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ABSTRACT Parkinson’s Disease (PD) being the second most hazardous neurological disorder has developed
its roots in damaging people’s quality of life (QOL). The ineffectiveness of clinical rating scales makes the
PD diagnosis a very complicated task. Thus, more efficient systems are required to perform an automated
evaluation of PD for its earlier detection and to enhance life expectancy rate. Gait based clinical diagnosis
can provide useful indications regarding the presence of PD. From recent years, computer vision-based (VB)
analysis is in great demand and seems to be highly effective in PD inspection. The objective of this article
is to systematically analyze the applications of computer vision in PD evaluation through gait. This paper
surveys the VB PD gait acquisition modalities as well as provides a concise overview of preprocessing
techniques. The study presents a description of PD related gait features, extraction and selection methods
used for PD analysis. A number of machine learning techniques for classification of PD and healthy gait
are also discussed. This article extensively surveys PD gait datasets considering data from 1997 to 2018.
Also, several research gaps in existing studies have identified that need to be addressed in the future. At last,
an outline of the proposed idea is given that can cope up with the related issues and can lead to quality VB PD
gait investigation.

INDEX TERMS Parkinson’s disease, acquisition modalities, gait features, extraction methods, vision-based.

I. INTRODUCTION

In the present era of remarkable technological advancements,
identification of an abnormal health condition is of high-
est concern. Over past years, the unique characteristics of
the human body known as biometric (e.g. handwriting [1],
speech [2], gait, etc.) have been enormously analyzed to make
excellent progress in clinical diagnosis. Each individual has
an idiosyncratic style of walking that occurs due to coordi-
nated and collaborated actions of the musculoskeletal and
nervous system. This makes the gait biometric a powerful
indicator to determine pathological behavior caused due to
physical injury, aging or related disorders [3], [4]. These inter-
nal and external factors directly affect the motion and action
of the body and results in gait impairment. Neurological
disorders (ND) have been discerned as one of the prevailing
conditions causing high burden to the large population. The
data on ‘Burden of Disease’ by Roser and Ritchie [5] from
(1990- 2016) reveals such prevalence among seven continents
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FIGURE 1. ND prevalence in the world’s seven continents taken from the
study [5]. Here 0 value for Antarctica indicates unavailability of related
data.

of the world shown in Fig.1, where the highest growth rate is
seen in Asia.

An analysis by a study [6] to systematically analyze the
global burden of 328 diseases has indicated the rise in ND
from 14.5% to 18.3% between 2006 and 2016. Other esti-
mates have shown neurological disorders as the major cause
of ‘Disability Adjusted Life Years’ (DALYs) and second
utmost leading source of deaths (9.0 million) in 2016 [7].
A number of such disorder exists (such as Alzheimer’s,
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Parkinson’s, stroke, cerebral palsy, etc.) that are chiefly dam-
aging the people’s quality of life (QOL) and causing deaths.
Amongst all the ND, this article focusses the study of Parkin-
son’s disease due to its higher growth estimations in the future
(almost by double) with the rise in aging society.

Parkinson’s disease (PD) is currently the second most
common neurogenerative and movement disorder after
Alzheimer’s disease, affecting about 7-10 million lives world-
wide [8]. Although the actual causes behind PD are unknown
the related research indicated genetic vulnerability and envi-
ronmental factors to be responsible for its occurrence. Loss
of dopaminergic neurons in the brain seems to be the root
cause that leads to the development of PD related symptoms
including tremor, movement slowness, postural imbalance,
gait deflects, etc. The alterations in a person’s gait (e.g. slow
speed, freezing of gait (FOG), falls, short steps, etc.) provides
significant clues regarding the presence of PD. This disease is
primarily related to the age where the symptoms continue to
worsen with time (1%-2% over 60 year’s adults and increases
with age as 3%-5% over 85 years) [9], [10] and adversely
attacks male population than females (1.5: 1.0). The sub-
jective diagnosis of PD at early stages using clinical rating
scales is very challenging as the symptoms appear more with
increased age due to which several cases go unrecognized.
Also, there is no cure exists to permanently treat PD but the
patient can only rely on medications to control PD symptoms.
Every year, about €7000- €17000 have been spent on PD
treatment per patient [11] and further rise has been estimated.
Therefore, effective and automated analysis of an individual
gait parameter’s (such as step length, stance phase, speed,
etc.) is required to differentiate PD and normal subjects and
to provide them rehabilitation.

In recent years, an increase in computer vision-based
(VB) gait analysis has been observed, primarily focusing
on the automatic diagnosis of PD. Verlekar et al. [3] and
Ortells et al. [12] developed a vision-based automated sys-
tem and extracted gait features from the human body silhou-
ette. They successfully demonstrated the uniqueness of gait
patterns in recognition of PD individuals.

The use of the Kinect sensor by various researchers
[13]-[15], etc. to perform gait based automated analysis of
PD contributed a lot to this field. Also, some universities
played their role by building the VB gait datasets including
impaired and normal gait patterns such as INIT (LABCOM,
Univ. Jaume I) [12] which has public access to the researchers
to explore more in this area. Although having a plethora
of advantages for VB gait recognition in PD assessment,
certain issues have been confronted by researchers such as
unavailability of actual patients vision-based gait database,
limited size of samples [16], overlapping [12], poor prepro-
cessing [3] etc. that have opened new scope of research for
more unfailing PD analysis.

Research concerning PD inspection includes some sur-
veys performed by different researchers and have given
crucial reviews related to it. Recently, a survey by
Pereira et al. [17] focused on computer-assisted technologies
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for diagnosis and treatment of PD including speech, hand-
writing, face images, gait and sensor signals. Another review
by Pasluosta et al. [18] explored existing wearable technolo-
gies and IoT in PD detection. A brief description of the most
significant survey articles till Feb. 2019 is provided in Table 1.

This article performed a systematic search of the existing
literature to gather the data from reputed journals and confer-
ences. Applying a number of search keywords yielded about
1500 related articles out of which 71 relevant articles that
mainly focused on gait based PD detection using vision-based
technology are selected after illuminating the irrelevant and
duplicate ones.

The motive of this survey article is to systematically study
all the facets of PD based on vision-based gait analysis. The
principal objectives of the study can be interpreted via points
under:

1) This article comprehensively provides a vision-based

literature survey of Parkinson’s disease based on gait.

2) Scrutinized more than seventy articles of scientific
journals and conferences of repute focusing VB that is
not explored in existing surveys.

3) The article thoroughly reviews the VB PD gait acqui-
sition modalities and also provides a brief overview of
sensor-based modalities emphasizing their issues and
possible solutions.

4) The article presents an insight towards data preprocess-
ing techniques used to refine PD data.

5) The paper broadly surveys the gait features as well as
feature extraction/selection methods for PD investiga-
tion.

6) The paper extensively outlines the machine learning
techniques for the diagnosis of PD

7) The article provides a brief description of available gait
datasets that can be useful for further PD research.

8) The article explores the open research challenges in the
form of future perspectives that need to be focused for
accurate PD gait identification.

9) A short illustration of the proposed work is also dis-
cussed in section 7.

The organization of the article is as follows: Section 2
provides an overview of human gait basics and PD. The gen-
eral PD gait recognition framework, gait acquisition modal-
ities, and preprocessing techniques explained in Section 3.
Section 4 describes PD gait features and related extrac-
tion/selection methods. Section 5 defines machine learning
approaches and PD gait datasets outlined in Section 6. Future
perspectives and proposed work presented in Section 7 and
Section 8. Finally, Section 9 provides the conclusion of this
survey article.

Il. HUMAN GAIT AND PARKINSON'’S DISEASE

The gait of a human being can be visualized as a vital activ-
ity to analyze several abnormal health conditions. In-depth
analysis of a person’s gait plays an important role in diagnos-
ing a number of life-threatening pathologies such as Parkin-
son’s Disease (PD), thus effective in clinical applications.

156621



IEEE Access

N. Kour et al.: Computer-VB Diagnosis of PD via Gait: Survey

TABLE 1. Shows some important survey papers on PD gait analysis along with no. of citations.

Author/Year Key Focus No. of
citiations
Rey et al. They systematically reviewed the existing literature on mobile phone applications used 4
[11)/ 2019 for PD analysis
Pereiraetal. They focussed recent technologies applied to aid PD considering image and sensor data. 7
[17])/ 2018 They also outlined feature extraction methods, datasets and machine learning algos used
in PD inspection
Bensonetal. The purpose of this study was to review the effectiveness of wearable sensors in external 16
[19])/ 2018 environment and also discusssed the features extracted for PD evaluation
Ossig et al. This article extensively reviwed the enabling wearable sensor based technologies for 40
[20]/ 2016 investigation of motor PD symptoms
Pasluosta et al. They reviewed the emerging wearable technologies and also discussed the IOT platform 79
[18]/ 2015 that can be useful for PD diagnosis and effective treatments of PD patients
Stamford et al. This review focussed the advances in non-locomotion based technologies, their benefit 31
[21]/ 2015 in PD analysis and oulined the issues need to handle in PD
Chen et al. They examined the potential of laboratory and wireless sensor based PD gait analysis and 45
[91 2013 also suggested some treatment strategies for PD quality of life
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FIGURE 2. Phases of human gait cycle taking right leg (yellow color) as
perspective [22].

This section provides a brief description of phases that take
place during human gait as well as a short detail of PD, its
associated symptoms and clinical measures.

A. BASICS OF HUMAN GAIT CYCLE (GC)

When walking occurs, both the limb of the human body works
in an identical way where the left limb acts as a pillar to the
right limb and vice-versa [12]. This symmetrical sequence of
limbs from first heel-strike/ initial contact (IC) to next heel-
strike i.e. terminal swing (TSW) by the same limb happens in
the form of a cycle, known as gait cycle (GC) shown in Fig. 2.
Generally, there are two common phases that complete total
gait cycle [22] - stance phase (orange color) that begins with
initial contact indicating that foot is in total contact with the
ground and swing phase (blue color) signifying that the foot
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leaves the floor and swaying in the air. According to Perry and
Bumfield [23], these phases are further classified into eight
sub-phases where the first five are associated with stance
phase contributing 60% to the gait cycle. The other three
sub-phases are of swing phase sharing 40% to the total gait
cycle. Each phase is responsible for the accomplishment of
three significant tasks- weight acceptance (WA), single limb
support (SLS) and limb advancement (LA) [24], [25]. Fig.2.
depicts the distribution of complete gait cycle considering the
right leg as perspective.

The locomotion of a person can be thought of similar to the
motion of a wheel, rotating from left to right. As visualized
in Fig.2 first snapshot of the wheel is indicating just the start
of the gait cycle (IC), initially at 0%. As the wheel moves
forward in the clockwise direction, it covers every 20% of
the GC by rotating through 72 degrees. This rotation of wheel
depicts the occurrence of different sub-phases of GC. The last
snapshot of the wheel represents the completion of the GC
(100%) [22]. Out of the entire GC, first and fifth sub-phase
stipulate the period of double support (black color) and single
support period (green color) can be seen from second to
fourth and go on from fifth to eighth sub-phase.

Although having different walking patterns, the procedure
of ambulation is alike in all the human being [26]. Various
gait-related parameters such as step length, cadence, sym-
metry, etc. can be effectively utilized in order to measure
differences among individuals. In a healthy person’s gait,
cadence (number of steps taken in unit time) is about
120 steps per minute [27] and also the two limbs are sym-
metrical but it is not the case with an abnormal gait. In PD,
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the walking characteristics of an individual vary to a larger
extent as compared to a normal one such as slow speed,
increased cadence, gait asymmetry, etc. [28]. Thus the phases
of GC provides decisive clues regarding abnormal motion
pattern of a PD subject to better classify an affected gait from
a healthier one.

B. OVERVIEW OF PARKINSON'S DISEASE (PD)

The most common degenerative neurological disorder occu-
pying the second place next to Alzheimer’s disease i.e.
Parkinson disease came into light after being described by a
physician, James Parkinson in 1817. PD is a chronic disorder
that progresses gently with time and has more life risk on
the male population than females [17], [29]. PD being a syn-
drome of the nervous system directly affects the functioning
of the brain and results in loss of neuromuscular control [30].
An area in the human brain named as substantia nigra consists
of dopaminergic neurons (transmitter neurons) that releases
dopamine chemical to basal ganglia (receptor cell) as shown
in Fig.3.
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FIGURE 3. A pictorial depiction of a normal brain (left) and PD affected
the brain (right) along with its associated symptoms [10], [21]. Some of
the images in this and other figures used in the article are taken from the
internet. URL's are given in the Appendix.

These basal ganglia have the responsibility to perform the
overall integrated functions of the body. In PD, the amount of
dopamine chemical produced get reduced due to degeneration
of dopamine neurons thereby diminishing the functioning of
basal ganglia. As a result, symptoms start appearing indicat-
ing the presence of PD [17], [31].

However, the underlying cause of PD is unknown but
some factors such as genetic (gene mutations), environmen-
tal conditions (pesticides exposure), medication and aging
can be regarded as its major contributors [31], [32]. More
likely, the average age of people being diagnosed with PD is
approximately 60 years, known as ‘late-onset’ but sometimes
it can appear untimely. In some people, the symptoms of
PD seen to be developed before the age of 50, known as
‘early onset’ and very rarely its effect can be visualized on
young people less than 21 years too, referred to as ‘juvenile-
onset’ [10], [29]. PD doesn’t occur rapidly but starts with

VOLUME 7, 2019

some initial symptoms and increases gradually. On being
attacked by PD, a person develops typically two types of
symptoms i.e. motor (influences movement) and non-motor
(no effect on movement) [31] as presented in Fig.3. Motor
symptoms further involve Locomotory such as tremor (shak-
ing of the body), bradykinesia (slow movements), postural
instability (stooped), altered gait (freezing, shuffling), etc.
and non-locomotory motor symptoms including altered hand-
writing and speech. Non- motor symptoms such as anxi-
ety, constipation, smelling loss etc. also gives the strong
evidence of PD occurrence but are often ignored by the
doctors [21], [33], [34].

Thus the combination of motor and non- motor symptoms
represent the initiation and development of PD deteriorating
people lives badly.

1) PD CLINICAL MEASUREMENTS

PD affects in a different way to different people depending
upon its progression stages- mild, moderate and advanced.
Their relative symptoms are defined in Table 2. Clinical diag-
nosis of PD heavily relies on conducting various tests such as
cerebrospinal fluid test and using neuroimaging techniques
(MRI, EEG, etc.) in order to assess subject’s motor symptoms
and then grading the severity of disease by the clinician on
some rating scale [34]. There are numerous PD severity rating
scales and questionnaire’s available such as Berg Balance
Scale (BBS), FOG-Q, Hoehn and Yahr scale (H&Y), Unified
Parkinson’s disease rating scale (UPDRS) etc. Amongst the
mentioned, clinicians mostly prefer the UPDRS scale (a four-
point scale) to rate PD severity due to its overall superior
clinometric features than other scales [35], [36].

TABLE 2. Different stages of PD severity and related symptoms [32], [34].

PD Stage
Mild (early PD)

Related Symptoms

* Unilateral movement symptoms
* Posture and facial expressions alteration
« Little walking problem

Moderate * Bilateral movement symptoms
* Freezing of gait (FOG) events
* Balance difficulty

Advanced (severe PD) * High walking trouble

* Requires others support

Although using subjective clinical measures for PD evalua-
tion offer less complexity and more easiness but the diagnos-
tic validity and reliability get compromised. The symptoms
reported by the patient need not to necessarily correlate with
rating scales outcome. Thus, high-level quantitative assess-
ment such as gait measurements should be given attention to
enable early PD diagnosis and more effective treatments.

Ill. GENERIC FRAMEWORK FOR VISION-BASED (VB)

PD DIAGNOSIS

The architecture of any diagnostic system represents the chain
of interconnected units working in coordination with each
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other to generate the desired outcome. This section thor-
oughly describes the main modules of PD diagnosis system
highlighting the work in previous studies made by differ-
ent researchers. The basic pipeline for identification of PD
includes five key stages i.e. (I) PD gait acquisition (II) Data
Pre-processing (III) Feature extraction and selection (IV)
Classification (V) Result is depicted in Fig. 4.

Stage-1 Stage-11 Stage-111 Stage-1V Stage-V
Feature

PD Gait Data P i
Acquisition L —— ﬂ, Ext: .u-.l‘mn/ F, Classification f, Result
L

| I

* Vision-based o Filtering

« Sensor-based * Object

« Hybrid Segmentation
(vision+ sensor)
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FIGURE 4. A Representation of diagnostic process workflow for PD
recognition.

Firstly PD and healthy subject’s gait data is captured using
some modalities and then the acquired data is pre-processed
to prepare it for further processing. After initial preprocess-
ing, relevant features are extracted from gait frames. These
features then provide a decision regarding normal and abnor-
mal gait. Finally, classification is performed to classify the
subjects into PD and healthy group. The complete explana-
tion of each stage is given as follows:

A. PD GAIT ACQUISITION MODALITIES

Data acquisition specifies the task of gathering useful infor-
mation by applying different sources. The performance of the
system entirely depends upon the quality of data captured so
utmost care should be given while doing it. To enable the
process of data collection, a modality plays a vital role which
is simply the agglomeration of devices/ technologies having
powerful capturing capabilities. The use of modality can be
seen in various areas but it revealed its extensive contribution
towards analyzing and collecting gait data of PD affected
population.

In this section, a meticulous survey of PD gait captur-
ing modalities has been performed and accordingly, a tax-
onomy is proposed as illustrated in Fig.5. The studies by
various researchers based on this proposed taxonomy are
recapitulated in Table 3 from 2005 to Feb. 2019. Broadly,
there are two types of PD gait acquisition modalities namely
vision-based (VB) and sensor-based (SB). In this article,
the key focus is devoted towards only vision-based modality
i.e. marker-based (VBMB), marker-less (VBML) (solid color
box) used either individually or in-fusion (MB, ML). Since
this study covers each and every aspect of vision-based PD
detection so it is required to consider those papers also that
have collected the PD gait data using sensor and vision-based
modalities simultaneously. Further, the articles that focused
only sensor modality (shaded box) in Fig.5, for PD gait
collection are not considered.

1) VISION-BASED (VB)
A modality that fundamentally relies on the use of opto-
electronic motion capture (Mocap) systems to inspect the
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gait of an individual, is typically referred to as vision-based
modality. The concept behind the VB modality is similar
to the functioning of the human eye. Using only our naked
eyes to analyze someone’s gait seems to be an impractical
task thus a more robust camera-based system is demanded.
This modality consists of employing different type of cam-
eras (e.g. analog, digital, depth) to estimate the human
gait accurately [37], [38]. VB modality further involves
two sub-categories namely marker-based and marker-less/
appearance based [3].

a: MARKER-BASED (MODEL- BUILD)

As the name suggests, marker-based (MB) modality
(emerged between 1960-1984) depends on the use of a
number of motion capture camera systems such as 3D Mocap
system, Vicon, IR cameras, etc. These are also used along
with retroreflective markers (Murray, 1960’s-1970’s) [39] to
improve the accuracy of gait acquisition [3]. In this modality,
the model of the human body is constructed manually to
extract relevant features. One of the common examples of
such systems is Vicon (1984) [40]. Vicon directly builds the
human model specifying the anatomical landmarks position
on the body skeleton and provides useful gait parameters such
as joint angles, by examining the location of body key points
obtained through reflective indicators [41].

Retroreflective markers thus employed may be passive or
active [25]. Passive markers are generally coated with the
layers of reflective material so that whenever light emitted
from LED’s equipped camera falls on it, the reflection from
only those spheres come back, giving the position of body
landmarks [42]. In a variation, active markers are LED’s itself
that are fixed with the subject’s body and infrared (IR) waves
are discharged by the camera capture the joint points on the
body.

Roiz et al. [43] proposed a study to analyze the differences
among gait parameters of subjects with 12 idiopathic PD
and 15 healthy controls using 3D human motion analysis
system with six IR cameras and eighteen active markers. The
study outcomes demonstrated notable differences between
PD patients and healthy subjects and gait variables shown
correlation with clinical measures.

In another study, Zhang et al. [44] developed a framework
to analyze, extract and compare the gait features of 6 PD
patients while walking under three different conditions- with-
out any support, roller walker pushing and holding a pow-
ered walker in different speeds. The study made use of nine
Vicon Mocap system camera and a set of reflective markers
to determine the location of the body landmarks. Results
indicated a significant decrease in asymmetry index from
6.7% to 0.56% under the first condition and much lower
under third one showing the potential of the motorized walker
in providing gait symmetry to patients attacked by PD. The
use of stereoscopic vision recording setup (two Panasonic
(NV-GS500) camcorders (25 frames per second (fps)) having
resolution of 720*576 and reflective markers) was employed
in a work by Pachoulakis [45] to represent the Kinesiological
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TABLE 3. Shows vision-based gait acquisition modalities used for PD analysis with their respective pros and cons.

S.No. Sensing mode Mechanism References  Pros/Cons Remarks
1 Video cameras  [3,16,48,49,50 (+) Highly compact
(2D/3D, HD, ,53,69,74,76,  (+) Portable and more convenient for recording
CCD, 77,80,86,93,  (+) No requirement of heavy lab. setup o
camcorders, 94,97,98,105] (+) Cost effective Vision based
smartphone) (-) Less accurate markelfless )
o (-) Requirement of trained experts modah.ty provides
Vision Based (-) Difficult to interpret images from acquired videos more simple,
?f/"glgzl)ess Microsoft Kinect [12,13,14,15, (+) Portable i‘vfi‘;ri)ai;zﬁi Z?ty
Sensor (MSK)  51,52,54,72,  (+) Low error rate data for efficient
73,78,90,95, (+) Captures 3D motion of entire body PD diagnosis
106,107,108, (+) Provides depth information of subject's gait
109,110,111, (+) Eliminates markers placement complexity
112,113,114] (-) Sensitive to sunlight
(-) Unsuitable for highly reflective objects detection
2 Vision Based 3D Mocap [13,43,44,45, (+) Highly accurate These
using Markers systems 46,47,54,80, (+) Provides exact location of body landmarks optoelectronic
(VBMB) (Viconbased on 91,96,104, (+) Powerful architecture and processing algorithms systems acts as
reflective 111,115,116] (-) Expensive 'gold standard' and
markers, BTS) (-) Need of high technical skills have high potential
(-) Requires heavy lab setup to capture gait for measurement of
gait parameters for
PD investigation
3 FLS, VB [79,81,83,88, (+) Simple and easy data analysis
92,117,118,  (+) Captures foot pressure and forces efficiently
119,120,121] (-) High power requirements
(-) Requires large space and have massive size
(-) Requires exact foot and plate contact for accuracy
IS, VB [35,68,71,75, (+) Provides direct estimation of acceleration, velocity Allows
82,87,122, (+) No need of controlled environment simultaneous
123,124,125, (+) Allows long term monitoring at home also acquisition of
Paired 125,126,127] (-) Wearing discomfort multiple gait
(SB, VB) (-) Accumulated error issue parameters for PD
(-) High power consumption detection with more
(-) Uses complex algos to estimate gait parameters accuracy
EMG, VB [70] (+) Provides measurements of body muscles activities

(+) No need of controlled environment

(+) Allows long term monitoring for patients
(-) Causes pain while wearing

(-) High power consumption

(-) Requires high skills in electrodes setup

state of a PD subject at a given time. Results indicated a
high potential of the adopted system for PD measurements.
Again, an 8-camera Vicon system and reflective markers were
utilized in Ref. 46 to investigate the statistical dissimilarities
among PD and HC.

Thus, employing this type of modality can lead to a sub-
stantial rise in system’s performance by giving the exact
location of body landmarks essential in PD detection.

b: MARKER-LESS (MODEL-FREE)

One of the unique characteristics of marker-less (ML) modal-
ity also referred by its name i.e. appearance-based modality
is the non-requirement of manually building the model of
the human body to extract the gait parameters. This modality
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simply relies on capturing the gait of subjects using a single
camera. ML modality came into presence with the devel-
opment of a new camera system’s (e.g. Kinect vl, v2,
camcorders, smartphones, etc.) during (1995-2011). Usually
during walking, initially the gait videos of the people are
recorded by a camera device and silhouettes are extracted
using some pre-processing techniques (e.g. background
subtraction) [3], [48]. Finally, statistical information and
other biomechanical features are derived directly from gait
image without any prior familiarity about the subject’s
body [41].

The video-based cameras such as 2D/3D, CCD, etc. played
a crucial part in vision-based markerless (VBML) gait col-
lection in PD analysis. Shaw [49] proposed a study to inspect
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FIGURE 5. The proposed taxonomy of Gait Acquisition Modalities for PD diagnosis.

the gait features of 16 PD subjects and 16 normal controls
using marker-less gait capture technology. Silhouette images
were obtained by means of a high-quality video camera.
An accuracy of 99.6995% was achieved using hidden Markov
model (HMM) for PD detection. Similarly, in another study
by Chen et al. [50], silhouette features from acquired videos
using camcorder (VPC-HD1010) were extracted using LDA
and outcomes obtained shown significant correlation with
clinical scores with r = 0.92 (for testing) and 0.85 (for
training).

Besides the use of video camera for gait acquisition for PD
inquiry, many authors concentrated towards the tremendous
applications of Kinect sensors, developed by Microsoft (MS).
Kinect is a Mocap device that allows extracting detailed
information of a subject’s movement using the assimilation
of color and an IR depth sensor leading to more accurate
estimations and calculations. Prochazka et al. [15] made
an effort to classify healthy and PD individuals using MS
Kinect sensor. Spatiotemporal gait features of subjects were
estimated by analyzing the skeleton joint structure derived
through the Kinect. The use of Bayesian classification suc-
cessfully yielded an accuracy of 94.1% for PD identification.
Moving on the way to Kinect sensor for vision-based gait
capture, another by Dranca et al. [52] proposed to develop a
Kinect based system to compare and differentiate the severity
levels of 30 PD affected patients. They applied two Kinect
sensors to acquire PD gait with a sampling rate of 30fps and
about 115 related features were determined. The Bayesian
network then best predicted PD stages giving an accuracy rate
of about 93.40%.
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Apart from video cameras and the Kinect system, smart-
phone technology has given a new insight towards this field.
The use of such technology can be analyzed in a study by
Zhu et al. [53]. They tried to investigate the stride length
parameter of PD patients using a mobile phone camera with
a sampling rate of 30 fps. Results highlighted the potential of
the applied system with an absolute error of 0.62 cm.

c: MB AND ML FUSION
However, both the vision-based modalities i.e. MB and ML
offered high reliability for PD investigation, some of the
research studies used the fusion of them (e.g. 3D Mocap
system+- reflective markers and MS Kinect). In this category,
Mocap systems in combination with markers were used as
a ‘gold standard’ to compare the simultaneously captured
results using Kinect, to check its efficacy in PD assessment.
Eltoukhy er al. [13] presented a study to scrutinize and com-
pare the gait variables of older adults suffering from PD and
having no such disease. The gait data was gathered using
Kinect v2, a Mocap system (BTS) and reflective markers
concurrently. The study results demonstrated the correlation
among both the systems, reflecting the potential of Kinect v2.
Another work reported by Galna et al. [54] tried to explore
the capability of Kinect in diagnosing the movement of 9 PD
and 10 healthy subjects. The experiment was conducted by
initially collecting the gait data using 3D Vicon system along
with markers as a benchmark and a Kinect system. Com-
parison among computed gait variables via both modalities
manifested high correlation (r>0.8) proving the reliability of
the Kinect sensor for PD inspection.
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2) SENSOR-BASED (SB)

Besides VB modality, another way to acquire PD gait is
through the use of sensor modality (SB). This section gives
a brief overview of sensor-based modality for PD gait col-
lection. This type of modality makes use of sensors which
are either placed on the ground, known as non-wearable/
body free (e.g. floor sensors) or can be attached to the body
of a person i.e. wearable/ body fixed (e.g. inertial, insole,
EMG, smart sensors, etc.) as shown in Fig.5. Sensors when
used, senses, records the motion (gait) of an individual and
responds using the electrical signals. Depending on the cap-
tured PD gait signals, various biomechanical gait features can
be estimated. Floor sensors (Kistler group, 1969) [43], [55]
such as force plates are the sensors having potential to
measure the ground reaction forces (GRF’s) directly when
the foot of the subject strikes on the floor. The forces thus
obtained are then converted into an electrical impulse to
extract relevant PD gait features [56], [57]. Another sensors
i.e. Inertial sensors (Robbert Goddard, 1950’s) [58], [59] are
the devices employed on subject’s body to perform linear
acceleration, angular velocity and magnetic forces calcula-
tion easily using the ideas of inertia [60], [61]. Insole pres-
sure sensors (Gaston Carlet, 1849-1892) [55] are the small
devices embedded within the sole of shoes and captures the
load/pressure during walking by the normal and PD sub-
ject [62], [63]. Similarly, EMG sensors (Venn Inman and
colleagues, 1944-1947) [58] played a vital role in measuring
muscle electrical actions of subjects in the form of EMG sig-
nals known as Electromyographs [64]. Finally, Smart sensors
(Tesla, PrioVR, UK uni. etc., 1980’s and 2018) [65], [66]
visualized from Fig.5. such as smart clothes/garments were
used by allowing the subject to wear it on their body to
enable recording of entire body movements for PD gait acqui-
sition [67].

In spite of having the huge capability of sensors technology
to perform direct measurements of PD gait, it suffers from
certain drawbacks such as the requirement of high cost, time,
power and technical skills, wearing discomfort, drifting effect
problem etc.[3], [12], [13], [48]. Thus, in this survey article,
further SB modality is not explored and reviewed in detail.

3) PAIRED

The acquisition of PD gait by twining two classes of modali-
ties such as inertial sensors, EMG sensors, etc. with a vision-
based modality at the same time provides a more extended
view for PD analysis and also saves data collection time
than considering a single modality at a time. This category
includes those articles that captured the gait of PD sub-
jects using both vision and sensor modalities simultaneously
to check the reliability of one against another (taking one
modality as a gold standard). Several studies followed this
pattern for PD gait inspection summarized in Table 3. Stack
et al. [68] proposed to check the validity of wearable sensors
in comparison to a VB system for detection of instability
considering 24 subjects with and without PD problem. The
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FIGURE 6. The Pie chart depicting the result of literature from
(2005-2019) for usage ratio of various PD gait capturing modalities.

study used five inertial measurement units (IMU’s), an HD
video camera mounted on a tripod to record different move-
ments concurrently. Results achieved using inertial sensor
(85% stable, 46% unstable) and video camera (70% stable,
30% unstable) demonstrated considerable correlation among
both modalities. Kluge et al. [35] also presented a study with
the aim to evaluate the concurrent validity and reliability
of test-retest using a SB system (IMU’s) against a Mocap
camera-based setup as reference. Spatiotemporal and silhou-
ette gait features were evaluated for the subjects and results
shown good aggregation between the considered systems
(r>0.95).

The use of sensors and VB modality simultaneously
to collect PD gait was illustrated in another work by
Eltoukhy et al. [117]. Using the combination of two force
plates and a synchronized Kinect v2 sensor, they tried to
determine GRF’s from the gait of 9 PD patients. Outcomes
revealed the high potential of Kinect in PD evaluation.

Table 3 gives the description of work that extensively
focused vision-based modality for PD assessment emphasiz-
ing their relative benefits (+) and drawbacks (—). Approx-
imately 71 related research articles are found out of which
48 studies have focused on using solo VB modality (10 on
marker-based, 35 on markerless and rest on the fusion of
both) and 23 studies compared both vision and sensor modal-
ities simultaneously. The percentage usage of each modal-
ity is represented in Fig.6. Data analysis reveals most of
the research related to VBML modality focusing Microsoft
Kinect sensor due to its greater capability of capturing minute
and depth details of the subject using image and depth sen-
sors. Such unique features of Kinect can be useful for reduc-
ing freezing of gait (FOG) events in PD and more effective
rehabilitation. No doubt, VB modality using optoelectronic
system (markers and Mocap system such as Vicon) attains
remarkable performance without any need of sensor but
involve some flaws like the necessity of well-specialized lab-
oratories and calibrated systems, high technical proficiency,
large time requirements, etc. Further, sensor-based modality
suffers from certain drawbacks that make it unsuitable for
rich PD diagnostic purposes. VB marker less modality, on the
other hand, provides an additional path to overcome the bot-
tlenecks of marker-based modality as it is cost-effectiveness,
simple to practice and virtually pervasive [3], [15], [51].
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Therefore, from the literature survey of obtained articles
on PD gait acquisition modalities, it is concluded that the
exceptional features of VBML modality gained huge focus
(about 50%) towards it as compared to other modalities for
more profitable and effective analysis of PD in early stages.

B. DATA PRE-PROCESSING

Once the gait acquisition task is accomplished, another cru-
cial step in a diagnostic process namely preprocessing is
performed. In most cases, the data acquired via modality
is not directly processed within the application, instead, it is
preprocessed to enhance the data according to a specific task.
Preprocessing involves the set of algorithms used to upgrade
the quality of data by performing certain operations on it such
as resizing, cropping, noise reduction, contrast adjustment,
segmentation, etc. Thus, the intelligent preprocessing at the
initial stages can lead to better results in the later stages.
This section provides a brief overview of some gait data
preprocessing techniques used by researchers in recent years
to convert raw data into a suitable form for more effective
PD diagnosis. Generally, there are two preprocessing meth-
ods that have been frequent applied i.e. filtering and object
segmentation to provide improved PD analysis.

1) FILTERING

When data is acquired there are greater chances of it to get
distorted due to the presence of some unwanted components
such as noise, outliers, etc. Thus, filtering is a significant
preprocessing step that provides refined and relevant data by
means of some filters. Over time, several algorithms have
been applied to reduce the effect of different kind of noise
and errors to enhance the overall performance of the PD
diagnostic system.

The use of a low pass filter can be seen in the study [69] to
eliminate the random noise from PD gait data. A low pass
filter basically compares the frequency of signals with the
cut-off frequency and only encompasses those signals whose
frequency is less than the cut-off frequency. This type of
filter removes the high-frequency components and smoothens
the data thus enhancing the quality. Under low pass filter,
Butterworth filter (BF) is the frequently used filter and have
the unique property of flat frequency response in the passband
area [70], [71]. BW filter resolves the problem of blurred
edges which is often encountered in an ideal low pass filter.
Mathematically, the amplitude response of these filters can
be given as

1
IGkw)| = ————= ey

2n
1+ ()

where w,r represents the cut-off frequency and n denotes the
order of the filter.

BF can be of different order depending upon the
roll-rate. A first-order BF [72] comprises of the roll-
rate of 20dB/decade. As the order (n) increases, roll-rate
grows simultaneously. The roll-rates of second-order and
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fourth-order BF are of 40db/decade and 80db/decade and
increases for other higher orders. Also, the combination of
Butterworth filters can be formed to create the one with
higher-order but sometimes it results in declined performance
due to the larger size. Another type of low pass filter named
as Savitzky-Golay filter (SGF) [44], [51] has been adopted
for smoothing of noisy data and is specifically preferred
in biomedical applications. These filters are based on the
idea of convolution and suppress the least square error that
occurs while a polynomial is fitted at every frame of noisy
data. Consider the dataset having n{u;, v;} data points where
(i = 1,2...n) and u, v; are the independent and observation
values. Then these can be represented as the set of p convo-
lutional coefficient (D;) as defined under

p—1 .
Vi=ZDiVi+j, — - Si=n——— 2

Besides the low pass filter, the median filter [69] has been
also practiced by the researchers to reduce the effect of salt
and pepper noise from the gait data. These filters process the
frame pixel-wise and swap each value with the neighboring
pixel center. The key feature of median filters is its high
potential in eliminating the noise without blurring the object
as well as preserving the essential details of the data. In addi-
tion, Gaussians filters [34], [53], [73] have been applied
to intensely remove the Gaussian noise from data. These
filters make use of kernel having a standard deviation as a
single parameter. Mathematically, Gaussian function in one
dimension can be defined as
2

1 2
Gs(V) = ———=¢" 3)
v ‘/27TO'§D

Here, the assumed mean of the distribution is zero and ogp
implies standard deviation. However, these filters are faster
than the median filters but blur the edges while remov-
ing noise from the acquired data. Likewise, Woltring fil-
ter [54], [75] was used to smoothen the gait data collected
from PD and normal subjects. This type of filter comes within
the Vicon software and can refine the data with more ease.

2) OBJECT SEGMENTATION

The refinement of gait frames extracted from the videos is
followed by a major preprocessing step known as object
segmentation. Segmentation plays a crucial role in computer
vision-based application where the purpose is to extract only
an interesting region from the images. The filtered frames
thus obtained from the previous step acts as input to this
phase. Generally, in gait videos, the background scene is
of no worth therefore background subtraction is performed
to separate the foreground from background and make the
data more suitable for relevant features extraction. In present
times, the idea of background subtraction has gained huge
popularity in the detection of objects from videos captured
using cameras. There is a number of methods such as adaptive

VOLUME 7, 2019



N. Kour et al.: Computer-VB Diagnosis of PD via Gait: Survey

IEEE Access

density estimation [3], bottom-up cues [49], thresholding
(pixel intensity, color segmentation), etc. [16], [53], [69]
designed and used by researchers to perform background
subtraction of PD data and other applications.

Verlekar et al. [3] adopted the concept of adaptive den-
sity estimation method which involves kernel estimation to
perform background subtraction. The resultant silhouettes
were then extracted from 2D video using such a technique
for further processing. The system achieved an accuracy
of 98.8% in classifying PD and healthy subjects. In addition,
a study by Shaw [49] used a bottom-up cues method to split
foreground and background. The applied method proved to be
more efficient as there is no requirement of and background
learning model and past video frames. Then the quality of
extracted silhouette images was enhanced using morpholog-
ical erosion. Likewise, Alcock and Carlos [74] segmented
human gait sequence using color-based and ¥ — A estimation
background subtraction methods. Color segmentation deter-
mines the differences between background and foreground
and separates them on the basis of color distribution. It can
be presented mathematically as

I if d{p(u,v), Ny(u,v)) > Ty p

Cy(u,v) =
p(: V) 0 otherwise

“
where I,(u,v) denotes the frame pixel at time p, N, (u,v)
implies the established model up to p time, d(I, N,) is the
function to provide differences between current frame and
model, 7,,,,, specifies each frame band and C, (u,v) is the
binary image having intensity of 1 for foreground and O for
background. ¥ — A operator method, on the other hand,
updates a background tracker using a simple rule in which
I, (u,v) and N, (u,v) are compared to increase or decrease A.

Segmentation of foreground and background pixels of gait
frames using each frame’s pixel brightness to extract silhou-
ette images was performed by Khan et al. [16]. Initially,
each frame of the video is converted from RGB to HSI color
space. Then both the pixels are segmented using a brightness
threshold and can be given as

v, Y] =1 if imvle )] 2 0(Sa ) | s
imvlx,y] =0 if imv[x,y] < 0p:(Sq, 1) )

where x and y are the pixel resolution of each video frame, S,
and I, denotes the saturation and intensity threshold values
for image imv[x,y]. The pixel values representing background
are eliminated keeping that of the foreground.

Similarly, Lee et al. [69] used threshold technique and
successively applied the region growing algorithm to attain
the optimal results of segmentation. Another work by
Chen et al. [76] proposed to remove the invariant background
from collected gait videos of normal and PD subjects. Ini-
tially, the background image was built using each pixel’s
median intensity value as

A(u, v) = medianto (I, (u, v)) 6)

where I, (u,v) represents the brightness of the image at time
tm and location (u,v). Here, A(u,v) is the value of background
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pixel and TO denotes the number of images present in the
whole sequence. Afterward, the difference method was used
to determine silhouette pixel of the subject’s gait which can
be defined as

2%/ Uy, v) + 1) (Au, v) + 1)
Iy (ut, v) + D(Au, v) + 1)
>k2"‘\/(256 — Im(u, v)) (256 — A(u, v))
(256 — Iyu(u, v)) + (256 — A(u, v))

Fop(u,v) = 1—

@)

Fin(u,v) = 1, if Fy,(u, v) > THD
where { Fuu(u, v) = 0, otherwise ®)
1 A(u,v)
And THD = — 9
o P2 256 ©)

Here, P denotes all the pixels in the constructed background
image, THD is the threshold ranging from [0 to 1] on the
basis of which foreground and background pixel separation
are performed.

Finally, on the completion of background segmentation,
normalization is performed to make the system more efficient
and vigorous to scale changes. The use of the Butterworth
filter is mostly adopted due to its wider applications in motion
analysis. Also, thresholding background segmentation seems
to be easy to use and chiefly employed for PD diagnostic
purpose. Thus, preprocessing is necessary to make the data
more valuable that can be efficiently used for quality PD
assessment.

C. FEATURE EXTRACTION

Once the gait data have been fully preprocessed, related
features are detected which then serve as input to the third
stage of PD detection pipeline i.e. feature extraction. This
step transforms the pictorial data into a quantitative represen-
tation that can be easily used for further processing. In PD,
a different type of gait features of the normal and affected
subjects can be extracted to perform the diagnosis such as
knee flexion, adduction, abduction, joint angles, etc. Since
the extraction of a large number of features take huge time
and reduces the accuracy too, therefore, feature selection is
performed. The prime goal of feature selection is to reduce
the dimensionality of feature set by selecting a subset of best-
optimized gait features that can better represent the input
data and still achieve high accuracy rates. In PD diagnosis,
several methods have been used to perform extraction and
selection including PCA [48], [77], LDA [50], [78], FFT [71],
KFD [79], wrappers etc. The detailed explanation of each is
provided in Section 4.

D. CLASSIFICATION AND RESULT

The basic purpose of the classification is to differentiate
the objects based on some attributes. In PD recognition,
a classifier is applied to categorize the subjects into dif-
ferent classes (normal/ abnormal) on the basis of their gait
features. In recent years, PD identification has been per-
formed by means of different machine learning techniques
such as supervised (SVM, ANN, KNN, etc.) [75], [80], [81],
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unsupervised (K-means, etc.) [14], [82], distance-based,
probabilistic [49] etc. The elaborated description of these
methods has been presented in Section 5.

IV. GAIT FEATURES AND EXTRACTION/SELECTION
METHODS FOR PD ANALYSIS

A. PD GAIT FEATURES

A feature defines the unique property of an individual based
on which it is possible to distinguish normal and patholog-
ical behavior. Gait acquisition modalities (as discussed in
Section 3) capture such prominent attributes which are useful
in PD investigation. This section presents a description of
frequently recorded gait features considered for PD anal-
ysis shown in Fig. 7 and are classified into the following
categories:

PD Gait
Features

pistance
related

Anthropometric

Spatiotemporal

Motion Mass

Kinematic

Combined

FIGURE 7. Most commonly used gait features for PD analysis.

1) ANTHROPOMETRIC FEATURES

These are the basic demographic features that impart funda-
mental details of the subject such as age, height, weight, gen-
der, limb length, etc. Most of the PD studies have considered
PD and healthy subjects only with identical anthropometric
data to determine their effect on an individual’s gait for more
reliable PD identification [82], [83].

2) SPATIOTEMPORAL FEATURES

Analyzing the phases of the gait cycle provide some basic
measures i.e. Spatiotemporal which are associated with dis-
tance (spatial) and time (temporal). Spatial gait features
involve stride and step length, step width, etc. whereas tempo-
ral features are concerned with timing events in the gait cycle
such as cadence, swing and stance period, single-limb support
time, double support time, etc. [84]. The range of differences
among such parameters (e.g. cadence value for young, adult,
elderly age are: 172-144, 113-118 and 58-70) [85] signifi-
cantly indicates the presence of PD in an individual. Aich
et al. [82] proposed a study to compare the gait features
obtained via wearable and a 3D Mocap system for freezing
of gait (FOG) assessment in PD. Five spatiotemporal gait
features i.e. step time, stride time, step length, stride length
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and walking speed were estimated using initial contact (IC)
events and calculated using the equations:

Step Time (v) = IC(v+ 1) — IC(v) (10)
Stride Time (v) = IC(v +2) — IC(v) (11

where v is the IC events index. To calculate step length,
an extension of the inverted pendulum model was used as

Step length(S;) = M2,/ (2N,C — C?) (12)

Stride length(S,) = 2*Steplength (13)

where N, is the sensor height w.r.t ground and C represents a
change in the height, M acts as multiplier factor for position
mapping of the accelerometer to pendulum model’s center of
mass and

. Mean S;
Walking speed (Wy) = —— (14)

Mean S,
The results obtained using support vector machines (SVM)
provided 80% accuracy and less than 10% mean error rate
between the two systems showing the effectiveness of wear-
able sensors for prediction of FOG. In another study by
Shaw [49] considered gait image sequences to detect patients
with PD using hidden Markov model (HMM). Initially,
the silhouette was extracted from the input video frames and
a boundary box was built enclosing the subject’s silhouette
for measuring a number of spatiotemporal gait features such
as cadence, step length, stride length, height, width, gait cycle
length. Study outcomes showed the potential of the proposed

model for PD diagnosis.

a: ENHANCED SPETIOTEMPORAL FEATURES

Traditional spatiotemporal features consider gait in the
form of templates sequence whose space and computa-
tional time complexity is very large. To tackle this problem,
Ortells et al. [12] used an improved spatiotemporal feature
to study i.e. Gait Energy Image (GEI) to study gait and
postural features of normal and PD subjects. In spite of
directly considering raw silhouette, the mean image obtained
by normalization of binary silhouette sequence was utilized
to provide robustness to silhouette flaws. Simply, GEI can be
defined as

P
Ge (u,v) = % > Lo, s) (15)
s=1

where P denotes the total number of silhouette frames in the
gait cycle, s is the frame number at an instant and I,(u,v)
indicates original silhouette image with (u,v) values in 3D
coordinate. Two GEI representations were made from entire
silhouette sequence, a sample oh which is shown in Fig.8.

Once GEI’s are constructed, other gait features (e.g. asym-
metry in stance, swing phase, step length, intensity, ampli-
tude, falling risk) were calculated. Results demonstrated the
relevance of GEI in the evaluation of PD gait.

In alternate to GEI, a simple motion history image descrip-
tor (MHI) was adopted by Alcazar et al. [86] for classification
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FIGURE 8. A representation of extracted GEI from the entire sequence of
silhouette gait from the study [12].

of normal, musculoskeletal and PD gait using marker-less
strategy. On extraction of silhouette from acquired video
frames, MHI video descriptor is constructed that represents
human gait dynamics and entire silhouette sequence in a
single image as shown in Fig.9. It can be defined as

T if C(u,v,s)=1
—max(0, M7 (u,v,s — 1) — 1) (16)

otherwise

Mr(u,v,s) =

Here, M7(u,v,s) denotes MHI, C(u,v,s) represents changes
in segmented silhouette and T is the sagittal gait period.
The sensitivity of 80% has shown the robustness of the used
approach in clinical PD investigation.

@ (b) ©

FIGURE 9. A depiction of motion history images (MHI) (bottom row)
extracted for (a) normal (b) musculoskeletal and (c) PD gait used in the
study [86].

3) KINEMATIC FEATURES

Kinematic features are simply related to the human body
joints motion and are captured using an optoelectronic system
(camera and markers). The markers are fixed to the subject’s
body anatomical landmarks of interest. Such type of features
such as joint angles, acceleration, velocity, joint position,
displacement, range of motion (ROM), motion route, etc.
provides a more convenient way to analyze PD affected
gait [25], [85]. Jovicic et al. [87] presented a study to classify
PD and healthy subjects based on kinematic data captured
using the inertial sensor and a video camera. Foot rotations,
flexion angles were measured and the neural network was
applied to differentiate the subject’s walking patterns. Results
showed the effectiveness of sensors in PD FOG detection
giving 16% error between both the systems.

In the Kinect sensor, landmark locations on the subject’s
skeleton model help in more accurate measurement of kine-
matic gait features. A study proposed by Galna et al. [54]
made an effort to compare the capability of Kinect sensor
against a Vicon gold standard for PD analysis. Kinematic
features including ROM, trunk, hip and shoulder flexion’s,
virtual displacement of the wrist, etc. were determined for
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9 PD and 10 healthy subjects. Statistical evaluation measures
demonstrated high correlation between both the systems
(r>0.8).

4) KINETIC FEATURES

Kinetic features deal with the study of two most frequently
used variables i.e. forces and moments which are produced
during walking. Force platforms and another kind of sensors
(e.g. EMG, IS, etc.) are employed to capture such data. When
these sensors are worn on the body or when the foot strikes the
ground, GRF’s and other data is directly measured for further
computations. Also, time domain or statistical (root mean
square: RMS, mean, standard deviation, kurtosis, Skewness,
etc.) and frequency domain (mean and median frequency,
power spectrum, etc.) features can be extracted using sensor
data to analyze the FOG and turning episodes (turn time,
no. of turns, freezing index, etc.) in people suffering from PD
for more accurate diagnosis.

Mezzarobba et al. [88] proposed a study to analyze FOG
events in order to classify PD subjects from normal. Using
kinetic and kinematic data (center of mass: COM, the cen-
ter of pressure: COP). The analysis revealed more postural
deflects in PD with FOG subjects as compared to others and
high relevance of COP than COP in PD inspection. Another
study by Bailey et al. [70] explored frequency and time
domain features (RMS, modulation index, covariance, asym-
metry index, etc.) to test the reliability of PT-RAS therapy
in reducing asymmetry in PD patients. Statistical analysis of
considered gait features shown proficiency of the therapy in
decreasing gait asymmetry in PD (p<0.05) from 23 to 36%.

5) MOTION MASS FEATURES

However, the aforementioned PD gait features provide useful
information about body motion but don’t indicate smoothness
of the motion. Thus, motion mass features provide a set of
features that describes the amount and smoothness of the
motion [14], [89]. Consider Z as the set of all joints of the
body where each point z; demonstrates one body joint and p
as the joints of interest i.e.

Z = {zl,z2....zp} (17)

With each body joint z; three variables are associated such as
Eucledian distance (E, : summation of distances computed
between start and ending location for a given body joint E,),
acceleration mass (A, : total of accelerations at each instant
of time for every joint A;) and trajectory mass (7 : trajec-
tories length summation for joints of interest at given time
instantb T7,) represented as

I
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T, = Z T, (20)
i=1
These parameters can be defined in the form of a single vector
as

MMz,- = {Ez»Az, Tz7 tm} (21)

where 7,, denotes movement’s time length. A study by
Krajushkina et al. [90] successfully classified PD and healthy
subjects using motion mass features collected via Kinect
sensor system. Similarly, Nomm et al. [14] presented a study
to monitor gait deviations among PD individuals and healthy
controls based on motion mass parameters. They extended
the original motion mass features (defined above) by three
additional features i.e. velocity mass (V; : a total of velocities
at each instant of time) similar to acceleration mass, trajec-
tory ratio (trajectory mass and combined eucledian distance
ratio) and acceleration ratio (acceleration mass and combined
eucledian distance ratio) as

V.=V, (22)

The proposed study efficiently classified such gait features
for both the groups that can be useful in PD investigations.

6) COMBINED

For more valid PD inspection, several efforts have been
made to pool information from multiple gait features to
enable broader visualization of deviations among gait pat-
terns. A computer vision approach was developed by
Chen et al. [76] for gait analysis of 24 PD and healthy sub-
jects. The combination of spatiotemporal (gait cycle period,
stride time, walking velocity, cadence) and time-frequency
domain (power spectrum) features was extracted from the
binary silhouette of subjects. The proposed approach attained
an accuracy rate of 80.51% using minimum distance clas-
sifier. In another work, given by Prochazka et al. [15] used
the amalgamation of spatiotemporal (average stride length,
speed) and kinematic (joint angles) gait features to inspect
the gait differences among PD and normal subjects. Depth
information was captured via Kinect sensor and an accuracy
of 94.1% has been achieved.

The comparison among spatiotemporal, kinematic and
kinetic gait features was made by Svehlik ez al. [92] for PD
analysis. This fusion of gait parameters was acquired using
12 camera Mocap system, reflective markers and four force
plates. Results indicated small stride length, large double
support periods, less range of joints motion and reduced
power generation in PD as compared to healthy controls.

B. PD GAIT FEATURE EXTRACTION/SELECTION METHODS
As dimensionality of data grows, it adversely deteriorates
the performance of the learning model. The curse of dimen-
sionality results in increased computational cost, algorithm
complexity, and overfitting issue. To address these problems,
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FIGURE 10. Feature extraction/ selection methods frequently adopted for
PD diagnosis.

two techniques namely feature extraction and feature selec-
tion are mostly preferred. A number of such techniques exist
and this section inclusively focuses those that have been used
for the purpose of extraction and selection of Parkinson’s gait
features based on taxonomy shown in Fig. 10 and presented
in Table 4. Feature extraction is an essential process to extract
relevant attributes from the segmented objects. At time s,
a large number of features extracted lead to unnecessary
classification errors. Thus, feature selection is applied whose
overall purpose is to transform large dataset into a smaller one
that retains original data and provides sufficient information.
Following methods have been employed for detection of
relevant PD gait features over irrelevant ones:

1) STATISTICAL

These are the simplest and widely chosen PD feature
extraction methods such as PCA, LDA, kernel-based PCA
(KPCA), LDA (KFDA) that reduces the dimensional-
ity of feature set capably. Principle component analysis
(PCA) [77], [82], [83], [93], a linecar method assumes direct
relation between variance of features and extent of infor-
mation carried by that feature. It transforms feature set into
low dimensional feature space by preserving the maximum
variance in data. This conversion thus gives principle com-
ponents P (eigenvalues) which simply represents original
feature vectors linear combination as

P.=boy1+beyr+ - - - +byyen where the value ofzjbgj =1
(23)

In order to guarantee the usefulness of class dis-
crimination, Linear/Fischer discriminant analysis (LDA/
FDA) [50], [78], [94] is used that maximizes the data classifi-
cation (increase intercluster distances and reduce intracluster
distances) based on the idea of separating two classes by find-
ing the linear combination of variables. Another method such
as KPCA [76], an extension of PCA is based on a kernel that
performs non-linear mapping to reduce the dimensionality of
the feature set and decreases the computational complexity to
a greater extent. This method initially maps the input data into
a feature space using non-linear mapping and then applies
linear PCA on that feature space. Similarly, KFDA [79],
an extended version of LDA works on the same principle and
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TABLE 4. Shows the summary of considered PD related gait features, extraction/selection methods along with the gait sensing resource and accuracy

rates.
Author/ Year Resource Gait features Feature Participants Performance Conclusion
ext./selc
method
Aich et al. * 3D Mocap system  * Spatiotemporal: * MRMR 20 PD, 20 HC - 98.54% MRMR method had the high
[77]/ 2018 SPT(stride length, *FS (SVM coupled potential to remove redundant data
foot clearance) * SFS with MRMR)  and provides quick response for
* PCA early diagnosis of PD
Dranca et al. * 2 Kinect sensors  * Kinematic (joint +CBFS 30PD 93.40% Kinect sensor and selected feature
[52]/2018 positions, angles) *1G (Bayesian selection method provided
class.) inexpensive diagnosis of PD stages
as well as FOG
Mezzarobba etal. ¢ 7 camera Mocap * Kinematic and *PCA  24PD,12HC -p<0.001 PD with FOG shown more postural
[88]/2018 system kinetic (COP, * LDA (Cop defects and different COP
» 2 force plates COM) trajectories) trajectories than PD with non FOG
* 24 reflective * p<0.01 and healthy subjects
markers (Cop
positions)

Pissadaki et al. * 2 inertial sensor ¢ Spatiotemporal, * FFT 60 subjects - The proposed system proved to be
[71]/ 2018 devices kinetic, kinematic (33F27M) useful for daily activity monitoring
* Kinect v2 in PD patients

Aich et al. * 9 IR cameras * Spatiotemporal (step * PCA 51 PD * 88% The high correlation between both
[82]/2018 * 3D Vicon system  and stride length, step *mean error  the systems shown their applicability
* 2 accelerometers  and stride time, speed) rate in real life scenarios for PD
<10% assessment
Krajuskina et al. * Kinect sensor * Motion mass *FS 20 PD, 0.75-0.85 Consideration of test's time duration
[90]/ 2018 (trajectory and 20 HC (accuracy didn't enhance the quality of the
acceleration mass, range) model
combined eucledian
Verlekar et al. * RGB-D (Kinect) e« Kinematic and *LDA  Neurological 95% The proposed system using VGG-19
[94]/ 2018 camera spatiotemporal and normal CNN outperformed existing systems
subjects for PD gait classification
Hidalgo et al. * A smartphone * Kinematic and *PCA  5Sgait(HP, 74%-80% Results demonstrated the suitability
[93]/ 2017 camera spatiotemporal DP, NP, PD, of smartphone in capturing PD data
(GEI) normal) and more robust analysis
Spasojevic et al. * Kinect sensor * Spatiotemporal (gait *LDA  12PD 70%-90% Use of low cost Kinect sensor can be

[78)/ 2015

Wahid et al.
[791/ 2015

Dillmann et al.
[104)/ 2014

Yin et al.
[50]/ 2012
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* 8 camera Vicon
system

* 15 reflective
markers

+ 2 force plates

* 3D real time
Mocap system
* Reflective
markers

* A camcorder
(VPC- HD1010)

speed, symmetry
ratio) and kinematic
(joint angles, ROM,
angular velocity)

* Spatiotemporal
('stride and step
length, double
support time, speed,
etc.)

* Spatiotemporal
(speed, cadence,
velocity)

* Spatiotemporal

* KFDA 23 PD, 26 HC 92.6 %
(highest with
RF
using multiple
regression)
*PCA 36 PD, 35 HC p<0.001
*FFT 12PD r=0.92 and
+LDA 0.85
*PCA (for training,

effective for home based analysis of
subjects with PD

The proposed multiple regression
based normalization model proved
to be useful in PD rehabilitation
using SPT gait features

PD subjects walked with less speed,
velocity than normal and can be
used as important measures in PD
inspection.

Developed regression model system
seemed to br more reliable for
evaluating abnormality in PD
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TABLE 4. (Continued.) Shows the summary of considered PD related gait features, extraction/selection methods along with the gait sensing resource and

accuracy rates.

Chen et al. * A digital CCD * Time- frequency «KPCA 12PD, 12 HC 80.51% Results indicated the feasibility of

[76]/ 2011 video camera (spectral power, freq. * DFT KPCA method in evaluating motor
signals) and symptoms in PD patients
spatiotemporal
features (gait cycle

Cho et al. * ACCD camera e« Spatiotemporaland +<PCA  7PD,7HC  95.49% LDA shown more accuracy than

[48]/ 2009 frequency domain * LDA PCA and the proposed system
(speed, energy, etc.) revealed its efficiency in identifying

PD gait
Lee et al. * A high quality * Kinematic(joint * SBS 40 PD, 50 HC 76.1%-83.7%  Outcomes indicated the relevance of
[69]/ 2008 S-VHS video angles) and * Hough time swing distances in
camera spatiotemporal transform characterizing PD gait from normal

(swing time distance)

ones.

provides a more reliable classification in dealing with non-
linearly separable data.

2) SPECTRAL TRANSFORM

These are the mathematical models that transform the real
signal into the frequency domain and then extract the
frequency-related features. The methods like FFT, DFT,
Hough transform have been used to achieve the fea-
ture extraction in PD analysis. Fast Fourier transform
(FFT) [50], [71] is the fast computational algorithm for
Discrete Fourier transform (DFT) [76] where both meth-
ods perform similar measurements on the input signal and
produce exactly identical output. The array of time-domain
waveform samples is processed using FFT/DFT that results in
an array of frequency domain samples. Considering y(n) and
Y (P) as time and frequency domain signals having length N,
the time to frequency calculations can be given as

N-1
Y(P) =Y yme VR (24)
n=0
Another method known as Hough transform [69] has been
used to extract the features from arbitrary or unknown shapes
(lines, circle, ellipse, etc.) in a more efficient way. This
method significantly performs well with improved speed
and accuracy for feature extraction in computer vision-based
applications.

3) FILTERS

These are the feature selection methods which extracts the
data features based on their relevance and without relying
on any type of learning model. In PD analysis, multivari-
ate filters have been considered to determine the relation
among features and perform computation efficiently. Mini-
mum redundancy maximum relevance (MRMR) [77] filter
method enhances the relevance and reduces redundancy in
every class using mutual info and linear relation for both
categorical and continuous variables and provides low error
rates for the feature selection process. Correlation-based fea-
ture selection (CBFS) [52] method works on the concept of
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heuristic merit to minimize the cost of feature selection. CFS
takes into account each feature individually, identifies their
predictive value and amount of correlation. Similarly, Fisher’s
score (FS) [90] based filter method assumes assignment of
identical values to similar class samples and vice-versa but
these are not much capable in handling redundancy.

Another filter approach i.e. info gain (IG) [52] for the fea-
ture selection represents the amount of information revealed
by the feature for the particular class and chooses features
based on that information. Also, the Chi-square test provides
another alternative way to select features from the entire
dataset by calculating the differences between observed and
expected frequencies in one or more classes. High speed and
computational simplicity, however, make the filter methods
more robust to use in feature selection but they can reduce
the performance of classifier due to lack of interaction among
classifier and the method used.

4) WRAPPERS
The capability to overcome feature independence issue is
the unique feature of wrapper methods. In contrast to filter
methods, these extracts the feature by taking learning model
into a concern which acts as a black box. Wrapper methods
make use of sequential search strategies (such as SFS, SBS) to
find the best subset of the feature. Sequential forward search
(SFS) [77] is the greedy search algorithm which initiates from
an empty set, pick up the feature u™ and adds it in the already
selected feature Xk to maximize j (Xk, u™) but works well on
a small optimal set of features. Sequential backward search
(SBS) [69], on the other hand, functions reverse to the SFS as
it begins from the entire set, removes the feature u™ that least
minimizes the objective function value j (X—u™). The biggest
drawback of this SBS is that it can’t evaluate the feature again
once discarded. Wrapper methods thus offer better accuracy
estimates but are computationally very expensive and slow
than filter methods.

Table 4 provides an overview of work on different fea-
ture extraction and selection methods including the type of
modality used, extracted features and related accuracy rates
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for PD investigation. Based on number of articles obtained,
amongst all the considered PD features the mixture of two
or more features have been frequently adopted as it allows
more extensive analysis of PD affected gait using number of
features (e.g. joint moments, angles, rotation, forces, energy,
gait cycle events, etc.) simultaneously for evaluation and can
result in improved classification accuracy. Further, data anal-
ysis of obtained references reveals the use of statistical meth-
ods the most (about 52%) due to their simplicity and easy
applicability as compared to other feature extraction/selection
methods, especially focusing on PCA (24%) followed by
LDA (approx.. 20%). The usage ratio of each is depicted
in Fig. 11.

249%

25%

20% 20%
15%
9% 8.8%
10% 4.49% 4.4%
506 4% 4% 49% 4.4% ' 4.5% 4.5%
6 § sSs 0E8N 08
< < < b= E = E Q E ©n @
4 E E l-la g Cha
=

-
v wn

Statistical(52%) ST(17%) Filter(22%) Wrapper(9%)

PD gait feature extraction/selection methods

Percentage Usage
b4

LDA )

FIGURE 11. Plot showing the usage ratio (in %age) of feature extraction/
selection methods used for PD analysis based on the literature from past
15 years.

The unique property of PCA to reduce the complicated
feature set into a simpler and smaller dimension without any
loss of details and being unaffected by outliers make it robust
to extract relevant PD gait features and attracted most of the
research towards it. Also, due to the decreased error rates
feature, LDA has been preferred to attain maximum accuracy
for PD analysis.

V. MACHINE LEARNING TECHNIQUES USED FOR PD
RECOGNITION

In today’s scenario of artificial intelligence (Al), the demand
to handle data efficiently by making the machines more
intelligent like a human is in the rise. The prime goal of
machine learning (ML) is to provide direct interpretation
and extraction of useful patterns from the processed data by
designing algorithms that learn from experiences in labeled
data form as

N

U= {u(")s Md} (25)

N
V= {v(")eM}
ne

n=1

Here U is the feature set where u™ = [u(ln) s u(zn),

u;,")]T is known as a feature vector and V represents label set.
Prediction of output via MLT involves partitioning the data
into three classes i.e. training (to train the model), validation
(to calculate model’s fit) and test (to estimate model’s perfor-
mance). This section discusses various ML algorithms used in

recent years for PD diagnosis depicted in Fig. 12. Depending
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‘Machine Learning
Techniques used in
PD Diagnosis

{
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*SVM * RNN * MDC
* KNN
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* DT

FIGURE 12. The hierarchy representing major machine learning
techniques applied in PD detection.

upon the related data obtained, these techniques are catego-
rized into supervised (classification oriented), unsupervised
(clustering oriented) and probabilistic.

A. SUPERVISED LEARNING

The most common ML technique is supervised learning
which requires an external supervisor to label the feature vec-
tors. This learning tries to predict the function (from labeled
data) that best represents the feature and label set relationship.
Supervised learning reduces the risk of error occurrence and
is used to tackle classification (if every feature vector y relates
to the label z€M, M = {J, J,...J.} and regression (if every
feature vector y relates to the real value z<€Ry ) problems. This
type of learning includes various classifier such as artificial
neural networks (ANN), support vector machines (SVM),
regression models, decision trees (DT), K-nearest neighbor
(KNN), random forests (RF), deep learning (CNN, RNN),
etc.

ANN is the rich paradigm to duplicate the biological func-
tioning of neurons in the brain artificially. These type of
networks are trained using a number of iterative algorithms
including gradient and conjugate descent, Levenberg algo,
back propagation algo, etc. and are implemented to resolve
critical classification problems [71], [81]. In PD analysis,
two variants of neural networks are often considered i.e.
multi-layer perceptron (MLP) (having input, output and mul-
tiple hidden layers) [78] to deal with large, complex compu-
tations and radial basis function (RBF) [69] which is more
intuitive than MLP and stores examples in training set in the
form of prototype. A research work by Spasojevic et al. [78]
performed the classification of normal and PD subjects
using both MLP and RBF type neural networks. The gait
data was captured using a Kinect device and the results
obtained indicated the highest accuracy rate with ANN-MLP
(approx. > 90%). Similarly, Lee et al. [69] utilized the
combination of SBS and General Regression neural net-
work (GRNN) in order to select the relevant gait features and
to classify the PD and healthy controls. The proposed strategy
yielded an accuracy rate of 88.4%. The architecture of GRNN
is shown in Fig. 13.
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FIGURE 13. The proposed architecture of GRNN used in the study [69].

Output layer

It consists of four layers- an input layer, hidden layer, sum-
mation layer and output layer. The variable U is passed to hid-
den layer (having every training sample i.e. Uy, U, Us,... Uy
through input layer. The square distance (Dizs) between an
unknown pattern (U) and training sample is then computed
and passed to the kernel function. The units of summation
layer- X performs minimization of exp [—D?S/(Zaz)]* Yi
associated with U; and Y performs the minimization of exp
[—Dizs/(2a2)] which provides the output of the predicted
result. Although, ANN has been popular due to its unique
benefits but suffers from certain drawbacks such as hardware
dependency, hard interpretation, etc.

SVM is another supervised learning platform which is
based on the concept of the kernel to handle non-linear prob-
lems and uses hyperplane to distinguish classes in feature
space as

fO) =Y widj(y) +b (26)

J=1

where w; is the weight of hyperplane, b denotes its bias and ¢;
represents a non-linear function. The margin calculations thus
provide the distance between classes that should be kept max-
imum to minimize the error of classification. Authors such
as [86] used SVM to classify differences among PD and nor-
mal subject’s gait. Nieto-Hidalgo and Garcia-Chamizo [93]
made an effort to classify five types of gait patterns including
PD gait by applying SVM classifier. An important gait feature
i.e. GEI was recorded using vision-based approach. Results
demonstrated the reliability of SVM in pathological and
normal gait analysis with different accuracy rates. Similarly,
a study by Tahir and Manap [81] successfully analyzed the
deviations among PD and healthy gait with an accuracy rate
of 90.6% with ANN and 95.8% with SVM, revealing the
potential of SVM in gait research. SVM, however, have great
potential to deal with complex problems without causing
overfitting but the selection of kernel serves as a hurdle in
such classifiers.

DT [15], [80](a non-parametric classifier) is preferred to
solve classification problems by designing a model that can
determine the output via some decision rules. Internal nodes
of the tree correspond to the test applied and the outcome is
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represented by tree branches. Prochazka et al. [15] proposed
a study to investigate the gait differences among 18 subjects
with PD, 18 normal and 15 young persons. The gait data
acquisition was performed via MS Kinect. The comparison of
gait for the considered subjects using DT classifier provided
an accuracy of 94.1%. These classifiers are easy to understand
and interpret but are unstable and can lead to overfitting
issues. To handle such problems, a forest is created with the
ensemble of decision trees known as random forest (RF) that
can efficiently deal with high dimensional data [77], [95].
So these classifiers start with building decision trees and
combines them to get improved and stable results without any
need of tuning hyper-parameter.

Similarly, another approach in PD analysis includes
KNN [52], [93] based on the concept of similarity among
features to classify the data and doesn’t require any prior
details about the distribution of the data. Wahid et al. [79]
tried to differentiate 23 PD and 26 healthy subjects based
on Spatio-temporal gait features (stride length, step length,
double support time). Five classifiers were used to evaluate
the accuracy of proposed system, out of which KFD, SVM
and KNN yielded good results. So, KNN has the capability
to tackle noisy and irrelevant data but the selection of ‘k’
value is still a challenging task. Regression models [50], [96]
(linear regression) have been also used by various researchers
for predictive analysis to enable PD diagnosis. This classifier
tends to determine the relationship between the dependent
and independent variables using linear equations. A vision-
based regression model was proposed was Chen et al. [50] to
evaluate the gait deviations among PD and normal subjects
using monocular image sequences. Overall motor abnormal-
ity (MA,) was measured using a linear regression model.
The foot movement abnormal index (FMAI,) and posture
abnormal index (PAI,) were fitted for all the subjects as

MA, = Bo + B} PAL, + BiFMAI, Q7

where fo, B1 and B> are constants calculated using the min-
imum sum of square residual procedure (MSRS). The out-
comes demonstrated the correlation with UPDRS scale with
r = 0.95, 0.85 for training, testing and p< 0.0001.

The need for human expertise to determine the applied
features in order to decrease the data complexity often limits
the performance of ML techniques. Therefore, an improved
paradigm named as deep learning that runs through mani-
fold abstraction levels in data has been designed to make
updations in ANN. Deep learning techniques [94], [97] are
the set of machine learning algorithms to deal potentially
with the growing amount of data as more the volume of
data, higher is the accuracy. The greater depth of the net-
work automatically enhances the performance of the system.
Convolutional neural network (CNN) and Recurrent neural
network (RNN) is the forms of such learning techniques that
have been applied to perform classification of video, images,
text, etc. Sun et al. [98] determined FOG events in 45 PD
patients by comparing the gait features of subjects using
three deep learning techniques i.e. convolution 3D attention
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network (C3DAN), long-term RNN and spatiotemporal mul-
tiplier network (extension of Convnets).

The proposed system (C3DAN) outperformed other algo-
rithms by achieving an accuracy of 79.3%, sensitivity equals
to 68.25 and specificity of 80.8%.

B. UNSUPERVISED LEARNING
Unsupervised learning techniques eliminate the need of
assumption to be made on the labels and the patterns are
inferred within the dataset using a predefined metric. In PD
analysis, clustering techniques such as minimum distance
classifier [48], [76] (MDC), K- means [14], [95] which
divides the data into clusters depending upon their likeness
and disparity, have been focused to perform classification
of gait deviations among PD affected and healthy controls.
In k-means clustering, the grouping of feature vectors is
performed on the basis of the relative distance between them
(closer forms one group and vice-versa). This technique
reduces
1 n
V(D)= =3 e(;, D) (28)

J=1

where e(y;, D;) is the distance between clusters and D; denotes
the centroid/mean. Cho et al. [48] explored the reliability of
a vision-based system to note the differences between PD
and healthy (7 each) gait. MDC was utilized to check the
accuracy of PCA and LDA in feature extraction. The study
results revealed the high recognition rate with LDA than
PCA indicating the potential of MDA in pathology detection.
Again, Soltaninejad et al. [95] used k- means unsupervised
learning for measurement of Time-Up and GO (TUG) data to
classify PD and healthy groups. The proposed technique and
k-means showed high performance in PD assessment. Thus,
unsupervised machine learning techniques seem to be more
effective for PD inspection but it is very problematic to define
the learning objective.

1) PROBABILISTIC LEARNING

As the name suggests, this type of learning is based on the
probability theory that represents uncertainty about models.
Probabilistic learning has the potential to predict and pro-
vide probability distribution for the set of classes. Hidden
Markov models (HMM), Naive Bayes (NB) or Bayesian
networks are the main examples of this learning used in PD
inquiry by [49], [77], [82]. The working of NB classifier is
based on the conditional probability that builds trees on their
occurrence probability and is used to solve classification as
well as clustering problems. A study by Shaw [49] adopted
HMM for classification and detection of PD gait by analyz-
ing the sequences of postural images. The binary silhouette
was preprocessed using morphological operations and the
training of HMM was performed using Viterbi and Baum-
Welch algorithms. The use of statistical measures and HMM
thus provided an accuracy rate of 99.6995%. Another work
by Aich et al. [77] proposed to classify PD patients with
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shuffling gait from older adults. The analysis of gait signals
was performed using SVM, RF and NB. The results obtained
from all the classifiers revealed the accuracy and reliability
of proposed method to detect PD at early stages.

Table 5 highlights the mostly adopted machine learning
techniques for PD identification with their respective pros (+)
and limitations (—). The available data reveals about 81%
of research towards supervised learning preferably focusing
SVM (about 23%) followed by ANN (15%), 8% on unsu-
pervised learning and 11% towards probabilistic learning
techniques as shown in Fig. 14. SVM can perform linear
as well as non-linear classification and can also reduce the
overfitting issue thus it has been utilized the most.

PERCENTAGE USAGE OF EACH MACHINE LEARNING TECHNIQUE
(MLT)

u Supervised MLT
m Unsupervised MLT
u Probabilistic MLT

= ANN

m Regression Models
= KNN

= Deep learning
=MDC

= K-means

= HMM

= NB/Bayesian

FIGURE 14. The graphical representation of %age utilization of various
MLT based on literature from (2005-2019) for PD evaluation.

VI. PD GAIT DATASETS

The evaluation and development of a robust gait recognition
model for the analysis of normal and pathological behavior
heavily rely on an efficient database and other related factors.
In recent years, a number of PD gait datasets have been
created considering various conditions such as sample size
(no. of subjects), walking scenarios (straight, turns), acquisi-
tion resources and environment (indoor, outdoor), frame size,
etc. Based on the taxonomy shown in Fig. 5, total 6 such
databases are obtained since1997, summarized in Table 6.
Out of 6, one is vision-based and rest are based on the sensor.
This section gives a very brief overview of gait datasets
designed for PD diagnosis.

A. VISION-BASED PD GAIT DATASET

Focusing towards vision-based research on PD gait identifi-
cation, only a single database is publicly available namely
INIT gait database [12] (markerless). This database includes
the sequence of binary silhouette (total 160 sequences) which
are captured using 2D high definition video cameras in
LABCOM studio. Ten volunteers (9 males, 1 female) were
recruited to simulate seven different pathological gait patterns
including PD and eighth style of a healthy and natural gait.
They were asked to walk across a green color uniform back-
ground to capture high-quality data in order to enhance the
accuracy of extracted features. Besides INIT database, most
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TABLE 5. Summarizes mostly adopted categories of machine learning techniques (MLT) used in pd analysis with their benefits and drawbacks.

Technique used Type of Learning References

Pros/Cons

Support Vector Supervised

Machine (SVM) ,79,81,82,86,
93,105,126]

Decision Trees (DT) Supervised [15,52,89,91,
99,121]

K-nearest neighbor Supervised [15,52,78,79,

(KNN) 82,93]

Random Forest (RF) Supervised [73,77,79,95,
97,124]

Artificial Neural Supervised [51,52,69,71,

Network (ANN) 78,81,82,124]

Convolutional neural Deep Learning [94,97,98]

network (CNN), Recurrent

neural network (RNN)

Linear Regression Supervised [50,96]

K- means, Minimum Unsupervised [14,48,76,95]

distance classifier (MDC)

Hidden markov model Probabilistic [49]

(HMM)

Naive Bayes (NB)/ Probabilistic [15,52,77,79,

Bayesian network 82]

[3,16,74,77,78 (+) Decreases overfitting issue

(+) Can handle complex problems via kernel function
(-) Performance degrades on large datasets

(-) Difficult interpretation and good kernel choice issue.
(+) Easy to understand and interpret

(+) Deals well with missing data

(-) Expectation based decision that can lead to inaccuracy
(+) Works well with large training samples

(+) Simple and robust to noisy data

(+) Easy implementation and no training step

(-) High computational cost

(-) Value of 'k' needs to be measured

(+) Overcomes overfitting problem

(+) Flexible, accurate and no need of data scaling

(-) Difficult to interpret and time consuming

(+) Fault tolerance capability

(+) Can generalize, handle noisy and incomplete data

(-) Hardware dependent

(-) Can't work with small dataset

(+) Improved accuracy

(+) Weight sharing feature

(-) Overfitting issue and requires larger data to work
(-) Large computational cost

(+) Simple and easy

(+) Resolves overfitting problem

(-) Outliers sensitive

(+) Simple, fast and less computational complexity
(+) Fix missing data problem

(-) Difficult to choose cluster numbers

(-) Inefficient to work with global cluster

(+) More flexible to fit the data

(+) Provides good compression

(-) Difficult to interpret and requires large memory and time
(+) Simple, fast and easy implementation

(+) Requires less training data

(+) Performs probabilistic prediction

(-) Risk ofaccuracy loss

(-) Feature independency assumption

of the researchers created their own vision-based datasets
privately and are not available (e.g. Eltoukhy et al. [13] devel-
oped their own database considering 11 normal and 8 PD
affected subjects to inspect gait deviations). Thus, most of
the datasets in vision-based PD gait diagnosis are private and
have no access to the researchers.

B. SENSOR-BASED PD GAIT DATASET

The sensor-based dataset includes the behavioral signals
(acceleration, force, pressure, etc.) of human body motion
which are evaluated to perform effective gait analysis. The
Physionet database [103] is the most preferred dataset to
analyze PD gait. The reason is that it contains a huge amount
of vertical ground reaction force data (VGRF’s) obtained
from large sample size (93 PD, 73 HC) using 16-foot sensors
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at 100 samples/size. Inertial measurement unit (IMU’s) based
dataset i.e. Daphnet FOG was first created by Bachlin et al.
[100] to determine FOG events in PD subjects. This database
consists of 10 PD subjects (7 males, 3 females) gait record-
ings in three scenarios: - straight walk with 180 degrees turn,
random walk with 360 degrees turn and daily living activities
(ADL). The collected acceleration signal data can be ana-
lyzed to perform gait classification. Therefore, the considered
art-of-literature reveals public availability of sensor-based
databases than vision-based datasets. The data provided in
table 6 can be used to cope up with PD and other clinical
disorders competently.

Vil. FUTURE PERSPECTIVES
Research can’t be considered efficient unless and until
it is able to discover the unsolved issues in existing
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TABLE 6. Summarizes year-wise creation of vision-based and sensor-based PD gait recognition datasets. Acronym of words used in the table:
vision-based (VB), sensor-based (SB), Normal(NM), Parkinson disease(PD), Indoor(l), Hertz (Hz), electrocardiogram (ECG), galvanic skin resistor (GSR),

near infra-red (NIR).

Dataset Ref./Year No. of Resource  Frame Env. Walking VB/SB Online Access Link
subjects/ rate condition
Gait type
INIT Ortells et al. 10/ NM 2D video 800*400 I  Lateral view, normal VB http://www.vision.uji.es/gaitDB
[12]/2018 camera pixels and half motion of
(160seq. arms and legs
CuPid Sinziana etal. 18/ PD 9 IMU's, 1 128Hz 1  Diff walkingenv.:- SB -
multimodal [99]/ 2013 ECG sensor, straight, passing via
dataset a GSR and a corridors, in crowded
NIR sensor hospital hall, with 180
and 360 degree turns
(24h)
Daphnet FOG  Bachlin et al. 10/ PD Accelero-  64Hz 1  Straight walk with 180 SB https://archive.ics.uci.edw/ml
dataset [100]/ 2010 meter sensor deg. turn and random datasets/Daphnet+Freezingt+oftGait
walk with 360 deg.
turn, ADL
Gaitinageing -[101]/ 1999 15/PD(5), Forceshoe 300Hz I 15 minutes (HC)and6 SB https://physionet.org/physiobank/database/gaitdb/
and disease HY(5)and  sensors minutes (PD) subjects
database HO(5) walk on level ground
Gait dynamics Hausdorffetal. 64/ PD(15), Foot 300Hz I  77mwalk for 5 SB https://physionet.org/physiobank/database/gaitndd/
in neuro- [102]/ 1997 HD(20), resistive minutes at normal
degenerative ALS(13) sensors speed
disease dataset and
HC (16)
Physionet Hausdorff 166/ 16 foot 100 I 2 minute walk with SB https://physionet.org/pn3/gaitpdb/
etal. [103]/ - NM(73), Sensors samples/ self-selected speed on
PD(93) second level ground

art-of-literature. This forms the basis to carry out further
research by proposing a robust approach in order to conquer
the gaps pinpointed. Overtime, a number of vision-based
Parkinson’s disease (VBPD) identification approaches have
been practiced and have attained promising outcome but still
contain challenges that require further improvements for the
development of more robust systems. Some specific future
perspectives to deal with such challenges in VBPD recogni-
tion are as follows:

A. VB PD PUBLIC DATASET CONSTRUCTION

By exploring VBPD research in detail, only a single database
i.e. INIT gait database [3], [12] (markerless) has been
obtained that just contain few samples of normal subjects
simulating the gait of some neurological disorders includ-
ing PD. The effect of PD varies with age, gender and the
severity of the disease. Simply considering simulated PD
gait but not of actual patients gait (as in INIT), the relia-
bility of the system may get compromised. Further, no such
marker-based dataset is publicly available till now to the best
of our knowledge. Most of the studies developed their own
datasets possessing certain drawbacks also such as limited
sample size [16], [48], no- consideration of gender disparity,
unmatched demographic data, severity level ignorance [16],
etc. and doesn’t have any public access to them. Thus, this
opens the door for the researchers to create new publicly
available vision-based (marker-based as well as markerless)
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dataset with a large number of normal and PD subjects con-
sidering gender, age, and severity levels into focus so that
more accurate investigation of PD can be performed.

B. ENHANCED PRE-PROCESSING

Once gait data has been gathered, it requires a sufficient
amount of pre-processing to make it more valuable. In recent
years, a number of issues such as the requirement of color
contrast between subject’s appearance and background [82],
camera distortion [3], illumination and lighting conditions,
etc. have been encountered by authors that make the pre-
processing a tedious task and degrades the overall perfor-
mance of the system. Khan et al. [16] proposed a markerless
computer-vision based system to note the deviations in PD
gait. The used approach proved to be feasible but was limited
by the color segmentation method. So the future work can
be directed towards the development of enhanced and effec-
tive pre-processing techniques that can handle such concerns
and can perform robust background modeling for improved
PD inquiry.

C. SELF-OCCLUSION/ OVERLAPPING CIRCUMVENTION

Self-occlusion or overlapping is still an insolvable problem
that leads to inaccurate diagnosis with false recognition rate.
During abnormal gait in PD, short shuffling steps make it
very difficult to detect the gait deviations among left and right
limb of the subject due to overlapping (one limb hides the

156639



IEEE Access

N. Kour et al.: Computer-VB Diagnosis of PD via Gait: Survey

Pre- Processing

| I
. : Extract Frames :
Training , | Feature Optimized
data : J |» Extraction Feature 4
PD and normal subjects : Object | (model-based) Selection
gait acquisition || Segmentation : .
I | 1 ‘ All features
| e e .
|——————————= - —r —r
: : » Selected
| | Extract Frames | | features
I
Camgca Datasget } g : Feature Optimized
Testin } i = Extraction Feature
i g Object { (model-based) Selection
ata : Segmentation | i S
[ — | b

Pre- Processing

Gait classification/
disease diagnosis,
Severity prediction

FIGURE 15. The proposed framework depicting the complete methodology for PD identification along with gait samples of PD (right person in the
dataset) and healthy subjects (left person) in the sagittal plane (bi-directional).

other). Also, the arm movements play a significant role in
providing useful clues regarding asymmetries in PD as arm
become more still due to the resting tremor during walk-
ing. But the intersection of arms and legs in the extracted
silhouette unclear the analysis of such differences in arm
asymmetries among PD and healthy subjects. Shaw et al. [49]
presented an approach to identify PD from silhouette using
HMM. However, the system attained high accuracy rates but
the arm motion was not able to be detected due to over-
lying. Similarly, Verlekar et al. [3], Ortells et al. [12] and
Cho et al. [48] focused silhouette based PD recognition. The
system classified normal and PD subjects giving promising
results but the extracted silhouette was not clear and the arm
movement of subjects was very challenging to analyze so
it was not considered in an effective way. Therefore, efforts
can be made in the future to resolve this issue by diving the
subject into a number of components and again rebuilding the
overlapped or occluded portions of the body using robust and
more effective approach.

D. FEATURE SPACE MINIMIZATION

The use of a large number of features for evaluation purpose
unnecessarily increases the feature space and often affects
the recognition capability of the system. In spite, existing
studies have used various dimensionality reduction algo-
rithms including PCA [93], [104], LDA [78], [94], etc. for
selection of optimized features for PD diagnosis but still
need efforts to improve the system’s efficiency. Thus, future
work can be focused to address the feature space reduction
issue by employing enriched feature optimization techniques
(e.g. bacterial foraging optimization- BFO, particle swarm
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optimization- PSO, hybrid intelligence, etc.) to extract the
most relevant set of PD gait features in order to enhance
the classification accuracy. Hence, the aforementioned points
should be given preference to perform improved and more
reliable PD analysis that can be useful for their rehabilitation.

VIil. PROPOSED WORK

To tackle the challenges observed in vision-based marker-
less approach for PD gait identification, this section of the
paper presents the framework of the proposed work depicting
the complete methodology for robust PD analysis as shown
in Fig. 15. We have proposed to focus on model-based iden-
tification of PD at different stages by classifying the PD
subjects from normal controls. The methodology comprises
of several stages which may lead to better performance and
more accurate results.

The first stage is the marker-based (MB) gait acquisition
of PD affected and healthy subjects. As it is discussed earlier
in section VII that no such dataset is publicly available to
work on. Thus, the purpose of this stage is to develop a
new publicly available MB gait dataset considering actual PD
patients and healthy subjects based on different severity levels
(mild, moderate and severe), age, gender and disease duration
considering sagittal plane.

The second stage is to preprocess the acquired gait data in
order to extract the frames from videos, to eliminate noise
and to segment the object. The model-free approach results
in serious problems such as color contrast requirement, over-
lapping issue, background littering, etc. and thus require
large amount of preprocessing. Therefore, the idea is to use
model-based approach due to its robustness in handling such
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problems and can efficiently segment the object based on
body joints for geometrical model construction without any
need of complex preprocessing.

Once preprocessing is completed, the third stage of the
methodology focusses on the extraction of diseased and nor-
mal subjects gait features, initially by rebuilding the over-
lapped objects (e.g. legs and arms occlusion) and then using
MB approach for the purpose. Several gait features can be
extracted but the combination of such features has shown the
greater relevance to achieve good results. The fourth stage
corresponds to the selection of best subset of features from
all the extracted set of features. There exist various algorithms
for this purpose such as PCA, LDA, genetic algorithm (GA),
bio-inspired algorithms, etc. As GA has the greater capability
to handle arbitrary kind of constraints and exhibits a unique
property called elitism to select best feature but is susceptible
to get trapped in local optima. To overcome this, the perfor-
mance of GA can be enhanced by combining it with bio-
inspired approaches like PSO which can prevent premature
convergence by providing the global view of search space
with less computational complexity. Thus, we propose to use
hybrid intelligence of optimization techniques to get the best
feature subset.

The fifth stage depicts the use of robust classifier to accu-
rately differentiate normal and abnormal gait. The literature
reveals the use of various traditional algorithms to achieve the
purpose, but recently, to solve classification problem, deep
learning (DL) is gaining high popularity due to its supremacy
in terms of performance. Thus, we propose to apply DL
model like CNN or generative Adversarial networks (GAN)
which provide more accurate results. Finally, the last stage is
to compare the obtained results with clinical PD assessment
radiographic scores to check the reliability of the adopted
system in determining severity among PD subjects. Thus,
the proposed framework may present a robust solution to
overcome the problems encountered in previous literature for
PD detection.

IX. CONCLUSION

In recent years, the number of people suffering from PD has
increased substantially and is recorded as the most deadly
health issue worldwide. Making certain efforts, this article
provides an exhaustive survey of existing research work con-
cerning vision-based PD diagnosis through gait from 2005 to
Feb. 2019.

The obtained literature revealed the prime focus on
VB markerless technology (about 48%) where the Kinect
sensor has been used the most for PD analysis due to its depth
detail catching capabilities. The article precisely surveyed
the preprocessing methods used to prepare PD gait data and
also explored different categories of gait features that can be
beneficial for PD gait evaluation. Amongst all, the fusion of
PD gait features has been dominantly utilized as it enhances
accuracy and provides a broader view for PD inspection.

In this work, several PD gait feature extraction and selec-
tion approaches are discussed. Data indicated the majority of

VOLUME 7, 2019

research towards the use of PCA (almost 24%) for dimen-
sionality reduction. Also, the article surveyed Machine learn-
ing techniques that have been used and SVM classifier is
analyzed to be most adopted by researchers to classify PD
and normal subjects (approx. 23%) to provide more effective
decision-making.

Further, this article inclusively presented vision-based and
sensor-based PD gait datasets. The surveying of articles from
1997-2019 yielded single database i.e. INIT gait database
which is publicly available for VB PD analysis and rest are
privately created by authors. Other publicly available datasets
are based on sensor data.

Therefore, from the considered literature, it is concluded
that towards VB, the markerless approach has been greatly
preferred and can provide a more robust assessment of PD
affected patients but still further research need to be done
due to certain challenges such as overlapping/ self-occlusion,
lighting conditions, color contrast requirement, etc. Finally,
this article provides proposed work (model-based) that can
be effectually deal with the identified gaps. Overcoming these
issues can lead to amended performance with high accuracy.
At last, a number of valuable references are given to extend
the related research on PD in the future based on gait for
practical experimentation also.

APPENDIX
Below the URLSs for the images are provided that are taken
from the internet and used in this survey article.

Figure 3: https://www.niehs.nih.gov/health/topics/
conditions/parkinson/index.cfmhttp://prepareformedical
exams.blogspot.com/2016/11/regarding-clinical-features-in.
htmlhttps://en.wikipedia.org/wiki/Micrographiahttps://www.
missouribaptist.org/Medical-Services/Therapy-Services/
Therapy-Services-Post/ArtMID/641/ArticleID/1391/
Treatment-for-Parkinsons-Diseasehttps://in.pinterest.com/
pin/501940320962463694/?autologin = truehttp://youand
parkinsons.com/en-pk/view/m301-s03-treatment-and-
management-of-parkinsons-disease-slide-show https://www.
medindia.net/news/healthwatch/new-smell-test-for-
detection-of-alzheimers-and-parkinsons-173687-1.htm
https://www.healthline.com/health/parkinsons/sideeffects.

Figure 5: https://www.qualisys.com/hardware/accessories/
pass ive-markers/soft-marker/https://docs.vicon.com/display/
Nexu s25/Automatically+ assess+ foot+ strikeshttps://www.
amazon.co.uk/Huawei-Y6-2018-Black-unlocked/dp/BO7CG
3PADL  https://www.youbeli.com/microsoft-xb360-kinect-
sensor-black-new-p-1054887.html?stores = 1966https://
www.frequencyprecision.com/products/floor-pressure-mat-
kit-plug-matched?variant = 45400977109ttps://www.intoro
botics.com/accelerometer-gyroscope-and-imu-sensors-
tutorials/https:// www.miomove.com/shoe/https://www.
cooking-hacks.com /electromyography-sensor-emghttps://
newatlas.com/cityzen-smart-shirt-sensing-fabric-health-
monitoring /30428/.

Figure 15: https://www.dhgate.com/product/wt-3110a-
port able-lightweight-camera-tripod/407532459. html https://
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dataaspirant.com/2018/01/15/feature-selection-techniques-
r/https://www.mdpi.com/1424-8220/16 /11 /1792/html.
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