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ABSTRACT While representing a class of signals in term of sparsifying transform, it is better to use a
adapted learned dictionary instead of using a predefined dictionary as proposed in the recent literature. With
this improved method, one can represent the sparsest representation for the given set of signals. In order to
ease the approximation, atoms of the learned dictionary can further be grouped together tomake blocks inside
the dictionary that act as a union of small number of subspaces. The block structure of a dictionary can be
learned by exploiting the latent structure of the desired signals. Such type of block dictionary leads to block
sparse representation of the given signals which can be good for reconstruction of the medical images. In this
article, we suggest a framework for MRI reconstruction based upon block sparsifying transform (dictionary).
Our technique develops automatic detection of underlying block structure of MR images given maximum
block sizes. This is done by iteratively alternating between updating the block structure of the sparsifying
transform (dictionary) and block-sparse representation of theMR images. Empirically it is shown that block-
sparse representation performs better for recovery of the given MR image with minimum errors.

INDEX TERMS Compressed sensing (CS), sparsifying transforms, magnetic resonance imaging (MRI),
block k-singular value decomposition (BLKSVD).

I. INTRODUCTION
As per recent compressed sensing (CS) theory, a sparse signal
can be accurately reconstructed from a small number of ran-
dommeasurements. Magnetic resonance (MR) images can be
represented as sparse signals. Now a day, magnetic resonance
imaging (MRI) is main source of reproducible diagnostic
medical information because of no harmful radiations and
accurate visualization of the anatomical skeleton. However,
acquisition time is the bottle neck in MRI to get numerous
image samples for good reconstruction. Patient must stay for
long duration in MRI scanner. This problem can be addressed
either by making changes in the hardware or software side.
Development on software side by using efficient algorithm
is easy rather than on hardware side. CS [1]–[9] theory pro-
vides an opportunity to make progress on those algorithms to
recover the images accurately from reduced set of measure-
ments. This is possible when given image is sparse in some
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transform domain. MRI [10]–[13] is well supported by CS
theory for quality of reconstruction.

Numerous sparsifying transforms can be used for CS
reconstruction of static MRI [10], [12], [14] as well as
dynamic MRI (dMRI) [15]–[19]. These sparsifying trans-
forms are either non-adaptive or adaptive. Non-adaptive spar-
sifying transforms are fixed such as total variation (TV),
curvelet or wavelet etc. and are application specific. Now a
days, adaptive dictionary learning is popular for image recon-
struction which can give better sparse representation because
dictionary is trained on a particular set of images [2], [20].
An adaptive patched based dictionary is trained via dif-
ferent algorithms from small number of k-space samples
which results in a better reconstruction. These learning algo-
rithms challenge to find a dictionary that leads to optimal
sparse representations for the image and show impressive
results for representations with arbitrary sparsity structures
or blocks.

In image processing, dictionary learning has received sig-
nificant popularity and has been extensively applied to image
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restoration [21], compression [22], image segmentation [23]
and classification [24]. Recently, researchers categorized the
dictionary learning techniques into unsupervised, supervised
and semi supervised models. In unsupervised models, dictio-
naries are learned in such a way that are suitable for represent-
ing the data without any class information of samples, e.g.
K-SVD [2]. The reconstruction error is minimized under the
sparsity constraint for the given data and is not capable of pro-
ducing optimized discriminative sparse code. This model is
not usually considered good for classification [25]. Whereas
in supervised and semi supervised models, also known as dis-
criminative dictionary learning (DDL), a more discriminative
sparse code is produced as compared to unsupervisedmodels,
resulting in better classification performance. Broadly speak-
ing, DDL is further classified into three categories: (i) shared
(ii) specific-class and (iii) combination of the two. Based on
above categories, DDL anticipates to enhance the discrim-
inative ability of sparse coding, which is then incorporated
in design of classification techniques [25]–[29]. Examples of
shared DDL are discriminative KSVD (D-KSVD) [30] and
label consisting KSVD (LC-KSVD) [31]. In specific-class
DDL, a structural dictionary is learnt by exploiting the recon-
struction ability of atoms and then implements classification
by means of representation residual of each class. Fisher
discrimination dictionary learning (FDDL) [32] is considered
as one of the renowned specific class DDL technique. In com-
bination of shared specific-class category, DDL learns the
specific-class dictionaries to acquire the discriminative fea-
tures of each class and then shared dictionary is constructed
by preserving the common features of all classes. Although
yielding improved classification performance, these super-
vised dictionaries neither practice/use any block structure nor
explicitly minimize the within-class redundancy. In addition
to supervised dictionary, block-structured sparsifying trans-
forms (dictionaries) have not only enhanced the reconstruc-
tion ability [33] but also its classification ability [34].

Another direction of recent research work for MRI recon-
struction is on deep learning, particularly in convolutional
neural networks (CNNs) [35]–[37], but the main bottle neck
is the availability of high computation resources and large
amount of data. In our proposed work, we conduct dictionary
learning using a single image. This single image cannot be
used for training a deep learning network. Hence, we have
restricted our work to a dictionary learning based method.

We are interested in those medical MR signals that are
known to be extracted from union of a small number of
subspaces [2], [38], [39]. Dictionary atoms are categorized
into underlying subspaces in such kind of signals which
lead to sparse representation for block sparse structure [33].
There are many methods, such as block basic pur-
suit (BBP) [38]–[40] block orthogonal matching pur-
suit (BOMP) [41] and group Lasso [42], [43] that have been
suggested to get the benefit of this structure in recovering
the block sparse representation. Predetermined dictionaries
and known block structures are supposed to be used in these
methods.

In this article we suggest a technique to design an adaptive
block-sparsifying transform or a dictionary for a given set of
MR signals. Our goal is to construct such a dictionary that
offers block-sparse representations which is suitable for the
given set of MR signals. While taking benefit of the block
structure by means of block-sparse representation methods,
it is essential to know the block structure of the dictionary.
It is not supposed to be known a priori. Instead, we only
suppose all cluster (or blocks) have a known maximal size
and gather the block structure from the data accordingly
while adapting the dictionary. If we were not constraining the
maximal block size, we would eventually end up with one
block which contains all the dictionary atoms.

Motivation behind learning a block structured dictionary is
to exploit any cluster or structure that is implanted in the MR
signals for generating a more effective sparse representation.
The proposed block structured dictionary learning method
involves two steps: update sparsifying transform (dictionary)
along with related sparse coefficients and estimate the block
structure. In this way, after finding the sparse representations
of the training signals, dictionary atoms are progressively
merged according to the similarity of the set of MR signals
they represent. We present a dictionary learning frame work
for MR signal, where dictionary blocks based on sparsity
pattern are sequentially updated, rather than updating atom
by atom as in the case of K-SVD [2], to minimize the rep-
resentation error at each iteration. Atoms of the sparsifying
transforms are sequentially updated block by block based on
the location of the non-zero entries of sparse coefficients. The
proposed method is an extension of K-SVD where instead
of learning and updating single atoms one-by-one, blocks
of atoms are learned and updated iteratively. This method is
called block K-SVD (BLKSVD) [33].

We found empirically that proposed method achieve high
performance and improvedMR image reconstruction as com-
pared to the dictionary learning basedMRI (DLMRI) method
by Sai et al. [14] where K-SVD is applied. The perfor-
mance is confirmed empirically by various sampling ratios
and k-space under-sampling values. Additionally, experimen-
tal results demonstrate that the K-SVD may not be able to
recover the underlying block-structure. This is a difference to
our proposed framework which succeeds in identifying the
underlying structures in the input data and learns them as
blocks of dictionary. Moreover, BLKSVD leads to smaller
representation error and converges more rapidly during the
update steps due to simultaneous optimization of the atoms
belonging to the same block. This also makes the proposed
frame-work computationally faster than the KSVD.

BLKSVD is introduced on patch-based dictionary learning
in our framework for reconstruction of MR image. The shift
from the global image sparsity to patch-based sparsity is
added feature in block-structured dictionary learning which
shows better results in MRI reconstruction. Because block
patch-based dictionaries can capture the local image fea-
tures efficiently, and have a potential to eliminate the noise
and aliasing artifacts without compromising on resolution.
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The use of block-structured dictionary learning on patch
based MR image has generated an added averaging effect
that eliminates the noise. Moreover, a single MR image can
be decomposed into many overlapping patches to train a
sparsifying transforms. We suggest a unique framework for
simultaneously learning the transform and reconstructing the
MR image from undersampled k-space data.
Learning block- structured dictionary is applied for image

denoising and inpainting during the recovery of specific
image. These images are usually in pixel domain or image
domain. So learning of transform (dictionary) from a fraction
of the image pixels has been explored in the framework of
image inpainting, that is, filling-in missing or poorly cor-
rupted samples in an image [44], [45]. Unlike inpainting,
the partial data in MRI is available in k-space rather than in
an image domain. This is a basic difference between MRI
and rest of non-MR image recovery data. In this frame-
work we learn block-structured image-patched dictionary
learning from a small number of k-space samples. The pro-
posedmethod combines the advantage of block structure with
patch-based adaptive dictionary learning making it possible
for the enhanced MR image reconstruction.

For the sparse coding step of dictionary learning, block-
OMP (BOMP) has been used due to block based sparsity.
The blocks in a block-based dictionary can be determined
in different ways. However, in our application where we are
using block dictionary for MRI reconstruction, blocks in the
dictionary are determined using block sparse coding tech-
nique, i.e. block-OMP (BOMP). Unlike simple OMP, BOMP
seeks block of atoms in the dictionary in a greedy way that
highly correlate with the input data and calculates coefficients
for that block. The blocks selected in the block-sparse coding
steps are further refined in the dictionary update step. This
alternate two-step process continues iteratively until a refined
block dictionary is learned for MRI data.

We summarize the contributions for this framework as
follows:

(1) For the first time, we formulate MRI reconstruction
problem as learning block structure of the MRI that can lead
to block dictionary learning. This block dictionary learning
helps in finding robust MRI reconstruction.

(2) Based upon block dictionary learning, MRI representa-
tion is formulated in terms of block sparsity instead of simply
sparsity that leads to better reconstruction.

(3) The block structure exploitation of the MRI for block
sparse representation is tested for different sampling schemes
to validate MRI reconstruction based upon block sparsity.

(4) We have initialized the dictionary by extracting left
singular vectors from the training data for block dictionary
learning in our framework and then normalized each atom of
the dictionary. We have observed that by initializing dictio-
nary in this form, convergence becomes faster as compared
with randomly initialized dictionary.

Rest of the paper is compiled as follows: In Section II,
compressed sensing on MR image, learning sparsifying
transform and block dictionary learning are discussed as

prior work. Problem formulation for MR image reconstruc-
tion on adaptive patch based dictionary learning is dis-
cussed in Section III. Suggested algorithm is described in
Section IV. Section V provides the empirical performance of
our algorithm with several examples, using diverse sampling
schemes. The conclusion is drawn in Section VI.

II. BACKGROUND AND RELATED WORK
A. COMPRESSED SENSING OF MR IMAGES
A sparse signal is one that has many zeros and few nonzero
coefficients. The aim of the sparse approximation is to sym-
bolize a given signal ormeasurement vector as a linear combi-
nation of a small number of sparsifying transform vectors,ψ i.

MR image acquisition can be modelled as an under-
sampled measurement of MR image in k-space with the help
of measurement matrix8u. Let MR image x ∈ Cq is encoded
to a measurement vector z ∈ Cm such that

z = 8ux (1)

where 8u ∈ Cm×q is under-sampled Fourier encoding or
measurement matrix. Whenever the number of unknowns is
greater than the number of k-space samples (q > m), it is
called under-sampling.

Compressed sensing (CS) provides a promising way of
reconstructing x from its undersampled measurements z pro-
vided x is sparse in some sparsifying transform domain ,9,
also known as the dictionary. The recovery of x can be
formulated as l0 minimization of sparse signal9x [46], [47];

min
x
‖9x‖0 s.t. 8ux = z (2)

9 ∈ Ct×q is a sparsifying transform such as wavelet or DCT
or any other learned dictionary.

The disadvantage of the model in (2) is that the sparse
coding step is NP (Nondeterministic Polynomial-time) hard
because the algorithm involves l0 norm. The non-convex
formulation of (2) can be transformed to a convex problem
using l1 norm, [48] i.e.,

min
x
‖8ux− z‖22 + γ ‖9x‖1 (3)

where γ is the Lagrangian multiplier. This problem can be
solved using many algorithms such as orthogonal match-
ing pursuit (OMP) [49]–[51], basic pursuit (BP) [39], focal
under-determined system solver (FOCUSS) [52] and least-
angle regressions (LARS) [53].

B. LEARNING SPARSIFYING TRANSFORM
The quality of the reconstructed image mainly relies on
the sparsifying transform. The undersampling constraint in
nonadaptive compressed sensing can be solved efficiently
using adaptive dictionary updates. In our framework, we use
adaptive patch based dictionary learning. From a given signal
x ∈ Cq, a patch of the signal is extracted as xij ∈ Cn of
square 2D image with the dimension of patch (

√
n ×
√
n)

pixels, marked by the position (i, j) to its top left corner of the
image. D ∈ Cn×K denotes the patch based dictionary having
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K number of atoms and θ ij ∈ CK is the sparse representation
of xij patch with respect to D. Mathematically xij can be
expressed as follows.

xij=Wijx (4)

where Wij ∈ Rn×q matrix acts as an operator that brings out
the patch xij from a given signal x. Following optimization
problem solves the dictionary learning as

min
D,θ

∑
ij

∥∥Wijx− Dθ ij
∥∥2
2

s.t.
∥∥θ ij∥∥0 ≤ τ0 ∀i, j (5)

where τ0 is the required sparsity. Combining all patches xij
column wise in a matrix X̃ ∈ Cn×L , where L is the total
number of patches acquired form of x,we get.

min
D,2

∥∥∥X̃− D2
∥∥∥
F

s.t. ‖θ‖0 ≤ τ0 (6)

where 2 ∈ RK×L belongs to sparse representation. Opti-
mization formulation used in (5) and (6) are NP hard for
the fixed D and can be solved from many algorithms such
as MOD and K-SVD. Such kind of algorithms normally
alternate between finding the dictionary D and sparse repre-
sentations 2. Many researchers use the K-SVD to learn the
dictionary where the atoms of the dictionary are updated one-
by-one i.e. K -times SVD which increases the computation
time. Prasad et al. [14] performed tremendous work on MR
image reconstruction from highly under-sampled k-space
data using the K-SVD technique to learn the dictionary and a
popular greedy method orthogonal matching pursuit (OMP)
for updating sparse coefficients. His work showed notice-
able improvements in the reconstruction of different medi-
cal images along with other performance parameters mainly
SNR and high frequency error numbers (HFEN). He com-
pared/reviewed his results with Lusting et al. [10] (denoted
by LDP).The CS framework exploits the sparsity of θ in
order to facilitate recovery. With proper chosen D, recovery
is possible irrespectively of the location of the nonzero values
of θ . This outcome has caused to generate a lot of recovery
algorithms. A lot of recent work has been done to find an
adaptive structure (block) dictionary that leads to optimal
sparse representations for an impressive signal reconstruc-
tion.

C. BLOCK DICTIONARY LEARNING
Block structured dictionaries are learned to utilize any
embedded structure in order to produce a more effective
sparse representation. Block-structured dictionary method
involves two steps: update the dictionary block and then
finding the sparse coefficients according to block structure
in the dictionary. We have used BOMP (instead of OMP) for
updating the sparse representation matrix and BLKSVD [33]
to learn the dictionary as discussed in Section IV. Algo-
rithm BOMP selects the dictionary blocks sequentially that
are best suited to the input signals. The key characteristic of
BLKSVD is to update the atoms in blocks and corresponding
non-zero coefficients simultaneously.

For a given set of MR signals, we want to find the dictio-
nary whose atoms are sorted into blocks and provide the most
accurate representation vectors. In our proposed framework,
we make the assumption to have known maximal block size
but the association of dictionary atoms into blocks is not
known a priori. Let each block is assigned an index number
and b∈ RK be the vector of block assignments for the atoms
of D. In other words, b[k] is the block index of the atom Dk .
A vector θ ∈ CK is s-block sparse over b if its nonzero values
are concentrated in s blocks only.We express this in following
manner

‖θ‖0,b = s (7)

where ‖θ‖0,b is the l0 norm over block b and computes the
number of non-zero blocks as defined by b. Our objective is
to learn the block dictionary D along with its block structure
b having a maximum block size of s that leads to optimal
τ0-block sparse representation 2 =

{
θp
}p=L
p=1 . For block-

dictionary learning, (6) can be expressed as.

min
D,2

∥∥∥X̃− D2
∥∥∥
F

s.t.
∥∥2p

∥∥
0,b ≤ τ0, p = 1 . . . .L,

∣∣bj∣∣ ≤ s, j ∈ [1,N ] (8)

where N indicates the number of blocks and bj is the set of
indices represent the list of dictionary atoms in block j and
can be expressed as

bj = {k ∈ 1, 2, 3, . . . .. . . . ..K |b [k] = j} (9)

III. PROBLEM FORMULATION
Reconstructed compressively sampled biomedical MR
images typically suffer from numerous artifacts during under
sampling of k-space and noise in samples. These are two
main causes of artifacts. So a decent dictionary must be
capable of minimizing the artifacts which are noticed into
zero filled Fourier reconstruction and be consistent to produce
reconstructed images by available k-space data. In MRI,
the available data is in k-space rather than in an image
domain. Our formulation has a capability of both designing an
adaptive dictionary learning, and also using it to reconstruct
the underlying MR image. This is achieved by means of
only the under-sampled k-space measurements, z. The prob-
lem formulation, for reconstructing the MR image x, then
becomes:

min
D,θ ,x

∑
ij

∥∥xij − Dθ ij
∥∥2
2 + η‖8ux− z‖22

s.t.
∥∥θ ij∥∥0,b ≤ τ0 ∀i, j (10)

In (10), the 1st term is responsible for the quality of the
sparse approximation of the patch images with respect to the
dictionary D whereas 2nd term enforces data consistency in
k-space. Parameter η depends on standard deviation σ of
measurement noise such as η = ( λ

σ
) and λ is taken as a

positive constant.
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IV. MR IMAGE RECONSTRCUTION
Adaptive learning of sparsifying transform in (10) is a non-
convex problem and is computationally expensive. Typically
the problem in (10) is solved in two steps. (i) dictionary
learning and sparse coding are updated alternately keeping
the estimated signal x fixed, while in second step (ii) update
the estimated MR signal x to satisfy the data fidelity while
keeping dictionary and sparse representation fixed.

A. UPDATING BLOCK DICTIONARY
AND SPARSE CODING
Since MR signal x is fixed, the objective function in (10)
becomes

min
D,θ

∑
ij

∥∥xij − Dθ ij
∥∥2
2

s.t.
∥∥θ ij∥∥0,b ≤ τ0 ∀i, j (11)

Combining all patches in (11) into matrix X̃ as described
in (8). Since the learning sparsifying transform process
involves two steps, i.e., block dictionary learning D and
update the sparse coefficient matrix 2, so we formulate
the objective function as follows for given block b for l th

iteration:

[Dl,2l]F = min
D,2

∥∥∥X̃− D2
∥∥∥
F

s.t.
∥∥2p

∥∥
0,bl ≤ τ0, p=1 . . . . . . . . . L (12)

Now applying block KSVD (BLKSVD) algorithm to recover
the D and 2 by optimizing (12) on given block structure b.
At every l th- iteration, we fix dictionaryDl−1 in first step and
use the BOMP to solve (12) which optimizes as

2l
= min

2

∥∥∥X̃−Dl−12

∥∥∥
F

s.t.
∥∥2p

∥∥
0,b ≤ τ0, p = 1 . . . .L (13)

In second step, we obtain Dl while fixing2l ,b and X̃.

Dl
= min

D

∥∥∥X̃−D2k
∥∥∥
F

(14)

Motivated by KSVD algorithm, the blocks are updated
sequentially in Dl−1 along with corresponding non-zero
sparse coefficients in 2l . Details for every block j ∈ [1,N ]
are discussed as follows:

Let Eαj be the error matrix of the signals X̃αj excluding the
contribution of the jth block. We express it as follows:

Eαj = X̃αj−
∑

k 6=j
Dbk

(
2bk

)
αj

(15)

where αj is the set of indices corresponding to columns in
sparse matrix 2l that use the atom Dk .The representative
error of signal with indices αj can be defined as follows.

αj ,
∥∥∥Eαj−Dbk2

bk
αj

∥∥∥
F

(16)

By taking the singular value decomposition (SVD) of error
matrix Eαj

Eαj = USVT (17)

The dictionary and sparse representation matrix is updated
as follows:

Dbk =
[
U1, . . . . . . . . . . . . . . . ..U|bk |

]
(18)

2
bj
αj =

[
S11V1, . . . . . . . . . . . . . . . . . . . . . . . . .S

|bj|
|bj|

V|bj|
]T

(19)

Iteratively, dictionary and its blocks are continuously updated
till the convergence or any predefined number of iterations.
When block size is one then both BLKSVD and KSVD
become identical.

B. UPDATING THE ESTIMATED IMAGE(S)
FOR RECONSTRUCTION
To update the reconstructionMR image x, keep the dictionary
and the sparse representation constant then the sub-problem
for our cost function in (10) can also be written as follows:

min
x

∑
ij

∥∥Wijx− Dθ ij
∥∥2
2 + η‖8ux− z)‖22 (20)

The formulation in (20) is the least squares problem and
detailed solution is in appendix-A. The solution is as follows:

8x
(
kx , ky

)
=


N
(
kx , ky

)
,

(
kx , ky

)
/∈ f

N
(
kx , ky

)
+ ηN 0

(
kx , ky

)
1+ η

,
(
kx , ky

)
∈ f

(21)

Here x is reconstructed by taking the IFFT of 8x. From (ix)
in appendix-A

N = 8
∑

ij
WT

ij Dθ ij
1
α

(22)

(22) is called the ‘‘patch averaged result’’ in Fourier domain
and 8x

(
kx , ky

)
represents the updated value on location(

kx , ky
)
of the k-space. N 0 = 88H

u z represents zero filled
k-space measurement and denotes the subset of k-space that
has been sampled.

A more extensive pseudocode is presented in Appendix-B

Algorithm 1
Goal: Reconstruction of undersampled MR image using
block dictionary
Input:z = training signal(s) in k-space measurements, s
for block size, and τ0 for sparsity
Output: x: Reconstructed MR image
Initialization: x = x0 = 8H

u z
Main Iteration:
1. Alternately learn sparsifying transform (dictionary) by

BLKSVD and BOMP for sparse coding.
2. Update x̂: Every pixel value attained by averaging the

impact of patches that covering it
3. N ← FFT (x)
4. Restore sampled frequency to update theN as per (21)
5. x̂← IFFT(N )
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V. EMPIRICAL TEST & RESULTS
The performance of the proposed algorithm is validated with
two cases i.e. noiseless and noisy for the reconstruction of
MR Image. We have used real world image single-slice (axial
T2-wieghted reference brain image) dataset of size
(512×512), vivo MR scans from American Radiology Ser-
vices as used by Parasad et al. [14]. These images are
converted to over lapping patches of size (

√
n ×

√
n),

in our case n = 36. These patches are used for dictionary
learning.

Different undersampling factors (2.5 folds to 4 folds) and
undersampling schemes (like center dense and Cartesian
including 2D random sampling) are used in both noiseless
and noisy cases. We have compared our reconstructed images
with leading DLMRI [14] method which had already outper-
formed other CSMRI [10] techniques.

All the experiments are performed on Intel Core i5-7200U
7th generation (2cores—4threads) in Matlab 9.2.0.5338062
(R2017a). We fixed some values for our experiments such as:
maximum number of iterations= 15, sparsity= 6, dictionary
size (36×36) and empirically set the block size s = 3.
To evaluate the performance of our experiments, we have

computed power signal to noise ratio (PSNR) and high fre-
quency error norm (HFEN). The PSNR is used as a quality
measure for reconstructed images described in decibels and
computes peak intensity signal-to-noise ratio between the
original and a compressed image. The HFEN describes the
fine features of the reconstructed images at edges and is com-
puted as l2 norm of the result acquired by Laplacian of Gaus-
sian (LoG) filtering of the difference between reconstructed
and reference images. Some quantitative measurements like
correlation and similarity index (SSIM: Structural SIMilarity)
are also computed for image comparison in both noiseless and
noisy cases.

A. NOISELESS CASE
We performed our proposed method on noiseless scenario
first and comparedwithDLMRI. 2D random center dense and
Cartesian sampling schemes with different undersampling
factors (2.5 – 4) folds are used to reconstruct the image
without adding noise in k-space. The dictionary learning
scheme by BLKSVD reconstructed the images free from
artifacts and aliasing effect in all different sampling schemes.
The recovered images are clear with fine edges with fast
convergence than DLMRI. In all cases, as shown in Figures 1-
2, our proposed method outperformed the DLMRI in term of
PSNR and HFEN.

We have also compared DLMRI and our proposed frame
work through statistical data with relative difference in the
tables for the correlation and similarity index (SSIM). There
is slight improvement of correlation and SSIM for center
dense mask. It is observed that the correlation in Cartesian
schemes on different sampling factors have same results but
SSIM has improved as per Table 1.

FIGURE 1. For Noiseless case: Center dense sampling scheme for
reconstruction of brain image (a) PSNR vs iterations with sampling factors
2.5 folds (b) HFEN vs iterations with sampling factors 2.5 folds (c) PSNR
vs iterations with sampling factors 4 folds (d) HFEN vs iterations with
sampling factors 4 folds. (e) Recovered image with sampling factors
2.5 folds (f) Recovered image with sampling factors 4 fold (g) Reference
image (h) Center dense mask.
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FIGURE 2. For Noiseless case: Cartesian sampling scheme for
reconstruction of brain image (a) PSNR vs iterations with sampling factors
2.5 folds (b) HFEN vs iterations with sampling factors 2.5 folds (c) PSNR
vs iterations with sampling factors 4 folds (d) HFEN vs iterations with
sampling factors 4 folds. (e) Recovered image with sampling factors
2.5 folds (f) Recovered image with sampling factors 4 folds (g) Reference
image (h) Cartesian mask.

TABLE 1. Performance parameter (BLKSVD vs DLMRI) of algorithm with
noiseless case for brain image.

TABLE 2. Performance parameter (BLKSVD vs DLMRI) of algorithm with
noisy case for brain image.

B. NOISY CASE
We have performed experiment by adding zero mean white
Gaussian noise of standard deviation σ = 3 in k-space in
all cases of center dense and Cartesian sampling at 2.5 fold
undersampling. Our proposed method performed better as
shown in Figure 3 than that of DLMRI in noisy case keeping
same parameters and reference brain image and undersam-
pled mask as in noiseless case.

The quantitative measurement of SIMM in noisy case has
shown slight improvement but correlation is same on both
cases of centered dense and Cartesian sampling schemes as
observed in Table 2.
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FIGURE 3. For Noisy case: Reconstruction of brain image (a) PSNR vs
iterations with center dense sampling scheme at sampling factors 2.5
folds (b) HFEN vs iterations with center dense sampling scheme at
sampling factors 2.5 folds (c) PSNR vs iterations with Cartesian sampling
scheme at sampling factors 2.5 folds (d) HFEN vs iterations with Cartesian
sampling scheme at sampling factors 2.5 folds. (e) Recovered image
center dense sampling scheme at sampling factors 2.5 folds
(f) Recovered image center dense sampling scheme at
sampling factors 2.5 folds.

VI. CONCLUSION
In this paper, adaptive patch-based block-structured dictio-
nary learning framework has been introduced for recon-
struction of MR images. This proposed method has shown
improved performance over other dictionary learning based
methods such as DLMRI, for both noisy and noiseless
cases. The performance is validated by using a diversity
of sampling trails and k-space under sampling ratios. The
designed algorithmmay be implemented on the other medical
signal processing problems which wemay consider for future
research work.

APPENDIX A
To update the reconstruction image x, keep the dictionary and
the sparse representation constant then the sub-problem for
our cost function in (10) become as follows:

min
x

∑
ij

∥∥Wijx− Dθ ij
∥∥2
2 + η‖8ux− z‖22 (i)

Differentiate (i) w.r.t x and equal to zero,W ∈ R and8u ∈ C(
∂

∂x

)(∑
ij

∥∥Wijx− Dθ ij
∥∥2
2 + η‖8ux− z‖22

)
= 0 (ii)

2
∑

ij
WT

ij
(
Wijx− Dθ ij

)
+ 2η8H

u (8ux− z) = 0 (iii)

The subscript H and T represents Hermitian transpose oper-
ation and real operand respectively. Separating the term
belonging to x on left side to find it.∑

ij

WT
ij Wij+η8

H
u8u

 x =
∑
ij

WT
ij Dθ ij+η8

H
u z (iv)

In (iv) the 1st term of left side
∑

ij W
T
ij Wij ∈ Rq×q is

diagonal matrix and corresponds to image pixel position.
These entries are equal to the number of overlapped patches
contributing on those pixels. Its diagonal values turn out to be
all equal and denoted as∑

ij
WT

ijWij = αIq where Iq ∈ Rq×q (v)

In our case, where diagonal values correspond to place of
the image pixel and are equal to the number of overlapped
patches contributing those pixel places.

Putting overlap stride r = 1 for the patches and α = n let
8 ∈ Cqxq represent the complete Fourier encoding matrix
normalized as 8H8 = Iq. Now 8x denote full rank data for
k-space and putting in (iv) we get,(∑

ij
8WT

ij Wij8
H
+ η88H

u8u8
H
)
8x

= 8
∑

ij
WT

ij Dθ ij+η88
H
u z (vi)

In (vi), the 2nd term on left side represents the diagonal matrix
with scaling η times comprising of zeros and ones. All those
ones at diagonal values are related to sampled position k-
space. 88H

u z denotes the zero filled Fourier measurements
vector and

8
∑

ij
WT

ij Wij8
H
= αIq (vii)
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Then (vi) becomes(
αIq + I

)
8x = αN + ηN 0 (viii)

where:

N , 8
∑

ij
WT

ij Dθ ij
1
α

and N 0 , 88H
u z (ix)

Dividing (viii) by α both sides we get(
Iq +

(
I
α

))
8x =N +

( η
α

)
N

0
(x)

Here absorbing
( η
α

)
is constant into η then solution of (vi) is

as follows:

8x
(
kx , ky

)
=


N
(
kx , ky

)
,

(
kx , ky

)
/∈ f

N
(
kx , ky

)
+ ηN 0

(
kx , ky

)
1+ η

,
(
kx , ky

)
∈ f

(xi)

APPENDIX B

Algorithm Pseudocode Enhancing MR Image Reconstruc-
tion Using Block Dictionary
Inputs: Noisy or noiseless MR Image
Output: Reconstructed MR image from under- sampled
data
BLKSVD Parameters Initialization,
x = FFT (Input MR Image),
Add noise in k-space in noisy case,
Applying under-sampling mask,
While number of maximum iterations:
For i = 1: n do

Create image patches
For j = 1: m do

Learn block dictionary
Learn block sparse codes

End
Computing sparse representations of all patches

Summing up the patch approximation
End

x̂ = Unmasked and Inverse FFT of k-Space
Compute various performances metric
End
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