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ABSTRACT The deep convolutional neural networks (CNNs) have been shown excellent performances
for image denoising. However, the denoising CNN model trained with a specific noise level cannot deal
with the images which have spatiotemporally variant random noise and low signal-to-noise ratio (SNR),
such as seismic images. To this end, we propose a patch-based denoising CNN method, namely PDCNN.
Specifically, we cluster the overlapping patches of noisy image into K classes where the image patches have
close noise levels in each class, and then choose a suitable model for denoising the corresponding class
from a series of well-trained CNNmodels. By embodying the structural statistics, we propose a CNNmodel
selection criterion with a structural-dependent parameter. In contrast to the manual model selection process,
the more accurate CNN model is chosen automatically and effectively. The capability of the PDCNN is
demonstrated on synthetic and field seismic images. Experimental results show that the proposed method
largely benefits from using multiple CNN models to jointly denoise, and leads to the satisfactory denoising
performance in spatiotemporally variant seismic random noise reduction and structural signal preservation.

INDEX TERMS Convolutional neural networks (CNNs), clustering, patch, seismic image denoising, signal
preservation, spatiotemporally variant random noise.

I. INTRODUCTION
Seismic exploration is the significant way for probing sub-
surface structures to explore oil and gas resources. One of
main objects of the seismic signal processing is to accurately
extract the effective seismic signals from observed noisy
seismic images and then obtain information of complicated
subsurface geological structures. However, acquired seismic
data come with intensive interference and random noise gen-
erated from various noise origins such as winds and vehicle
movements, causing the heavy degradation of the seismic
data.Moreover, due to the acquisitionway of the seismic data,
the noise level usually varies spatiotemporally over seismic
data, leading to the very low SNR in some local areas, which
makes signal identification and extraction extremely difficult.
Therefore, seismic image should be denoised to improve its
quality, as well as preserving seismic signals. In the past
decades, random noise reduction remains an active research
topic in seismic signal processing. A huge amount of methods
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have been designed for seismic random noise reduction to
meet the demands of the development in seismic exploration,
such as wavelet transform-based denoising methods [1], [2],
time-frequency peak filters [3]–[5], sparse representation [6],
PDE-based diffusion filters [7], [8]. Although these denois-
ing methods highly improve the quality of seismic images,
the denoising performances still need to be improved under
the condition of low SNR and spatiotemporally variant seis-
mic random noise.

Recently, very impressive seismic denoising results have
been achieved based on patch-based denoising methods. The
nonlocal means algorithm (NLM) exploits a self-similarity
to find the nonlocal similar patches for image denoising. The
NLM has been applied in seismic random noise attenuation
and effectively preserves the seismic energy across sharp dis-
continuities and curved events [9]. Another powerful example
is the block matching and 3D collaborative filtering method
(BM3D), which groups similar blocks by block matching and
applies the collaborative filer to denoise the similar blocks
in transform domain [10]. By using the local similarity of
blocks, the BM3D algorithm achieves a benchmark denoising
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performance in preserving the details of seismic structural
signals [11], [12]. For obtaining better sparse representations,
dictionary learned from patches is used for effectively mod-
eling seismic signals. Relative to the predefined dictionaries,
such as curvelets, seislets, and shearlets, dictionary learning
based methods have more powerful capacity to capture the
structural features of seismic signals, and thereby improve
denoising performance [13], [14].

Most recently, as computer hardware improves, it is
feasible to train larger neural networks for learning more
complex features intelligently. A typical example is the
convolutional neural networks (CNNs). The deep CNNs
have been widely applied in various fields and shown out-
standing performances in object classification [15] and seg-
mentation task [16]. Moreover, researchers began to apply
the CNNs to solve the image restoration including deblur-
ring [17], super-resolution [18], and denoising [19]–[21].
Zhang et al. [20], [21] proposed the denoising CNN
models (DnCNNs) for image denoising. The denoising per-
formance is superior to the state-of-the-art BM3D method.
Furthermore, the CNNs also have been applied to seismic sig-
nal processing [22]–[24]. Yuan et al. [25] employed the CNN
model for classifying time-space waveforms and picking
first-breaks. The CNN-based model for 2-D image objection
detection was also developed for identifying seismic events
from seismic time series sets [26]. Zhao et al. [27] trained a
denoising CNNmodel suitable for removing random noise in
the desert area which has the characteristics of low frequency
and non-Gaussianity. Zhu et al. [28] further utilized a deep
neural network to remove a variety of seismic noise. By using
transfer learning, Yu et al. [29] achieved a satisfied denoisng
result of field seismic data based on the fact that the CNN
model was trained by synthetic training set with fine tuned
parameters. Consequently, the appropriate CNN denoising
model is promising for the low SNR seismic images with
spatiotemporally variant random noise.

Since the CNN model is a plain discriminative learning
model, the single denoising CNN model trained with a
specific noise level cannot obtain a satisfactory denoising per-
formance for the noisy image with other noise level. Conse-
quently, it is also found that only using a single CNNmodel is
unable to achieve a promising denoising performance for the
spatiotemporally variant random noise. Some improvements
have been made for addressing this problem. The single CNN
model named DnCNN-B, which is trained by a range of noise
levels for blind Gaussian denoising in [21], can deal with spa-
tiotemporally variant random noise, but it still has some trou-
ble in well generalization for complicated real noisy images.
In [30], a model named FFDNET is designed to handle the
spatiotemporally variant random noise by adding a estimated
noise level map as input of the CNN model. However, this
method is practically not feasible for denoising seismic image
due to the difficulty of estimating seismic noise level map
and matching the model by trial and error. Unmatched CNN
model may bring the distortion of the filtered signal and poor
denoising capability. Therefore, in the areas with rich seismic

features, more accurately and effectively choosing the CNN
model is required for preserving signal while suppressing the
spatiotemporally variant seismic random noise.

Motivated by patch-based denoising, we propose a patch-
based denoising CNN method, namely PDCNN, which com-
bines the patch clustering and multiple CNN models to
remove the spatiotemporally variant random noise in seismic
images. In the PDCNN, we decompose the noisy image into
the overlapping patches, and then cluster the overlapping
patches according to their estimated noise levels. In this
way, one class only contains the patches with noise levels
restricted in a small specific noise level range, and then a
single CNN model is able to be selected for dealing with
all patches in this class. Moreover, we train multiple CNN
models associated with noise levels of the spatiotemporally
variant random noise. The joint denoising strategy ensures
the superior denoising ability of the PDCNN and effective-
ness of removing the spatiotemporally variant random noise
with sudden variation of noise level. Furthermore, a model
selection criterion guided by structural statistics is proposed
based on the relevance of the CNN model to the noise level
range. As a consequent, the matched CNN model can be
automatically and effectively chosen for each class, leading
to outstanding denoising performance while preserving com-
plicated morphology of seismic signals.

Note that the noise level of a filed seismic data is unavail-
able. In order to accurately estimate the noise variance of
patches, we adopt a nonparametric statistical method in [31],
which considers all eigenvalues of the covariance in redun-
dant dimension rather than the smallest eigenvalue as
the noise level estimation [32], [33]. As proved in [31],
the adopted method is able to yield robust noise level estima-
tion for the image patches with rich textures. The capability
of the proposed method is demonstrated on both synthetic
and field seismic images. Comparing with traditional seis-
mic denoising methods and state-of-art denoising model, our
method performs better in terms of signal preservation and
spatiotemporally variant random noise reduction.

II. THEORY OF THE DENOISING CNN
In this section, we first introduce the denoising CNN model
framework applied in our work, which is proposed in [20].
Then the updating process of parameters in the CNN model
is also presented in detail.

A. THE CNN ARCHITECTURE USED FOR DENOISING
Based on the design of the CNN architecture and the training
process, the learned CNNmodel attempts to predict the clean
version from a corrupted image. Generally, the CNN model
consists of the input layer, hidden layer, and output layer.
The three kinds of layers of the CNN model applied in our
work are composed by stack of operators which include
the dilated convolution operator [34], the batch normaliza-
tion (BN) operator [35], and the Rectified Linear Unit (ReLU)
as the activation function.
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The input layer contains a dilated convolution operator and
a ReLU activation function. The hidden layer is made by the
superposition of a dilated convolution operator, a BN opera-
tor, and a ReLU activation function in order, and the number
of the hidden layer is changeable. The output layer only has
a dilated convolution operator. With the aid of the three basic
operators, the CNNmodel is constructed with multiple layers
and different depths. Here the network depth is the same as
the number of the layers. In general, the denoising ability
of neural network will be effectively improved as the depth
of network increases. But, too deep networks may fail to
converge, along with increasing the burden of training due to
excessive parameters. Hence, the depth of the network should
be set appropriately based on the images to be processed.

The convolution operator captures the feature maps of
the desired image during the training process. The deeper
network yields lager receptive field, which means the context
information in larger region of input image can be utilized
by the convolution operator, playing an important role in
the denoising performance. Consequently, for better trade-
off between denoising performance and training efficiency,
a proper size for the receptive field of the network needs
to be considered. Here, the CNN model used in our work
applies the dilated convolution operator to replace the ordi-
nary convolution operator. The dilated convolution operator
with a dilation factor s refers to the convolution operator
only having 9 non-zeros parameters with fixed positions and
s zeros between them, abbreviated as s-Dconv. The size of
the s-Dconv is (2s + 1) × (2s + 1). Notably, when s = 1,
the 1-Dconv is the ordinary convolution operator with the
size 3×3. The dilated convolutions can enlarge the receptive
field without increasing the number of training parameters,
which reduce the burden of training for considering the larger
receptive field. For example, the desired receptive field size
of 51 × 51 can be achieved by only 9 dilated convolution
operators whose dilation factors are 1, 2, 3, 4, 5, 4, 3, 2, 1 in
order. For the ordinary convolution, however, 25 operators
are required to obtain the same receptive field size. Using the
dilated convolution operator can reduce the number of train-
ing parameters as well as holding the denoising performance
of network.

For the ReLU(max(0, y)), it is applied as the activation
function which has been widely used in the deep learning
frameworks. The ReLU function replaces the traditional sig-
mod function and reduces the vanishing gradient problem
as speeding up the training. In addition to these two basic
operators, the CNN model adopted in this paper also adds
the BN operator. This operator described in detail in [35] is
actually proposed to eliminate the Internal Covariate Shift
problem which should not be neglected as the depth of net-
work gradually increases. The BN layer also can support
a faster convergence of training by using a higher learning
rate. Moreover, using both the residual learning and the BN
operator has been proved to make the model tend to obtain
a better denoising performance during training [21]. Finally,
the CNN framework by stacking the s-dilated convolution

operator, the BN operator, and the ReLU activation function,
has been proved to have the excellent denoising ability for
single noise level [20]. In our work, we employ this model
framework to train a series of CNNmodels with a wide range
of noise levels.

B. THE UPDATING PROCESS OF THE CNN’S PARAMETERS
For image denoising, we need to recover a clean image x from
a noisy observation y = x + v, where v denotes additive
noise assumed to be Gaussian. Most denoising CNNs based
on the general training framework aim to learn the desired
underlying mapping H (y) to predict the clean image x. Here,
the CNN model based on residual learning is designed to
learn the residual mapping F(y,2) to predict the residual
noise v, and x = y − F(y,2) is obtained as the denoised
image [20]. 2 denotes all trainable parameters in the CNN
model.

Generally, the CNN training learns all parameters2 in the
filters of the CNN model by minimizing the loss function,
defined as the following

`(2) =
1
2N

N∑
i=1

‖F(yi,2)− (yi − xi)‖2 (1)

where {((yi, xi)}Ni=1 represents N noisy-clean training pairs.
By using the classical backward propagation, the loss is prop-
agated from the last layer to the first layer through the chain
rule, thereby realizing the updating of various parameters.
The parameter θl ∈ 2 in the l-th layer is derived as:

θl = θl − γ (∂`/∂θl) (2)

where γ is the learning rate, and the derivative ∂`/∂θl is
acquired from the last layer to layer l by the chain rule.

As described above, the denoising performance of the
CNN model is greatly affected by the training data, which
is a common problem in the discriminative learning methods.
When the noise level added to the training data is a single
specific value, the trained CNN model has the outstanding
denoising performance for the matching noise level, but has
the limited denoising performance for other noise levels,
thereby ill-suits the spatiotemporally variant random noise
existed in the field seismic images.

III. THE PROPOSED PATCH-BASED
DENOISING CNN METHOD
Based on the superior denoising ability of the single CNN
model for its matching noise level, we propose a patch-based
denoising CNN method (PDCNN) to remove the spatiotem-
porally variant random noise in seismic images, by combin-
ing the patch clustering and multiple denoising CNNmodels.

The flowchart of the proposed PDCNN algorithm has been
shown in Figure 1. The PDCNN contains a training stage
and a denoising stage. In the training process, we apply a 9-
layer CNN model and train a set of models corresponding to
multiple noise levels, using the residual learning framework.
In the denoising stage, we have two steps including the patch

VOLUME 7, 2019 156885



Y. Zhang et al.: Patch Based Denoising Method Using Deep CNN for Seismic Image

FIGURE 1. The flowchart of the proposed patch-based denoising CNN method.

clustering process and the denoising process with the mul-
tiple CNN models. Using the classical K -means clustering
method, we obtain multiple clusters with small noise level
ranges. In this way, each cluster contains the patches with
similar noise levels and thus can be handled by a single CNN
model trained by one specific noise level.

In addition, a model selection criterion related to the esti-
mated noise level δ and the contrast w of each cluster is
proposed to automatically and optimizedly select the final
model CNN-β with the matching noise level β for each
cluster, abbreviated as Dβ . In order to give more consid-
eration to signal preservation for those clusters containing
rich structural textures, the contrast w is used to adjust the
model selection process. It is worth to mention that the input
of each CNN model is not multiple overlapping patches
included in each cluster, but the overall noisy image, just for
taking advantage of the receptive field of the network and not
destroying the structures of the image. Each denoised version
of noisy patches in cluster k is extracted from the output
image of CNN model Dβk , based on its original position in
noisy image. Then, the final filtered result is obtained by
averaging denoised overlapping patches.

A. THE PATCH CLUSTERING BASED ON THE NOISE LEVEL
The noise level of nonstationary seismic random noise
changes significantly over seismic image. However, the noise
level of small overlapping patch can be assumed as a constant,
which makes it possible to select one CNN model to denoise
such an image patch. With this in mind, we decompose the
noisy image into overlapping image patches with the size
Q×Q. In our work, instead of separately matching the CNN

model for each image patch, we cluster numerous patches
according to their noise levels estimated by [31], and then
select the desired CNNmodel to denoise each cluster, in order
to simply and efficiently deal with large quantities of patches.
For practical applications, the CNN model can slightly tol-
erate some noise level mismatch. In other words, the CNN
model should be able to handle a small range of noise levels
around its matching noise level. Therefore, the reasonable
noise level range is critical to the patch clustering and model
selection, which also determines the denoising performance
of the proposed PDCNN algorithm.

We then analyze the feasibility of the noise level range on
SNR improvement using a synthetic example. Three noisy
images with normalized noise levels 0.16, 0.36, and 0.56 are
respectively denoised by 40 CNN models [D0.02,D0.80],
where the subscript indicates the normalized noise level range
[0.02, 0.80] with internal 0.02 used in training. As shown
in Figure 2, the SNRs of the denoised results vary with respect
to the training noise levels of the CNN models. Without
doubt, the models D0.16, D0.36, and D0.56 obtain the best
SNRs for three noisy images, respectively. If we set the 95%
of the best SNR as the tolerable limit, models whose training
noise levels selected from the range of [0.14, 0.20], [0.34,
0.40], and [0.54, 0.60] are the reasonable CNNmodels which
work well for the three noisy images respectively. The results
lead to a general phenomenon. For the noisy image with noise
level B, the CNNmodels with training noise levels belonging
to [B-0.02, B + 0.04] can be employed due to only the 5%
attenuation from the best SNR of noise level B. Similarly,
we can conclude that for onemodel Dβ trained by single noise
level β, the reasonable noise level range that Dβ can handle
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should be [β − 0.04, β + 0.02] and the width of the range
is about 0.06, for considering 5% attenuation from the best
SNR of each noise level in the range [β − 0.04, β + 0.02].
It indicates that the width of noise level range for each cluster
should be smaller than 0.06, and the corresponding noise level
at the position of two thirds of noise level range in one cluster
is feasible to match the CNN model.

In order to obtain better clusters, we utilize the afore-
mentioned rule to infer the number K of the clusters and
initial cluster centers for the K -means clustering algorithm.
Let the noise level range of all overlapping image patches
[δmin, δmax], we first use the hard threshold to segment
[δmin, δmax] for obtaining the desired cluster number K and
initial centers of the K -means clustering algorithm. First, all
image patches are divided into K classes based on noise
level according to the fixed width b. Setting the threshold
b× k + δmin for the class k (1 ≤ k ≤ K − 1), the patch with
noise level δ satisfying the condition: b×(k−1)+δmin ≤ δ <
b× k + δmin will be added to the class k . For the last class K ,
the condition is b× (K −1)+ δmin ≤ δ ≤ δmax . Thus, we can
obtain the number K of the clusters, and the means of noise
levels in K classes are as the initial cluster centers of the
K -means clustering. Here we consider that the noise level
width of multiple clusters obtained by theK -means clustering
is different, so we set the value of b less than 0.06. Finally,
based on the classical K -means clustering, the obtained K
clusters set can be written as M = {M1,M2, . . . ,MK }.
The cluster k (1 ≤ k ≤ K ) is denoted as Mk ={
M1
k ,M

2
k , . . . ,M

R
k

}
, where R is the number of patches

belonging to the cluster k .

B. THE CHOOSING OF THE OPTIMIZED CNN MODELS
To obtain the promising denoising performance in nonstation-
ary seismic random noise attenuation and complex structural
signal preservation, the suitable CNN model should be cho-
sen for each cluster. The proposed model selection criterion
considers three-fold.

First, the model selection depends on the estimated noise
level from the overlapping patch. In practice, the mismatch
between the estimated noise level and the real noise level
is unavoidable. If the estimated one is lower than the real
noise level, the random noise is unable to be completely
removed, whereas the image details may be smoothed. In our
work, instead of directly using the estimated noise level,
we empirically select the CNNmodel slightly higher than the
estimated noise level, for assuring the denoising performance.
Second, the model selection should be automatic. For CNN
denoising,manually selecting the CNNmodel is easy to intro-
duce more errors, and becomes difficult for multiple clusters.
Consequently, based on the estimated noise levels of all clus-
ters, we consider automatically and optimizedly selecting the
CNN models. Third, the texture information contents of all
patches in each cluster should be taken into account. Since
seismic images include complex structural textures, the CNN
model just considering the denoising ability for random noise
may smooth the seismic signals as well for those regions with

rich features. So the PDCNN needs to select the model with a
relatively lower training noise level for the detail preservation
of the cluster which contains rich structural textures.

To this end, we propose a criterion for selecting the CNN
model for each cluster guided by the structure statistic, which
is presented as following:

βk =
a

[1+ (wkw )2]
· δk (k = 1, 2, . . . ,K ) (3)

where δk (k = 1, 2, . . . ,K ) is the estimated noise level of the
k-th cluster and the corresponding βk represents the matching
noise level of the CNN model. The parameter a determines
the upper limit of the model selection and generally takes a
value bigger than 1.

For the whole texture contrast wk of cluster k ,
wk = (1/R)

∑R
r=1 w

r
k (1 ≤ k ≤ K ) is the average of the

contrasts of all patches in the cluster k , where wrk is the
contrast of the patch Mr

k . w = (1/K )
∑K

k=1 wk represents
the mean of the whole texture contrasts of all clusters for
normalizingwk . The contrastwrk measures the local variations
of the patch Mr

k and is calculated based on the gray-level
cooccurrence matrix (GLCM) which is represented as [37]

wrk =
∑
i

∑
j

(i− j)2Cr
k (i, j) (4)

where the matrix Cr
k is the GLCM of the patch Mr

k and
extracts the texture features by indicating the spatial distri-
bution of gray level values at two pixels in a neighborhood of
the patch Mr

k .
For the patch Mr

k with the size Q × Q whose gray level
is scaled to m, its gray-level cooccurrence matrix Cr

k has the
size m× m, which is calculated by a probability function for
measuring the probability of two pixels (i, j) occurring a given
displacement vector

→

d= (dx, dy) in Mr
k , defined as follows:

Cr
k (i, j) =

uij
(Q− dx)(Q− dy)

(5)

where uij denotes the number of occurrence of the pixel values

(i, j) posses at the displacement vector
→

d in the patch. Prac-

tically, we apply a set of displacement vectors 1 = [
→

d1=

(1, 0),
→

d2= (0, 1),
→

d3= (1, 1),
→

d4= (1,−1)]. The final Cr
k is

obtained by averaging four matrixes based on displacement
vectors from 1. Besides, in order to eliminate the noise
interference for capturing the contrast of effective signals,
Gaussian smoothing as the preprocessing is applied before
computing the GLCM of each patch. In this way, the texture
characteristics of all patches contained in each cluster entirely
contribute to the selection of the CNNmodel for each cluster.
Considering the size of the patch is smaller than the receptive
field size of the network and the structural features of the
whole image should not be destroyed, we take the whole
noisy image as input for the CNN model of each cluster
instead of using the patches in each cluster. As a result,K out-
put images are obtained from the CNN models of K clusters.
Then the denoised versions corresponding to noisy patches
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FIGURE 2. The SNR curves of three noisy images denoised by 40 CNN models trained by the specific normalized noise levels in the range
[0.02,0.80]. (a) the noisy image with normalized noise level 0.16. (b) the noisy image with normalized noise level 0.36. (c) the noisy image
with normalized noise level 0.56.

FIGURE 3. Synthetic noisy seismic image. (a) Ideal seismic image.
(b) Noisy seismic image with spatiotemporal variant Gaussian noise
(averaged SNR = −9.04 dB).

TABLE 1. Training times for different noise levels.

including in each cluster are extracted from the output image
of each cluster. The final filtered image is reconstructed by
averaging denoised overlapping patches.

IV. EXPERIMENT
In this section, we first give the training process, which
includes building the training data sets suitable for the seismic
image denoising and then training a series of CNN models
with a wide noise level range. We apply the PDCNN based
on a series of trained CNN models for the synthetic and field
seismic images to verify its effectiveness.

A. TRAINING FOR DENOISING SEISMIC IMAGES
1) TRAINING DATA SETS
For seismic image denoising, we simulate the clean seismic
image to construct training data by using the Ricker wavelet,
which is defined as following

x(t) = A
[
1− 2(π fm(t − t0))2

]
· exp(−(π fm(t − t0))2) (6)

where A is the amplitude, fm is the dominant frequency and t0
is the initial time. The synthetic seismic images contain mul-

tiple seismic events with different parameters fm, t0, and A.
We set the dominant frequency fm from 12 Hz to 63 Hz
with the internal of 2 Hz while the amplitude A is chosen
from [0.1 0.3 0.7 1]. The apparent velocity ranges from
600 m/s to 9000 m/s with the internal of 500 m/s. Finally,
we obtain 82 synthetic clean seismic images where each seis-
mic image is composed of 240 traces and 2000 samples per
trace.We randomly select 75 images for training and 7 images
as the test data. By adding the White Gaussian Noise (WGN)
v with a fixed standard deviation σ to the clean seismic
images, the noisy images are generated. The clean seismic
images and the noisy seismic images are then cropped into
image patches of size 60×60, and finally 128×1240 training
pairs are obtained as one training set corresponding to noise
level σ , similarly for the training sets of other noise levels. It is
worth noting that the clean seismic images are normalized to
[−1, 1] by dividing their maximum value respectively before
generating the noisy seismic images.

2) TRAINING
In our work, we set the normalized noise standard deviation
σ changing from 0.02 to 0.80 with a step of 0.02 which
covers the noise level range of the seismic images in our
experiments. We generate 40 training data sets and train the
corresponding 40 CNN models, respectively. In order to suit
seismic image denoising, the depth of CNN model is empir-
ically set to 9 based on the fact that the relatively larger size
of the receptive field is beneficial for capturing the features
of the seismic events with steep slopes. As a consequence,
the whole network has the receptive field with the size of
51 × 51. Moreover, 64 convolution operators are utilized to
generate 64 feature maps for every convolution layer.

During training, we use some common training strategies
such as the Adam solver to optimize the updating process
of parameters, for speeding up the mini-batch training and
obtaining quick convergence rapidity [38]. We adjust the size
of the mini-batch from small to large in multiples of 8 and
best size of 128 is applied. Because using the residual learning
and BN layer together makes the training converge steadily,
the learning rate can be set as a larger value for speeding
up training. We set the learning rate starting from 0.01 and
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TABLE 2. Three criteria results of five methods on synthetic seismic images with different SNRs. The best results are highlighted.

exponentially reducing to 0.001 for fixed 100 epochs.
In addition, it is found that training additional multiple
epochs after the training error stops decreasing is slightly
beneficial to obtain the model with a better denoising
performance. In our work, when the training error stops
decreasing, additional 10 epochs are adopted for train-
ing the CNN model. Alternatively, the training is termi-
nated at maximum 100 epochs. The Matlab (R2018a) with
MatConvNet package on an Nvidia GeForce GTX 1080Ti
GPU is used to train the CNN models. We find that the
training generally is terminated within about 70 epochs
for different noise levels. Table 1 gives the training times
of 8 noise levels with 0.1:0.1:0.8. The training times
of 40 noise levels are different and they slightly fluctuate near
12.5 hours.

B. DENOISING
In order to evaluate the performance of the proposed method
in removing spatiotemporally variant random noise and pre-
serving seismic signal, we employ the proposed PDCNN
on the synthetic and field seismic images. Results are
compared with four algorithms including the FK filter,
Wavelet-based denoising method, BM3D method, and the
DnCNN-B model. For quantitative evaluation of denoising
performance, we further calculate the SNR, mean squared
error (MSE), and mean structure similarity (MSSIM) [39]
corresponding to the synthetic image. The SNR and MSE are
computed by

SNR(dB) = 10log10

∑L
i=1 |zi|

2∑L
i=1 |zi − qi|

2
(7)

MSE =
1
L

L∑
i=1

(zi − qi)2 (8)

where z is the ideal signal, q is the denoised signal, and L is
the length of the signal. The MSSIM is also used to measure
the mean structure similarity between the ideal dataX and the

filtered data Y, which is defined as

MSSIM(X,Y) =
1
J

J∑
j=1

SSIM(xj, yj) (9)

where xj and yj are the image contents in the j-th local
window. J is the number of local windows of the data. The
structure similarity (SSIM) between xj and yj is calculated as

SSIM(xj, yj) =
(2µxµy + C1)× (σxy + C2)

(µ2
x + µ

2
y + C1)× (σxσy + C2)

(10)

where µx and σx are the mean intensity and standard devi-
ation of xj. µy and σy are the mean intensity and standard
deviation of yj. σxy is the covariance of xj and yj. C1 and C2
are the constants in order to maintain stability.

1) SYNTHETIC SEISMIC DATA
To investigate the validity of the proposed method, we apply
our method to the synthetic seismic image which consists of
seven seismic events with the dominant frequencies of 50 Hz,
45 Hz, 38 Hz, 32 Hz, 30 Hz, 25 Hz, and 20 Hz shown
in Figure 3(a). The noisy seismic data are generated by adding
the WGN with spatiotemporally variant levels. The noisy
seismic image shown in Figure 3(b) has the average SNR of
−9.04dB.

We employ the FKfilter,Wavelet-based denoisingmethod,
BM3D, DnCNN-B, and the proposed PDCNN on the noisy
image. Figure 4(a), (c), (e), (g), and (i) illustrate the fil-
tered results using five denoising methods. The difference
images between five denoised seismic images and noise-
free seismic image are shown in Figure 4(b), (d), (f), (h),
and (j). From Figure 4(a), it is observed that the FK filter
can remove a certain amount of spatiotemporally variant
random noise and partly reveal the seismic events. However,
the residual noise and signal loss are clearly observed in the
difference image shown in Figure 4(b). The Wavelet method
shows a certain capacity of suppressing intensive random
noise and results in a clean background in Figure 4(c). But,
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FIGURE 4. Denoising results of a synthetic seismic record with
spatiotemporal variant Gaussian noise using five methods. (a) Result of
the FK filter. (b) The difference of the pure seismic image and result of FK
filter. (c) Result of the Wavelet-based denoising method. (d) The
difference of the pure seismic image and result of Wavelet-based
denoising method. (e) Result of the BM3D method. (f) The difference of
the pure seismic image and result of BM3D method. (g) Result of the
DnCNN-B method. (h) The difference of the pure seismic image and result
of DnCNN-B. (i) Result of the PDCNN method. (j) The difference of the
pure seismic image and result of PDCNN method.

the Wavelet method excessively smoothes effective seismic
events, especially for the first and second seismic events
with large slopes, due to its poor ability of describing the
curved features of seismic events. In contrast, the BM3D,

FIGURE 5. Single-trace waveforms and amplitude spectrum comparison
denoisied by five methods (the 56th traces of Figure 4). (a) First wave of
trace 56 (50HZ). (b) Second and third waves of trace 56 (45Hz and 38Hz).
(c) Fourth and fifth waves of trace 56 (32Hz and 30H). (d) Sixth and
seventh waves of trace 56 (25Hz and 20Hz). (e) Amplitude spectrum of
the signal in the 56th trace of Figure 4.

DnCNN-B, and our method do better in random noise atten-
uation than the FK filter and Wavelet method. Moreover,
the DnCNN-B and our method have better performances
in preserving signals than the BM3D method. The seismic
events recovered by the DnCNN-B and the proposed PDCNN
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FIGURE 6. Filtered results of a real seismic record by applying five different mehods. (a) Noisy record. (b) Denoised by the FK filter.
(c) Denoised by the Wavelet-based denoising method. (d) Denoised by the BM3D method. (e) Denoised by the DnCNN-B method.
(f) Denoised by the PDCNN method.

both become continuous and complete, which also can be
verified by the difference images in Figure 4(h) and (j).
In comparison with the DnCNN-B, our method obtains the
cleaner background in the filtered seismic image. The spa-
tiotemporally variant random noise is almost reduced and
cannot be observed in Figure 4(i) using the PDCNN while
some random noise is visible in Figure 4(g) by applying
the DnCNN-B. The experimental results demonstrate that
our method outperforms the other four denoising methods in
suppression of spatiotemporally variant seismic randomnoise
and signal preservation.

Additionally, in order to emphasize the efficiency of the
proposed method, we compare the denoising performances
of the 56th seismic trace of five filtered results in time and
frequency domain. As illustrated in Figure 5(a)-(d), the fil-
tered signals of CNN-based denoising methods (DnCNN-B
and PDCNN) are closer to the ideal signal than the other
three methods, while the PDCNN makes the recovered sig-
nals more complete and symmetric than the DnCNN-B.
In the aspect of noise suppression, the proposed PDCNN is
able to completely remove out the spatiotemporally variant

random noise, while some intensive residual noise is visible
by applying the other four methods. In addition, the PDCNN
also outperforms the other four methods in the frequency
domain shown in the Figure 5(e). Consequently, the proposed
method is more adaptable to reduce spatiotemporally variant
random noise in seismic image than the other four methods.

Next, we give quantitative comparisons of five denoising
methods in terms of aforementioned SNR,MSE, andMSSIM
listed in the Table 2, and the best results are highlighted in
bold. In comparison to the other four methods, the PDCNN
provides the best performance with the highest SNRavg, refer
to the average SNR, lowest MSE, and highest MSSIM. Addi-
tionally, the SNR for the local area as SNRlocal is also com-
puted, from 56 to 62 traces with the time range of 500-700 ms
marked in Figure 3 and 4, and the SNRlocal of noisy seismic
image reaches -12.46dB. Since this selected area contains
rich signals and strong random noise with almost maximum
intensity, the PDCNN has more improvement in SNRlocal
of 30.82 dB than SNRavg of 24.98 dB, which further verifies
its signal preserving ability and denoising ability for strong
random noise.
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FIGURE 7. Denoised Performance comparison of five methods in the selected region B. (a) Noisy record. (b) Denoised by the FK filter. (c) Denoised
by the Wavelet-based denoising method. (d) Denoised by the BM3D method. (e) Denoised by the DnCNN-B method. (f) Denoised by the PDCNN
method.

FIGURE 8. Denoised Performance comparison of five methods in the selected region C. (a) Noisy record. (b) Denoised by the FK filter. (c) Denoised by the
Wavelet-based denoising method. (d) Denoised by the BM3D method. (e) Denoised by the DnCNN-B method. (f) Denoised by the PDCNN method.

To illustrate the efficacy of our approach in case of
different SNRs, we change the average SNRs and com-
pute the denoised results by applying the five algorithms.
Table 2 presents the comparison of the performance indexes
of the results. The proposed PDCNN method almost has
the best results in SNRavg, SNRlocal , MSE, and MSSIM
on different average SNRs experiments, especially for low
SNRs, which indicates that the PDCNN is more suitable for
removing spatiotemporally variant random noise even at low
SNR, compared with the other four denoising approaches.

2) FIELD SEISMIC DATA
This part is designed to assess the effects of the proposed
PDCNN on the field common-shot-point seismic record
shown in Figure 6(a). The selected 165-trace prestack seis-
mic data are collected from a forest belt in China and con-
tain 4900 samples in each trace with the sampling frequency

of 1 K Hz. As can be seen from Figure 6(a), the seismic data
are seriously corrupted by the random noise with spatiotem-
porally variant noise levels. We marked three typical areas
by rectangles with labels of A, B, and C. The seismic signals
in the area A are relatively weak and not continuous due to
noise interference. In the area B, we can observe that strong
variant random noise makes reflection events distorted. The
most intensive random noise exists in the area C, where the
seismic events are almost unable to be identified.

The FK filter, Wavelet-based denoising method, BM3D,
DnCNN-B, and PDCNN are applied to this noisy record
and corresponding results are represented in Figure 6(b)-(f).
As illustrated in Figure 6(b), (d), and (e) provided by the FK,
BM3D, and DnCNN-B respectively, plenty of random noise
has been reduced by the three methods, while the DnCNN-B
has the best denoising performance. TheWavelet method can
remove low intensity random noise, but is unable to reduce
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some strong field seismic random noise, especially those in
domain C of Figure 6(c). Figure 6(f) indicates that using our
proposed technique leads to much better image in term of
removing random noise and preserving signal details than
the other four methods. The seismic signals are effectively
revealed and become smoother and more continuous, even in
the area C.

For a better visualization and comparison, we next zoom
in on two typical areas (domain B and C) from the noisy
seismic image and denoised results. The domain B is from
1 to 105 traces with the time range of 1700-3050 ms, shown
in Figure 7. As can be seen in domain B, the results pro-
vided by the FK filter and the BM3D do worse than other
three approaches in reducing random noise. The DnCNN-B
removes a majority of random noise, but is inferior to the
Wavelet-based denoising method and the proposed PDCNN,
which both achieve the good denoising performance with a
trivial difference (see arrows in Figure 7). The domain C from
110 to 165 traces with the time range of 2000-4800ms is illus-
trated in Figure 8. Note that the FK filter and the BM3D both
show that there is still residual noise in the entire area. For
theWavelet-based denoisingmethod, the ability for removing
intensive random noise is weaker than reducing low intensity
noise. For the DnCNN-B, it can eliminate some spatiotem-
porally variant random noise and the denoising ability is
stronger than the FK filter, Wavelet-based denoising method,
and BM3D, but accompanying some strong random noise
residual. Comparing to the other four methods, the proposed
PDCNN not only effectively removes the spatiotemporally
variant random noise whether it is weak or strong, but also
recovers the seismic events clearly (see arrows in Figure 8).
In summary, the experimental results on field seismic image
demonstrate that the denoising capacity and signal preserva-
tion of the proposed PDCNN are superior to the other four
methods.

V. CONCLUSION
In this paper, the PDCNN is proposed to suppress the spa-
tiotemporally variant seismic random noise. Its critical point
lies in patches clustering and joint denoising with multiple
CNNmodels to handle all the noise levels existing in the spa-
tiotemporally variant random noise. We show the feasibility
that the PDCNN automatically and optimizedly selects the
CNN models for removing the seismic random noise with
spatiotemporally variant levels. Meanwhile, effective seismic
events with complex features are preserved well and their
continuity is also enhanced. The experiments of the synthetic
and field seismic images finally validate the excellent perfor-
mance of our proposed PDCNN, which also illustrate that the
CNN-based methods have extensive application prospects in
seismic image denoising.
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