks, muscle artifacts, from EEG [13]–[15].
Figure 1 shows an example of ECG and EEG simultaneously
recorded on rat 3 min after induction of asphyxial cardiac
arrest. In this phase, no underlying EEG rhythm should be
observed since EEG became isoelectric after 1 min of car-
diac arrest [16], [17]. However, the recorded EEG wave-
form did not show as a flat trace and clearly ECG artifacts

FIGURE 1. An illustration of ECG and EEG corrupted by ECG artifacts
simultaneously recorded on a rat during asphyxial cardiac arrest. Left
panels are time domain and right panels are frequency domain. The
power spectral density (Pxx ) is calculated using the Welch method and
4-s rectangular window. Red circles in ECG recording represent R peaks.
Red square markers shown in the frequency domain represent ECG
harmonics. LMS, least mean squares.

FIGURE 2. Diagram of the RLS notch filter for ECG artifacts suppression.
sEEG(n) and sECG(n) are corrupted EEG signal and ECG signal, respectively.
The reference signals sref (n) are computed using the time-varying
frequency information extracted from ECG. An estimate of the artifacts,
ŝECG(n), is subtracted from sEEG(n) to obtain the clean EEG ŝEEG(n). The
filter coefficients w(n) are updated using the RLS method.

were observed. In the time domain, the highly correlated
consistency and synchronization between QRS complexes
and EEG spikes demonstrated that artifacts in EEGwaveform
were generated by cardiac activity. After denoising with the
LMS, although the interference was greatly suppressed, the
residual artifact appeared in the filtered EEG waveform may
still lead to improper interpretation. Further analysis in the
frequency domain revealed that artifacts are mainly com-
posed of harmonics with the fundamental frequency of beat to
beat. Based on above observation and previous reports [18],
we modeled ECG artifacts as a harmonic signal and modified
the LMS algorithm using the frequency of the instantaneous
beat to beat rate as the fundamental frequency.

A. RLS NOTCH FILTER
The structure of the RLS notch filter was depicted in Figure 2.
The implementation of the method consists of the following
five steps.
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Step one: time-varying frequency information of cardiac
artifacts was extracted from the ECG signal. It is hypothe-
sized that the ECG artifacts can be modeled as an almost peri-
odic signal, with the fundamental frequency of the adjacent
R peaks in ECG signal. The instantaneous frequency fi and
phase φ(n) of the ECG artifacts can be obtained by using a
given series of successive R peaks ni (i = 1, 2, · · ·m) in ECG
waveform and a sampling rate Fs [19],

fi =



Fs
n2−n1

, n≤n1,

Fs
ni+1−ni

, ni < n≤ni+1, i=1, 2, · · ·m−1,

Fs
nm−nm−1

, n>nm,

(1)

and

φ(n)=



2π (n− n1)
n2−n1

, n≤n1,

2π (n− ni)
ni+1−ni

, ni < n≤ni+1, i=1, 2, · · ·m−1,

2π (n− nm)
nm−nm−1

, n>nm,

(2)

where m represents the total number of R peaks. To supple-
ment the frequency information before the first and after the
last R peaks, two smooth transition periods were defined.
The first transition period was defined as the duration from
the beginning of recording to the first R peak and its fre-
quency information was identical to the first cardiac cycle
(refer to the first formula in (1) and (2)). The second transition
period was defined as the duration from the last R peak to
the ending of recording and its frequency information was
identical to the last cardiac cycle (refer to the last formula
in (1) and (2)). The above procedure estimated the time-
varying frequency information of the ECG artifacts using the
marker events method [19] and the R peaks in ECG was
taken as markers. The interval between consecutive marks
corresponds to one cardiac cycle. It was assumed that during
a cardiac cycle, the frequency of ECG artifacts is constant, but
that it may vary between cycles. For each segment, a reliable
QRS detection algorithm was used to locate the R peaks
in the ECG [20]. Then subsequent manual inspection and
correction were implemented to ensure accurate location of
R peaks. If inaccurate time varying frequency information
was obtained in this step, ECG artifacts would be overes-
timated or underestimated and then EEG quality could be
decreased. Thus, the acquisition of time varying frequency
information of ECG is an important and indispensable step
throughout the filtering process.

Step two: the reference signals sref (n) were generated with
the time-varying frequency information. The reference sig-
nals sref (n) forN harmonics are expressed as a column vector,

sref (n)=
[
sI (n)
sQ(n)

]
,

sI (n)= [cos (φ(n)) , cos (2φ(n)) , · · · , cos (Nφ(n))]T ,
sQ(n)= [sin (φ(n)) , sin (2φ(n)) , · · · , sin (Nφ(n))]T , (3)

where N is the number of harmonics considered in car-
diac artifacts, (.)T denotes the vector/matrix transpose, sI (n)
donates in-phase part and sQ(n) donates quadrature part,
according to that any signal can be represented by the
in-phase and quadrature decomposition of the sinusoidal
interference of known frequency [21].

Step three: the model of time-varying ECG artifacts was
constructed by using the generated reference signals. The
ECG artifacts model ŝECG was expressed as

ŝECG(n) = w(n)T sref (n)
= a(n)T sI (n)+ b(n)T sQ(n)

=

N∑
k=1

ak (n) cos (kφ(n))+ bk (n) sin (kφ(n)) ,

w(n) =
[
a(n)
b(n)

]
,

a(n) = [a1(n), a2(n), · · · , aN (n)]T ,
b(n) = [b1(n), b2(n), · · · , bN (n)]T , (4)

where the filter coefficients w(n) at time n include two parts,
in-phase coefficients a(n) and quadrature coefficients b(n).
a(n) is the coefficients for the in-phase decomposition of ref-
erence signals sI (n) and b(n) is the coefficients for the quadra-
ture decomposition of reference signals sQ(n). During the
R-R intervals, the model of ECG artifacts can be expressed
through its Fourier series representation in trigonometric
form using harmonics of time-varying in-phase coefficients
a(n) and quadrature coefficients b(n). These coefficients’
values change slowly in time and serve to track the changes
in waveform from cycle to cycle. The fundamental fre-
quency also changes between adjacent cardiac cycles (refer
to (1) and (2)).

Step four: the clean EEG was obtained by subtracting the
estimation of ECG artifacts from input EEG signal. The clean
EEG was then computed as

ŝEEG(n) = sEEG(n)− ŝECG(n), (5)

where sEEG(n) is the EEG signal corrupted by ECG artifacts.
Step five: the RLS method was employed to update the

filter coefficients w(n). The criterion is to minimize an expo-
nentially weighted cost function

J (n) =
n∑
i=0

λn−i
∣∣sEEG(i)− ŝECG(n)∣∣2

=

n∑
i=0

λn−i
∣∣sEEG(i)− w(n)sref (i)∣∣2, (6)

where λ denotes forgetting factor. The solution of the RLS
algorithm is determined as [22]

w(n) = R−1(n)r(n),

R(n) =
n∑
i=0

λn−isref (i)sref (i)T ,

r(n) =
n∑
i=0

λn−isref (i)sEEG(i) (7)
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where R(n) and r(n) represent the autocorrelation and mutual
correlation matrix respectively. To facilitate iterative update
of w(n), the RLS algorithm is formulated and implemented in
this way [23]

k(n) =
R−1(n− 1)sref (n)

λ+ sref (n)TR−1(n− 1)sref (n)
,

R−1(n) =
1
λ

[
R−1(n− 1)− k(n)sref (n)TR−1(n− 1)

]
,

w(n) = w(n− 1)+ k(n)ŝEEG(n), (8)

where R−1(n) is the inverse of R(n). The time-varying coef-
ficients w(n) of the artifacts model are usually estimated
through an adaptive filter that tracks the evolution of the
spectral composition of the ECG artifacts, which are often
updated using the LMS method [21], [24], [25]. The RLS
method is employed to update w(n) with a view of its faster
convergence rates and less sensitivity to variations compared
to the LMS method [26]. Note that N = 25 and R(0) = δI ,
where δ is a small initial constant and set δ = 0.0001 in this
study, and I is an identity matrix.

B. SIMULATED DATA
To obtain optimal parameters’ value and validate the perfor-
mance of RLS notch filter with known clean EEG signal
and artifact, a simulated data was generated. The simple
periodic signal s(t) was used to simulate burst suppression
rhythm, which denotes the clean EEG signal. The ECG
extracts were acquired from 9 healthy Sprague–Dawley rats
(323.7±34.4 g). A 10-oreder filter was used to convert ECG
signals to cardiac interference and the coefficients of its
impulse response were randomly generated at each creation
of an artificial signal e(t) [27].
As a result, the artifact-contaminated EEG signals can be

generated by clean EEG signal s(t) with the ECG interference
signal e(t) in the following manner:

x(t) = s(t)+ c · e(t),

s(t) = sin (2π t + 0.1π)+ sin (6π t + 0.2π)

+ sin (10π t + 0.3π)+ sin (15π t + 0.4π)

+ sin (20π t + 0.5π) , (9)

where x(t) is the synthetic EEG signal corrupted by ECG
artifacts, and c is a scale coefficient. By changing the value
of c, EEG and ECG artifacts were mixed together in the case
of different signal to noise ratio (SNR) levels with −15dB,
−10dB, −5dB, and 0dB. For each SNR, 135 4-s artifact-
contaminated EEG segments (15 segments in each animal)
were generated. Sampling rate was 1000 Hz.

Performance of RLS notch filter was investigated for
increasing the forgetting factor λ (λ = 0, 0.05, · · · , 1).
Furthermore, we also compared the performance of
other two different single-channel methods, ICA approach
(FastICA) [8] and blind source separation approach based
on information maximization (Infomax) [11], using their
optimal parameters.

C. ANIMAL EXPERIMENTAL DATA
In order to further verify the performance of the proposed
method in experimental data with unknown clean signal and
artifact, EEG and ECG signals were recorded from rats resus-
citated after 7-min untreated asphyxial cardiac arrest and car-
diopulmonary resuscitation [16]. Specifically, EEG data were
recorded with a differential preamplifier (PRE-ISO.EEG100,
Xiangyun Computing Technology, Beijing, China) from two
bipolar channels (C3–P3, C4–P4 according to the 10–20 sys-
tem). Four subcutaneous needle electrodes were placed at
central and parietal skull positions on each side, in addition to
one combined electrode functioning as reference and ground.
The amplifier gain of each channel was set at 10,000, and
the cutoff frequencies were set at 0.3 and 70 Hz for the
high-pass and low-pass filters, respectively. EEG and ECG
were synchronously recorded through a data acquisition sys-
tem supported by Windaq hardware/software (Dataq Instru-
ments Inc., Akron, OH, USA) at a sample rate of 1000 Hz
respectively.

The EEG rhythms are usually annotated and classified as
one of the three following categories: isoelectric/suppression,
burst suppression, and continuous background EEG activity
[17], [28]. Isoelectric/suppression was defined as there is not
any visible EEG activity (maximum voltage < 5 µV) during
a 30-s recording episode. Burst suppression was defined by
the presence of clear increases in amplitude (burst, amplitude
>10 µV) followed by interburst intervals of at least 0.5 s
without EEG activity or low amplitude activity (suppression,
<10 µV).

340 isoelectric, 374 burst suppression and 255 continuous
background EEG 4-s segments contaminated by ECG arti-
facts were cut off from rats. Since identical waveforms was
observed between the two EEG channels during the animal
experiment, the C3-P3 channel of each segment with obvious
ECG artifacts was employed to perform ECG artifacts rejec-
tion by using the proposed method.

D. QUANTITATIVE VALIDATION MEASURES
In order to evaluate the performance of the ECG artifacts
removal methods, three indicators, INPS [8], MSE, and
IQ [29] were used in our study. INPS was employed to
evaluate the results of ECG artifacts suppression on simulated
and real data. Because both background EEG activity and
ECG artifacts were unknown in EEG signals from animal
experimental data, MSE cannot be taken as the quantitative
validation criteria of artifact rejection. Thus, MSE was used
for evaluating the preservation of EEG information on simu-
lated and IQ was taken as the quantitative validation criteria
for EEG information preservation on animal data.

EEG power improvement in frequency windows of 0.5 Hz
centered at the peaks of the ECG harmonics was used as an
estimator, INPS [8]. The normalized power spectral density
of 4-s recordings was first calculated, after passing data
through rectangular window, using theWelch method.Within
each window the power was calculated before and after ECG

VOLUME 7, 2019 158875



C. Dai et al.: Removal of ECG Artifacts From EEG Using an Effective RLS Notch Filter

artifacts removal. INPS is expressed as a ratio of sums of the
windowed power of EEG by the formula:

INPS = 10log10

∑
fI
PsEEG (fI )∑

fI
PŝEEG (fI )

,

fI ∈ {f ||f − kf0| < 0.5Hz , k = 1, 2, · · · ,N } , (10)

where N is the number of harmonics, and f0 is the mean fun-
damental frequency of ECG signal in the time window. INPS
can indicate whether ECG-related interference, including its
harmonics, was effectively suppressed. The higher the value
of INPS is, the higher performance of ECG artifacts removal
methods is. Thus, the INPS can be employed to evaluate the
results of ECG artifacts suppression.

The value of MSE indicates the degree of similarity
between two signals. TheMSE of signals can be calculated by

MSE =
1
n

n∑
i=1

(xi − yi)2, (11)

where xi represents clean EEG signal, yi denotes EEG signal
after removing ECG artifacts, and n is the total time points
of samples. The smaller the value of MSE is, the higher the
similarity degree between two signals is. Thus, the MSE can
be used tomeasure the degree of EEG information reservation
after removing ECG artifacts.

An established quantitative EEG assessment method
named IQ was used to analyze EEG signal before and
after denoising and the detailed calculation procedure was
described in [29]. Higher IQ corresponds to greater random-
ness measured by the entropy of the EEG rhythm. The lower
the value of IQ is, the lower components of ECG artifacts in
remained signal are. Thus, the IQ can be used to measure the
degree of EEG information reservation after removing ECG
artifacts. Usually, the value of isoelectric EEG ranges from
0 to 0.1, the value of burst suppression EEG ranges from 0.1 to
0.6, and the value of continuous background EEG is often
larger than 0.6 [16], [29].

E. STATISTICAL ANALYSIS
Statistical analysis was performed with SPSS 19.0 software
(SPSS, Chicago, IL, USA). Since data of INPS, MSE and IQ
do not obey normal distribution, their median with the corre-
sponding first and third quartiles (Q1-Q3) was reported and
Friedman’s analysis of variance (ANOVA) with its post hoc
test was used to analyze the difference among all methods.
P<0.05 was considered statistically significant.

III. RESULTS
A. REMOVING ECG ARTIFACTS FROM
SIMULATED EEG SIGNALS
In the simulation study, relationships between INPS/MSE and
forgetting factor after removing ECG artifacts using the RLS
method at a SNR of −15 dB, −10 dB, −5 dB, 0 dB were
firstly investigated. As shown in Figure 3, INPS has the low-
est value and MSE has the highest value when the forgetting

FIGURE 3. An illustration of the tendency of INPS and MSE under
different forgetting factor λ and SNRs for RLS method. (A) INPS (B) MSE.
INPS, improvement of normalized power spectrum. MSE, mean square
error. SNR, signal to noise ratio. RLS, recursive least squares.

factor is equal to 0. But when forgetting factor is greater than
0.05, increasing its value will not influence INPS and MSE
at each SNR level. According to the above simulation results,
because the performance of RLS notch filter did not largely
depend on the change of forgetting factor, a value of 0.5 was
chose for the forgetting factor in the following calculation.

FIGURE 4. An example of simulated EEG signal before and after removing
ECG artifacts in time and frequency domain. (A) ECG recorded from rat
(B) simulated EEG (C) corrupted EEG (D) FastICA (E) Infomax (F) RLS. The
power spectral density (Pxx ) is calculated using the Welch method and
4-s rectangular window. Red square markers shown in the frequency
domain represent ECG harmonics. ICA, independent component analysis.
Infomax, information maximization. RLS, recursive least squares.

An example for artifact-contaminated simulated EEG sig-
nal before and after removing ECG artifacts in the time
and frequency domain is depicted in Figure 4. Strong ECG
artifacts were introduced and QRS-like spikes were observed
in the corrupted EEG signal. After denoising with RLS algo-
rithm, these spikes were effectively suppressed (Figure 4F).
However, FastICA and Infomax failed to remove the cardiac
artifacts (Figure 4D, 4E).

Figure 5 shows the comparison of INPS and MSE val-
ues among three methods at different SNR levels in sim-
ulated data after removing ECG artifacts. Taking all SNR
levels in to consideration, INPS for the RLS method
(19.75(18.37, 20.95) dB) was significantly higher than that of
FastICA (4.35(3.35,5.41) dB) and Infomax (5.76(4.60,6.88)
dB) (P<0.05). MSE for the RLS method (0.20(0.08,0.53)
µV2) was remarkably lower than that of FastICA (5.59(2.35,
19.79) µV2) and Infomax (3.21(1.01, 10.69) µV2) (P<0.05).
At each SNR level, INPS of RLS method was notably higher
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FIGURE 5. The comparison of INPS and MSE among three methods at
different SNRs in simulated data (A) INPS (B) MSE. INPS, improvement of
normalized power spectrum. MSE, mean square error. SNR, signal to
noise ratio. ICA, independent component analysis. Infomax, information
maximization. RLS, recursive least squares. ∗ P<0.05 compared with
FastICA; †P<0.05 compared with Infomax.

than that of other two methods (P<0.05) and MSE of RLS
method was dramatically lower than that of other two meth-
ods (P<0.05). In addition, INPS of Infomax method was
notoriously higher than that of FastICA approach (P<0.05)
and MSE of Infomax method was relatively lower than that
of FastICA approach (P<0.05).

FIGURE 6. An example of isoelectric EEG from animal experimental data
before and after removing ECG artifacts in time and frequency domain.
(A) ECG (B) real EEG (C) FastICA (D) Infomax (E) RLS. The power spectral
density (Pxx ) is calculated using the Welch method and 4-s rectangular
window. Red square markers shown in the frequency domain represent
ECG harmonics. ICA, independent component analysis. Infomax,
information maximization. RLS, recursive least squares.

B. REMOVING ECG ARTIFACTS FROM ANIMAL
EXPERIMENTAL DATA
An example of isoelectric EEG from animal experimental
data before and after removing ECG artifacts in both time and
frequency domain is illustrated in Figure 6. Isoelectric EEG
was seriously influenced by cardiac interference with quasi-
periodic like artifacts (Figure 6B). After signal denoising,
FastICA and Infomax methods both failed to remove ECG
artifacts (Figure 6C, 6D). It can be observed a clearly iso-
electric EEG after rejecting ECG artifacts using RLS method
(Figure 6E).

An example of burst suppression EEG from animal exper-
imental data before and after removing ECG artifacts in
time and frequency domain is illustrated in Figure 7. After
signal denoising, FastICA and Infomax methods both failed

to remove ECG artifacts from the artifact-contaminated burst
suppression EEG signals (Figure 7C, 7D). The ECG artifacts
were removed from the artifact-contaminated EEG signals
(Figure 7E).

FIGURE 7. An example of burst suppression EEG from animal
experimental data before and after removing ECG artifacts in time and
frequency domain. (A) ECG (B) real EEG (C) FastICA (D) Infomax (E) RLS.
The power spectral density (Pxx ) is calculated using the Welch method
and 4-s rectangular window. Red square markers shown in the frequency
domain represent ECG harmonics. ICA, independent component analysis.
Infomax, information maximization. RLS, recursive least squares.

An example of continuous background EEG from animal
experimental data before and after removing ECG artifacts in
time and frequency domain is illustrated in Figure 8. After
denoising, FastICA failed to remove ECG artifacts from the
continuous background EEG signals (Figure 8C). The ECG
artifacts were removed from the artifact-contaminated EEG
signals by RLS and Infomax methods (Figure 8D, 8E).

Figure 9 (A) shows INPS in animal experimental data
after removing ECG artifacts using three methods. Taking all
EEG rhythms into consideration, INPS for the RLS method
(1.76(0.42,9.40) dB) was significantly higher than that of
FastICA (0.02(0.00,0.14) dB) and Infomax (0.57(0.08,2.45)
dB) (P<0.05). After denoising, in isoelectric EEG, INPS
for the RLS method (12.97(7.63,16.68) dB), was remarkably
higher than that of Infomax (2.70(1.02,5.03) dB) and FastICA
(0.06(0.01,0.22) dB) (P<0.05). In burst suppression EEG,
INPS for the RLS method (1.20(0.35,3.36) dB) was notably
higher than that of Infomax (0.30(0.03,1.49) dB) and FastICA
(0.00(0.00,0.07) dB) (P<0.05). In continuous background
EEG, INPS for the RLS method (0.39(0.18,0.76) dB) was
considerably higher than that of Infomax (0.08(−0.06,0.28)
dB) and FastICA (0.04(0.00,0.20) dB) (P<0.05).

Figure 9 (B) shows IQ of the EEG signal before and
after removing ECG artifacts with FastICA, Infomax and
RLS. Taking all EEG rhythms into consideration, IQ for
the RLS method (0.331(0.021,0.584)) was significantly
lower than that of raw EEG (0.350(0.070,0.586)), Fas-
tICA (0.350(0.069,0.581)) and Infomax (0.341(0.050,0.585))
(P<0.05). The IQ of rawEEG signals was 0.049(0.011,0.094)
in isoelectric EEG, 0.403(0.273,0.515) in burst suppression
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FIGURE 8. An example of continuous background EEG from animal
experimental data before and after removing ECG artifacts in time and
frequency domain. (A) ECG (B) real EEG (C) FastICA (D) Infomax (E) RLS.
The power spectral density (Pxx ) is calculated using the Welch method
and 4-s rectangular window. Red square markers shown in the frequency
domain represent ECG harmonics. ICA, independent component analysis.
Infomax, information maximization. RLS, recursive least squares.

FIGURE 9. INPS and IQ of FastICA, Infomax and RLS methods in animal
experimental data after ECG artifacts suppression. (A) INPS (B) IQ. INPS,
improvement of normalized power spectrum. IQ, information quantity.
ICA, independent component analysis. Infomax, information
maximization. RLS, recursive least squares. #: P<0.05 compared with raw
EEG; ∗: P<0.05 compared with FastICA; †: P<0.05 compared with Infomax
method.

EEG, 0.747(0.604,0.848) in continuous background EEG.
After removing ECG artifacts, IQ values were consider-
ably reduced when different methods were applied. After
denoising, in isoelectric EEG, IQ for the RLS method
(0.006(0.000,0.027)) was notably lower than that of Info-
max (0.031(0.006,0.064)) and FastICA (0.048(0.011,0.092))
(P<0.05). In burst suppression EEG, IQ for the RLS method
(0.384(0.263,0.493)) was dramatically lower than that of
Infomax (0.389(0.266,0.500)) and FastICA (0.402(0.272,
0.513)) (P<0.05). In continuous background EEG IQ for the
RLS method (0.746(0.601,0.843)) relatively higher than that
of FastICA (0.737(0.597,0.839)) (P<0.05) and was lower
than that of Infomax (0.745(0.600,0.848)) but not reach the
significant level.

IV. DISCUSSION
This study introduces a new ECG artifacts cancellation
method based on an artifact model that needs the instanta-
neous frequency of the cardiac cycle as additional informa-
tion, and only a single-channel EEG and ECG were used.
Using the frequency of the successive R peaks as the fun-
damental frequency, a Fourier series representation of the

ECG artifacts was proposed with time-varying coefficients to
reflect changes in waveform from R peak to R peak. A RLS
filter adaptively estimates the coefficients without any param-
eters to be determined. Simulated and animal experimental
data revealed that the RLS notch filter can not only remove
the ECG artifacts effectively, but also preserve the majority
of EEG information.

The improved performance of the RLS method may result
from the following two aspects. On the one hand, the only
information used by the RLS adaptive scheme is the time
series of R peaks. Using an ECG channel as the reference
signal, previous study introduced an adaptive filtering arti-
fact method to cancel ECG artifacts from sleep EEG [30].
Strobach et al revealed that this adaptive approach may be not
applicable when the ECG signal and the real cardiac interfer-
ence show remarkably different waveforms [12]. To further
improve the performance of adaptive filter, they developed
a two-pass adaptive filtering algorithm where an artificial
reference was first generated by ensemble averaging, to be
more related to the real interference than the ECG [12].
Nevertheless, as long as there are reference signals used for
the adaptive filter, ECG artifacts may be overestimated and
some useful EEG information may be lost after filtering since
there is a cross-interference between the reference signal and
EEG [9]. In the proposed RLS method, the artifacts model
was generated using instantaneous harmonic frequency of
each cardiac cycle and then was subtracted by corrupted
EEG signal. This process is robust for ECG artifacts rejec-
tion because only ECG harmonic-related components can
be removed and underlying EEG information was preserved
with little information loss. As a consequence, INPS of the
RLS method was improved in both simulated and animal
experimental data.

On the other hand, rapid initial convergence and narrow
bandwidth may partly contribute to the improved perfor-
mance of the RLS method. RLS scheme is an algorithm com-
monly used in adaptive filtering and it exhibits extremely fast
convergence due its second-order nature [9]. Previous study
has shown that the LMS adaptive notch filter can be used to
remove the baseline wandering in ECGs [31]. The stepsize
of LMS method not only determines how fast and how well
the algorithm converges to the optimum filter coefficients,
but also determines filter bandwidth [21]. If the stepsize is
too large, the LMS algorithm will not converge, and the
bandwidth will adaptively increase, causing the energy of
other EEG bands damaged. Otherwise, the LMS algorithm
converges slowly and the bandwidth is too narrow, making it
insufficient to cancel interference. Thus, it is hard to choose
an appropriate stepsize to get the best performance of the
LMSmethod. Consistent with previous study [32], our results
showed that the proposed RLS method has a narrow band-
width and did not damage underlying EEG rhythm with low
MSE values (Figure 3). In addition, the RLS method is not
required to determine any parameters when denoising ECG
artifacts since RLS notch filter does not largely depend on
the change of forgetting factor (Figure 3).
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ICA may not be an appropriate approach for cardiac inter-
ference cancellation when only an EEG channel and an ECG
reference channel are available. This method assumes that
the subcomponents are non-Gaussian signals, but sometimes
EEGwas presented like a Gaussian signal (Figure 8). Another
possible explanation is that ICA seems to be incapable of
separating the real cardiac interference whose waveforms
are remarkably different from ECG [11]. Moreover, directly
set ECG artifacts-related components to zero may dam-
age the underlying EEG information when using the ICA
method, especially in only single channel EEG and ECG
situation since the available information is too little [8].
Therefore, in our study, ICA method failed to eliminate ECG
interference (Figure 6, 7, 8). Furthermore, artifactual com-
ponents should be manually detected by visual inspection
when using the ICA method, which is time consuming and
subjective [6], [33]–[36].

Blind deconvolution can remove cardiac interference to
some extent, but it also introduces spike-like artifacts in the
isoelectric and burst suppression situations (Figure 5, 6) pos-
sibly because different waveforms between cardiac artifacts
and the ECG signal may sometimes decrease the performance
of the Infomax processes [11]. In addition, two parameters,
stepsize and filter length, of this method are required to
adjust, and the convergence speed of this algorithm is some-
times relatively low [37].

The proposed RLS method achieved obvious performance
enhancement in terms of INPS and IQ after cardiac interfer-
ence removal in animal experimental data. In the first place,
significantly improved INPS values were observed in all EEG
rhythms, which demonstrated that ECG artifacts were effec-
tively removed from the original EEG signals. But in contin-
uous background EEG, there was little improvement in terms
of INPS for RLS method when compared with that Infomax
method, and it may be largely due to that the energy of ECG
artifacts is extremely smaller than the energy of continuous
background EEG and so low INPS after removing artifacts
was observed. In the second place, significantly lower IQ
was observed after removing ECG artifacts, which demon-
strated that the ECG artifacts contribute to the overestimated
brain activity. IQ has been extensively used to measure the
brain activity and predict outcome after ischemic brain injury
[38], [39]. Higher IQ corresponds to greater randomnessmea-
sured by the entropy of the EEG rhythm; as such, a healthier
brain exhibits higher entropy and injured brain lower entropy.
Thus, patients with higher IQ due to ECG artifacts may
provide unreliable information for their doctors and would
make them miss the optimal treatment timing. In this study,
the proposedmethod can effectively reject ECG artifacts from
EEG signals and preserve the majority of EEG information
with little loss, which may provide credible information of
brain activity.

Our study has several limitations. Firstly, this method can
be used to remove cardiac harmonics, but it did not test on
EEG data corrupted by other artifacts. Secondly, the effect
of the number of harmonics on the performance of RLS

method was not investigated in this study. We simply set
N = 25 because the heart rate of rats is usually higher than
300 beats per minute (5 Hz) and the frequency of the 25th har-
monics is larger than 125Hz which exceeds the meaningful
bands of EEG. Lastly, the study was performed in animals.
Electrophysiological differences between human and small
animals are remarkably, especially in ECG. In the human,
the fundamental frequency of the heart rate is around 1.2 Hz
and the frequencies of its harmonics overlap with all brain
rhythms (delta, theta, alpha, beta, gamma). Thus, this method
should be more cautiously applied into clinical circumstance
due to the higher overlaps between cardiac interference and
brain activity.

V. CONCLUSION
A RLS notch filter was developed to remove ECG artifacts
from EEG and it needs only the instantaneous frequency of
the cardiac cycle as additional information. This method can
be successfully applied in suppression of the ECG interfer-
ence without distortion of background EEG activity, which
may provide a viable approach for removal of other artifacts
from EEG, like electromyography and electrooculography
artifacts.

AUTHOR CONTRIBUTION
(Jianjie Wang and Chenxi Dai are co-first authors.)

REFERENCES
[1] W. O. Tatum, A. Husain, and S. Bembadis, Handbook of EEG Interpreta-

tion. New York, NY, USA: Demos Medical, 2007.
[2] M. Waser and H. Garn, ‘‘Removing cardiac interference from the elec-

troencephalogram using a modified Pan-Tompkins algorithm and linear
regression,’’ in Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Jul. 2013, pp. 2028–2031.

[3] E. Harmon-Jones, Cognitive Dissonance Theory. London, U.K.: Aca-
demic, 2012.

[4] M. R.Nuwer, ‘‘Quantitative EEG: I. Techniques and problems of frequency
analysis and topographic mapping,’’ J. Clin. Neurophysiol., vol. 5, no. 1,
pp. 1–44, 1988.

[5] M. R. Nuwer, ‘‘Quantitative EEG: II. Frequency analysis and topo-
graphic mapping in clinical settings,’’ J. Clin. Neurophysiol., vol. 5, no. 1,
pp. 45–86, 1988.

[6] M. B. Hamaneh, N. Chitravas, K. Kaiboriboon, S. D. Lhatoo, and
K. A. Loparo, ‘‘Automated removal of EKG artifact from EEG data using
independent component analysis and continuous wavelet transformation,’’
IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1634–1641, Jun. 2014.

[7] J. Sijbers, J. Van Audekerke, M. Verhoye, A. Van der Linden, and
D. Van Dyck, ‘‘Reduction of ECG and gradient related artifacts in simul-
taneously recorded human EEG/MRI data,’’ Magn. Reson. Imag., vol. 18,
no. 7, pp. 881–886, 2000.

[8] S. Tong, A. Bezerianos, J. Paul, Y. Zhu, and N. Thakor, ‘‘Removal of ECG
interference from the EEG recordings in small animals using independent
component analysis,’’ J. Neurosci. Methods, vol. 108, no. 1, pp. 11–17,
2001.

[9] K. T. Sweeney, T. E. Ward, and S. F. McLoone, ‘‘Artifact removal in phys-
iological signals—Practices and possibilities,’’ IEEE Trans. Inf. Technol.
Biomed., vol. 16, no. 3, pp. 488–500, May 2012.

[10] J. Iriarte, E. Urrestarazu, M. Valencia, M. Alegre, A. Malanda, C. Viteri,
and J. Artieda, ‘‘Independent component analysis as a tool to eliminate
artifacts in EEG: A quantitative study,’’ J. Clin. Neurophysiol., vol. 20,
no. 4, pp. 249–257, 2003.

[11] S. Devuyst, T. Dutoit, P. Stenuit, M. Kerkhofs, and E. Stanus, ‘‘Removal of
ECG artifacts fromEEG using amodified independent component analysis
approach,’’ in Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
vol. 30, no. 1, Aug. 2008, pp. 5204–5207.

VOLUME 7, 2019 158879



C. Dai et al.: Removal of ECG Artifacts From EEG Using an Effective RLS Notch Filter

[12] P. Strobach, K. Abraham-Fuchs, and W. Harer, ‘‘Event-synchronous can-
cellation of the heart interference in biomedical signals,’’ IEEE Trans.
Biomed. Eng., vol. 41, no. 4, pp. 343–350, Apr. 1994.

[13] S. V. Narasimhan and D. N. Dutt, ‘‘Application of LMS adaptive predic-
tive filtering for muscle artifact (noise) cancellation from EEG signals,’’
Comput. Elect. Eng., vol. 22, no. 1, pp. 13–30, 1996.

[14] A. G. Correa, E. Laciar, H. D. Patiño, and M. E. Valentinuzzi, ‘‘Artifact
removal from EEG signals using adaptive filters in cascade,’’ J. Phys.,
Conf. Ser., vol. 90, no. 1, 2007, Art. no. 012081.

[15] P. S. Kumar, R. Arumuganathan, K. Sivakumar, and C. Vimal, ‘‘Removal
of artifacts from EEG signals using adaptive filter through wavelet
transform,’’ in Proc. 9th Int. Conf. Signal Process. (ICSP), Oct. 2008,
pp. 2138–2141.

[16] B. Chen, G. Chen, C. Dai, P. Wang, L. Zhang, Y. Huang, and Y. Li,
‘‘Comparison of quantitative characteristics of early post-resuscitation
EEG between asphyxial and ventricular fibrillation cardiac arrest in rats,’’
Neurocritical Care, vol. 28, no. 2, pp. 247–256, 2018.

[17] B. Chen, F.-Q. Song, L.-L. Sun, L.-Y. Lei, W.-N. Gan, M.-H. Chen, and
Y. Li, ‘‘Improved early postresuscitation EEG activity for animals treated
with hypothermia predicted 96 hr neurological outcome and survival in
a rat model of cardiac arrest,’’ BioMed Res. Int., vol. 2013, Oct. 2013,
Art. no. 312137.

[18] M. He, Y. Nian, and Y. Gong, ‘‘Novel signal processing method for vital
sign monitoring using FMCW radar,’’ Biomed. Signal Process. Control,
vol. 33, pp. 335–345, Mar. 2017.

[19] A. Stefanovska, H. Haken, P. V. E. McClintock, M. Hožič, F. Bajrović, and
S. Ribarič, ‘‘Reversible transitions between synchronization states of the
cardiorespiratory system,’’ Phys. Rev. Lett., vol. 85, no. 22, pp. 4831–4834,
2000.

[20] J. Pan and W. J. Tompkins, ‘‘A real-time QRS detection algo-
rithm,’’ IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230–236,
Mar. 1985.

[21] Y. Xiao and Y. Tadokoro, ‘‘LMS-based notch filter for the estimation of
sinusoidal signals in noise,’’ Signal Process., vol. 46, no. 2, pp. 223–231,
1995.

[22] E. Eleftheriou and D. Falconer, ‘‘Tracking properties and steady-
state performance of RLS adaptive filter algorithms,’’ IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-34, no. 5, pp. 1097–1110,
Oct. 1986.

[23] S. Rogers, ‘‘Adaptive filter theory,’’ Control Eng. Pract., vol. 4, no. 11,
pp. 1629–1630, 1996.

[24] J. Glover, ‘‘Adaptive noise canceling applied to sinusoidal interferences,’’
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-25, no. 6,
pp. 484–491, Dec. 1977.

[25] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams,
R. H. Hearn, J. R. Zeidler, Jr. E. Dong, and R. C. Goodlin, ‘‘Adaptive
noise cancelling: Principles and applications,’’ Proc. IEEE, vol. 63, no. 12,
pp. 1692–1716, Dec. 1975.

[26] V. Van Vaerenberg, M. Lazaro-Gredilla, and I. Santamaria, ‘‘Kernel recur-
sive least-squares tracker for time-varying regression,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 8, pp. 1313–1326, Aug. 2012.

[27] S. Devuyst, T. Dutoit, P. Stenuit, M. Kerkhofs, and E. Stanus, ‘‘Cancelling
ECG artifacts in EEG using a modified independent component analy-
sis approach,’’ Eurasip J. Adv. Signal Process., vol. 2008, Dec. 2008,
Art. no. 747325.

[28] M. Rundgren, I. Rosén, and H. Friberg, ‘‘Amplitude-integrated EEG
(aEEG) predicts outcome after cardiac arrest and induced hypothermia,’’
Intensive Care Med., vol. 32, no. 6, pp. 836–842, 2006.

[29] H.-C. Shin, S. Tong, S. Yamashita, X. Jia, G. Geocadin, and V. Thakor,
‘‘Quantitative EEG and effect of hypothermia on brain recovery after
cardiac arrest,’’ IEEE Trans. Biomed. Eng., vol. 53, no. 6, pp. 1016–1023,
Jun. 2006.

[30] Z. Sahul, J. Black, B. Widrow, and C. Guilleminault, ‘‘EKG artifact can-
cellation from sleep EEG using adaptive filtering,’’ Sleep Res. A, vol. 24A,
p. 486, Jan. 1995.

[31] N. V. Thakor and Y.-S. Zhu, ‘‘Applications of adaptive filtering to ECG
analysis: Noise cancellation and arrhythmia detection,’’ IEEE Trans.
Biomed. Eng., vol. 38, no. 8, pp. 785–794, Aug. 1991.

[32] W. K. Ma, Y. T. Zhang, and F. S. Yang, ‘‘A fast recursive-least-squares
adaptive notch filter and its applications to biomedical signals,’’Med. Biol.
Eng. Comput., vol. 37, no. 1, pp. 99–103, 1999.

[33] W. Zhou and J. Gotman, ‘‘Removal of EMG and ECG artifacts from EEG
based on wavelet transform and ICA,’’ in Proc. 26th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBS), vol. 1, Sep. 2004, pp. 392–395.

[34] S. Romero, M. A. Mananas, S. Clos, S. Gimenez, and M. J. Barbanoj,
‘‘Reduction of EEG artifacts by ICA in different sleep stages,’’ in Proc.
EEE Eng. Med. Biol. Soc., Sep. 2003, pp. 2675–2678.

[35] N. Ille, P. Berg, and M. Scherg, ‘‘Artifact correction of the ongoing EEG
using spatial filters based on artifact and brain signal topographies,’’
J. Clin. Neurophysiol., vol. 19, no. 2, pp. 113–124, 2002.

[36] J.-P. Lanquart, M. Dumont, and P. Linkowski, ‘‘QRS artifact elimination
on full night sleep EEG,’’ Med. Eng. Phys., vol. 28, no. 2, pp. 156–165,
2006.

[37] J. Chua, G. Wang, and B. W. Kleijn, ‘‘Convolutive blind source separation
with low latency,’’ in Proc. IEEE Int. Workshop Acoustic Signal Enhance-
ment, Sep. 2016, pp. 1–5.

[38] X. Jia, M. A. Koenig, H.-C. Shin, G. Zhen, S. Yamashita, N. V. Thakor,
and R. G. Geocadin, ‘‘Quantitative EEG and neurological recovery with
therapeutic hypothermia after asphyxial cardiac arrest in rats,’’ Brain Res.,
vol. 1111, no. 1, pp. 166–175, 2006.

[39] Q. Wang, P. Miao, H. R. Modi, S. Garikapati, R. C. Koehler, and
N. V. Thakor, ‘‘Therapeutic hypothermia promotes cerebral blood flow
recovery and brain homeostasis after resuscitation from cardiac arrest
in a rat model,’’ J. Cerebral Blood Flow Metabolism, vol. 39, no. 10,
pp. 1961–1973, 2019.

158880 VOLUME 7, 2019


