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ABSTRACT This paper analyzes the convergence of iterative learning control for a class of discrete-time
systems over networks with successive input data compensation. Specifically, the successively dropped input
data in current iterations are compensated by the one actuator received correctly with the same time instant
label in the latest iteration. Through analyzing the variation of elements in the transition matrices of the
input errors at the controller side, the convergence of output errors is addressed. The analysis shows the
selection range of learning gain is determined by the maximum number of input data dropped successively.
Moreover, the convergence of system with successive input data compensation is guaranteed by trading the
convergence speed, and the more input data are successively compensated in iteration domain, the more
convergence speed of the system is reduced. Finally, numerical experiments are given to corroborate the
theoretical analysis.

INDEX TERMS Iterative learning control, convergence, data dropouts, compensation.

I. INTRODUCTION
Recently, due to fast development of communication and
network techniques, research on analysis and design of sys-
tems controlled over communication networks has attracted
much attentions. Compared with traditional control systems,
the networked control systems (NCSs) are closed via a real
communication network, and focused on using information
transmitted over the network to achieve some performance
objectives with various physical limitations, which usually
affect the control performance significantly [1].

When a desired trajectory is given and tracked repeatedly,
controller adopting iterative learning control (ILC) strategy
is useful in NCSs. In this case, the tracking error and input
in previous iterations are used to adjust the input for the
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current iteration. If learning gain is selected to satisfy some
conditions, the tracking errors converge in iteration domain.
Since this strategy was first introduced by Arimoto et al. [2],
many topics have been studied including stochastic noise [3],
monotonic convergence [4], initial error [5], interval uncer-
tainty [6], parameter optimization [7] and others surveyed
in [8].

When a system is controlled by exploring the ILC strategy
over networks, however, since the data needs to be trans-
mitted via a communication network, there is a complex
interconnection between the controller and the platform. As a
result, analysis and design of such a system pose some new
challenges including channel noise [9], [10], quantization
error [11], time delay and data dropouts [12].

Over the last few years, we have witnessed some attempts
about networked ILC systems with data dropouts. Based
on a Kalman filtering approach, in [13], Ahn presented a
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mathematical formulation of robust ILC design when the
output data vector is subject to data dropouts, and designed
a method to select the learning gain optimally such that the
system eventually converges to a desired trajectory as long
as there is not complete data dropouts. In [14], they further
considered the case where each component in the output data
vector was dropped independently. After that, convergence
conditions were established for the networked ILC systems
in presence of data dropouts and delays in both input and
output [15].

From a compensation standpoint, Pan contributed an ear-
lier attempt on guaranteeing the convergence of the net-
worked ILC systems with data dropouts [16]. In this paper,
with regard to the effect of data dropouts on the system
convergence, three different scenarios were discussed includ-
ing single input data dropout, single output data dropout
and general situations with multiple data dropouts. In the
discussion, the dropped data at any time instant is replaced
with the data received at the last time instant in the same
iteration, which means the scheme is implemented in time
domain. However, the method only guarantees the conver-
gence of input error at the controller side. Inspired by the
nature that the input of the networked ILC systems converges
in iteration domain, Huang considered the ILC with random
input data dropouts [17]. In this work, the data dropout was
viewed as a binary switching sequence obeying the Bernoulli
distribution, and the dropped data was compensated using
the data in the last iteration at the same time instant with
the lost one. That is to say, the compensation was applied in
iteration domain, whereas the method only can be applied to
deal with single dropped input data, and the author did not
analyze the convergence speed of system with the proposed
method. Liu applied ILC to remote control systems with
random output data dropouts and delays [18], and proved that
ILC can achieve asymptotical convergence along the iteration
axis as far as the probabilities of the data dropouts and time
delays are known.

The works of Ruan also discussed the convergence of
networked ILC systems with incomplete information. For
a class of repetitive discrete-time SISO nonlinear systems
with stochastic data communication delays in one opera-
tion duration, the authors proposed a proportional-type ILC
scheme to guarantee the convergence of system [19]. For
another class of nonlinear systems with input and output
data delays, two compensation methods were proposed [20].
In the two schemes, the delayed input data was replaced
by the synchronous input data utilized at the previous iter-
ation. For the delayed output data, the one scheme sub-
stituted it by the synchronous desired trajectory, while the
other substituted it by the synchronous output data in the
previous operation. For the systems described in [19] with
output data dropouts, the two compensation method proposed
in [20] were adopted to deal with the effect of output data
dropouts [21]. For the systems described in [20] with both
input and output data dropouts, mathematical expectation of
the stochastic tracking errors was guaranteed by mending the

dropped output data with the synchronous desired output in
time domain, and driving the plant by refreshing the dropped
input data with the one at the same time instant in previous
iteration [22].

Bu studied networked ILC systems using super-vector for-
mulation or Roesser model. In [23], using the super-vector
formulation, the system was formulated as a linear discrete-
time stochastic system in the iteration domain, and then a
sufficient condition was presented, which guaranteed both
stability of the ILC process and the desiredH∞ performance.
It should be noted that the formulation fails to construct
the super-vector form when the system is nonlinear. In [24],
the design of ILC law with the effect of output data dropouts
was transformed into the stabilization of a two-dimensional
stochastic system described by the Roesser model. A suf-
ficient condition for mean-square asymptotic stability was
established by means of a linear matrix inequality technique,
and formulas were given for the control law design. Further-
more, the result was extended tomore general cases where the
system matrices also contain uncertain parameters. In [25],
authors proposed a robust ILC design method for uncertain
linear systems with time-varying delays and random packet
dropouts, and the ILC design was transformed into robust
stability for a system described by the Rosser model.

Shen addressed the convergence of networked ILC sys-
tems from different angles. In [26] and [27], the authors
modeled the random data dropouts as an arbitrary stochastic
sequence with bounded length requirement, and then the
almost sure convergence of system with the proposed method
was proved. Specifically, a P-type control update algorithm
was proposed in [26] for the SISO affine nonlinear system
with random output data losses and unknown control direc-
tion, and a simple P-type update law was used in [27] for
both linear and nonlinear cases based on stochastic approx-
imation. In [28], authors first reviewed the recent progress
on the networked ILC systems with data dropouts from the
perspective of data dropout model, data dropout position
and convergence meaning, respectively. After that, a general
framework was proposed for the convergence analysis of
three different data dropout models, namely, the stochas-
tic sequence model, the Bernoulli variable model and the
Markov chain model. In [29], the authors addressed net-
worked ILC for stochastic linear systems with random output
data dropouts, and provided two updating schemes. The inter-
mittent updating scheme only updated its input when data
is successfully transmitted, while the successive updating
scheme continuously updated its input with the latest avail-
able data whether the output information of the last iteration
is successfully received or lost. In [30], the authors discussed
ILC under general data dropouts at both measurement and
actuator sides for different systems. In these papers, a simple
compensation mechanism was proposed which allows suc-
cessive data dropouts in both time and iteration domains,
while this mechanism needed the input data that the actuator
received to be transmitted with output data to the controller
simultaneously.
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Based on these works about the convergence of ILC sys-
tems with data dropouts, some results could be summarized
and listed as follows:
• According to the position where data dropouts occur,
the works can be divided into two different categories:
input data dropouts and output data dropouts. Most of
the reported works only considered a special case that
the dropout problem occurs in output data;

• Bymaking appropriate assumptions, the proposedmeth-
ods guaranteed the convergence of networked ILC sys-
tems with data dropouts, while literatures related to
convergence speed of networked ILC systems with data
compensation are very rare.

The above-mentioned considerations motivate us to
address the convergence speed of networked ILC systems
with successive input data compensation in iteration domain.
Specifically, the main contributions of this paper are:
• Founding the selection range of learning gain to guar-
antee the convergence of networked ILC systems with
general successive input data compensation;

• Indicating the convergence of output errors with succes-
sive input data compensation is guaranteed by trading
the convergence speed.

The remainder of this paper is organized as follows. The
networked ILC systems with data dropouts taken into account
is formulated in Section 2. In Section 3, by assuming there
are two input data dropped successively in iteration domain,
the convergence speed of output errors is analyzed theoreti-
cally, and then the discuss is extend to the condition with the
general successive input data dropouts in iteration domain.
Numerical examples are given to corroborate the theoretical
analysis in Section 4. In Section 5, some conclusions wrap up
this paper.

II. PROBLEM FORMULATION
Consider a discrete-time, linear and time-invariant system
defined as follows{

xk (t + 1) = Axk (t)+ Buk (t)
yk (t) = Cxk (t)

(1)

where xk (t) ∈ Rn, uk (t) ∈ Rm and yk (t) ∈ Rl denote the state,
input and output vectors, respectively, A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rl×n are the known system matrices. k = 0, 1, · · ·
denotes iteration number and t ∈ [1, 2, · · · ,T ] is discrete
time for each iteration of the system. The control objective
is to track the known desired trajectory yd (t), which satisfies
the following formulation{

xd (t + 1) = Axd (t)+ Bud (t)
yd (t) = Cxd (t)

(2)

where ud (t) and xd (t) are desired input and state. In order
to track yd (t) accurately, various ILC schemes have been
proposed, and the P-style one can be expressed as

uk+1(t) = uk (t)+ 0(t)ek (t + 1) (3)

FIGURE 1. Diagram of the networked ILC system.

where 0(t) ∈ Rr×l is learning gain, and the output error is
ek (t) = yd (t)− yk (t).

The ILC system with output data transmitted from the
sensor to the controller and input data transmitted from the
controller to the actuator through a wired or wireless network
is illustrated in Fig. 1. During the data interactions between
the controller and the platform, some issues would occur
due to the unreliability of the introduced network. Then,
the networked ILC system can be represented as{

xk (t + 1) = Axk (t)+ Bũk (t)
yk (t) = Cxk (t)

(4)

uk+1(t) = uk (t)+ 0(t)ẽk (t + 1) (5)

where ũk (t) is the input data received at the actuator side and
ẽk (t + 1) is the output data received at the controller side.
Taking the data dropout into account, ũk (t) and ẽk (t + 1) can
be expressed as

ũk (t) = ξk (t)uk (t) (6)

ẽk (t + 1) = ηk (t)ek (t + 1) (7)

where ξk (t) and ηk (t) are two scalar Bernoulli distributed ran-
dom variables taking 0 or 1 (i.e., ξk (t), ηk (t) ∈ {0, 1} ,∀k, t).
ξk (t) is uncorrelated with ηk (t). That is, if the variable takes
value 0, then the data is dropped correspondingly, otherwise
the data is received correctly.

Data dropouts introduced by the network affect the con-
vergence of networked ILC systems, and some compensation
methods were proposed to deal with this issue, while litera-
tures related to convergence speed of networked ILC systems
with data compensation are very rare. So, in next section,
we want to focus our attention on discussing the convergence
speed of the output errors when the successively dropped
input data are compensated in iteration domain.

III. CONVERGENCE SPEED ANALYSIS OF THE SYSTEM
WITH SUCCESSIVE INPUT DATA COMPENSATION
In [28], authors indicated there are two kinds of methods
to guarantee the convergence of ILC systems with data
dropouts: Kalman filtering-based method and data com-
pensation method. As to data compensation, this approach
can be further divided into time domain compensation and
iteration domain compensation. In [31], authors compared
the convergence of networked ILC systems with input data
compensation in time and iteration domains, and pointed
out that compensation in iteration domain guarantees the
convergence of input errors at both the controller and the
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actuator side, while compensation in time domain only guar-
antees the convergence of input errors at the controller side.
In this section, we would further analyze the convergence
speed of networked ILC systems with successive input data
compensation in iteration domain. In order to simplify the
analysis, we assume xk (0) = xd (0),∀k .
The iteration domain compensation methods adopted in

[17], [20], [22] and [29] could be embraced as following:

ũk (t) = ξk (t)uk (t)+ (1− ξk (t)) ũk−1(t) (8)

To see this, we rewrite (8) as

ũk (t)= ξk (t)uk (t)+ (1− ξk (t)) ξk (t − 1)uk (t − 1)+ · · ·

+ (1− ξk (t)) (1− ξk (t − 1)) · · ·

× (1− ξk (t − i+ 1)) ξk (t − i)uk (t − i)+ · · · (9)

Note that the method allows successive input data dropouts
in both time and iteration domains. In order to explain the
reason, uk (t) is assumed to be dropped, and then four input
data in adjacent iteration or time domains are used to describe
the four dropout cases:

Case 1Non-successive dropout:
ξk (t) = 0 and ξk (t − 1) = ξk (t + 1) = ξk−1(t) =
ξk+1(t) = 1, whichmeans only uk (t) is dropped and
compensated by uk−1(t).

Case 2Successive dropout in iteration domain:
ξk (t) = ξk−1(t) = 0 and ξk (t − 1) = ξk (t +
1) = ξk+1(t) = 1, which means uk (t) and uk−1(t)
are dropped successively in iteration domain and
compensated using uk−2(t) consecutively.

Case 3Successive dropout in time domain:
ξk (t) = ξk (t − 1) = 0 and ξk (t + 1) = ξk−1(t) =
ξk+1(t) = 1, which means uk (t) and uk (t − 1) are
dropped successively in time domain and compen-
sated by uk−1(t) and uk−1(t − 1) respectively.

Case 4Successive dropout in iteration and time domain
simultaneously:
ξk (t) = ξk (t − 1) = ξk−1(t) = 0 and ξk (t + 1) =
ξk+1(t) = 1, which means uk (t), uk (t − 1) and
uk−1(t) are dropped successively in both iteration
and time domains. Then uk−2(t) is used to replace
the dropped uk (t) and uk−1(t), and uk−1(t − 1) is
used to replace the dropped uk (t − 1).

It can be easily seen that Case 2 is a mix of Case 1 at the
time t in (k − 1)−th and (k)−th iterations, Case 3 can be seen
as a mix of Case 1 at the time t and t− 1 in (k)− th iteration,
and Case 4 can be seen as a mix of Case 2 and 3. Based on
the relations among the four different cases, the convergence
analysis of output errors under Case 1, 3 and 4 is similar with
that under Case 2.
Next, the convergence speed of output errors is analyzed

firstly by assuming there are two input data dropped succes-
sively at time t in k−th and (k−1)−th iterations, and then the
analysis is extended to the general successive data dropouts
in iteration domain. In the analysis, the transition matrices of
input error at the controller side would be derived, and the

variation of eigenvalues in the matrices would be discussed,
which determine the convergence speed of networked ILC
systems. Additionally, it can be seen that the convergence
of output errors ek+1(i), (t + 1 ≤ i ≤ T ) are affected by the
dropped input data, so the convergence speed of the ILC
system with successive input data compensation in iteration
domain would be analyzed from the following two parts.

A. CONVERGENCE SPEED ANALYSIS OF OUTPUT ERROR
AT TIME t + 1
According to ek (t) = yd (t)− yk (t), the output error ek (t + 1)
can be represented as

ek (t + 1) = yd (t + 1)− yk (t + 1)
= Cδxk (t + 1) (10)

Using (2) and (4), the state error δxk (t) can be expressed as

δxk (t + 1)
= xd (t + 1)− xk (t + 1)
= Aδxk (t)+ B (ξk (t)δuk (t)+ (1− ξk (t)) δũk−1(t))

=

t∑
i=0

At−iB (ξk (i)δuk (i)+ (1− ξk (i)) δũk−1(i)) (11)

From (5) and (11), the input error δuk+1(t) can be
represented as

δuk+1(t) = ud (t)− uk+1(t)
= ud (t)− uk (t)− 0(t)ek (t + 1)

= δuk (t)− 0(t)
t∑
i=0

CAt−iB

× (ξk (i)δuk (i)+ (1− ξk (i)) δũk−1(i)) (12)

According to (8), the dropped input data uk (t) is compen-
sated by ũk−1(t). For this condition, (12) would be changed
into

δuk+1(t) = δuk (t)− 0(t)CBδũk−1(t)

−0(t)
t−1∑
i=0

CAt−iBδuk (i)

= Hk+1,k (t) · ϕk (t)− 0(t)CBδũk−1(t) (13)

where

Hk+1,k (t) =
[
−0(t)CAtB · · · −0(t)CAB I

]
(14)

ϕk (t) =
[
δuk (0) δuk (1) · · · δuk (t)

]T (15)

Further, if the input data uk−1(t) is dropped successively and
compensated by ũk−2(t), we would have

δuk (j)=δuk−1(j)−0(j)CBδuk−1(j)−0(t)
t−1∑
j=0

CAt−jBδuk−1(j)

(16)

where 0 ≤ j ≤ t − 1, and

δuk (t) = δuk−1(t)− 0(t)CBδũk−2(t)

−0(t)
t−1∑
i=0

CAt−iBδuk−1(i) (17)
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In matrix form, we can rewrite (16) and (17) as

ϕk (t) = Hk,k−1(t) · ϕk−1(t)

+
[
0 · · · 0 −0(t)CB

]T
· δũk−2(t) (18)

where

Hk,k−1(t)

=



I−0(0)CB 0 · · · · · · 0

−0(1)CAB
. . .

. . .
...

...
...

. . .
. . .

...

−0(t−1)CAt−1B · · · −0(t−1)CAB I−0(t−1)CB 0
−0(t)CAtB · · · · · · −0(t)CAB I


(19)

ϕk−1(t)

=
[
δuk−1(0) δuk−1(1) · · · δuk−1(t)

]T (20)

If the input data uk−2(t) is received correctly, we have
δũk−1(t) = δũk−2(t) = δuk−2(t), and ϕk−1(t) can be
expressed using ϕk−2(t) in matrix form as

ϕk−1(t) = Hk−1,k−2(t) · ϕk−2(t) (21)

where

Hk−1,k−2(t)

=



I−0(0)CB 0 · · · · · · 0

−0(1)CAB
. . .

. . .
...

...
...
. . .

. . .
...

−0(t−1)CAt−1B · · · · · · I−0(t−1)CB 0
−0(t)CAtB · · · · · · −0(t)CAB I−30(t)CB


(22)

ϕk−2(t)

=
[
δuk−2(0) δuk−2(1) · · · δuk−2(t)

]T (23)

Thus, δuk+1(t) can be represented using ϕk−2(t) as

δuk+1(t) = Hk+1,k (t) · Hk,k−1(t) · Hk−1,k−2(t) · ϕk−2(t)

(24)

Compared with ideal conditions, it can be easily found that
some element values in transition matrices are changed when
successively dropped uk (t) and uk−1(t) are replaced with
uk−2(t). First, the element at (1, t + 1) in Hk+1,k (t) and
the element at (t + 1, t + 1) in Hk,k−1(t) are all changed
from ‘I − 0(t)CB’ to ‘I ’. Additionally, the eigenvalue at
(t + 1, t + 1) in Hk−1,k−2(t) is changed from ‘I − 0(t)CB’

to ‘I − 30(t)CB’. It can be easily seen that Hk,k−1(t) and
Hk−1,k−2(t) are lower triangular matrices, and all of its eigen-
values are the diagonal elements. If the learning gain 0(t)
is selected to satisfy 0 < ‖I − 0(t)CB‖ < 1 and 0 <

‖I − 30(t)CB‖ < 1, we could have λm

(
∞∏
i=0

∥∥Hi+1,i (t)∥∥)→
0,m = 0, · · · , t , which guarantees the input error at the
controller side satisfying lim

k→∞
‖δuk+1(t)‖ = 0. Furthermore,

the received input ũk (t) at the actuator could also converge
because lim

k→∞
‖δũk (t)‖ = lim

k→∞
‖ud (t)− uk−2 (t)‖ = 0.

Due to the output error ‖ek (t + 1)‖ is a function of input error
‖δũk (i)‖ , i ∈ [0, t], so the convergence of ‖δũk (t)‖ indicates
lim
k→∞
‖ek (t + 1)‖ = 0.

It should be noted that although the convergence of output
error at the time t+1 is guaranteed, the convergence speed of
which is reduced. The reason is that the element at (1, t + 1)
in Hk+1,k (t) and the element at (t + 1, t + 1) in Hk,k−1(t)
are all increased from ‘I − 0(t)CB’ to ‘I ’, and the increment
makes a slowdown in the convergence speed of output error
at the time t + 1.
Next, we want extend the analysis to the condition with the

general successive input data compensation. In other words,
uk (t), uk−1(t),. . . , uk−n+1(t) are dropped successively and
all replaced with uk−n(t), where n is the number of input
data dropped successively in iteration domain at the same
time t . By analogy, uk+1(t) can by rewritten using ϕk−n(t) =
[uk−n(0), . . . , uk−n(t)]T in matrix form as

δuk+1(t) =
n∏
i=0

Hk+1−i,k−i (t) · ϕk−n(t) (25)

where Hk−j+1,k−j(t) = Hk,k−1(t), 2 ≤ j ≤ n − 1, and
Hk−1,k−2(t) is given in (26), as shown at the bottom of this
page.
On the one hand, it can be seen that the more input

data are dropped successively and compensated using the
method given in (8), the more eigenvalues at (t + 1, t + 1)
in the transition matrices Hk−j+1,k−j(t), 2 ≤ j ≤ n − 1
are changed from ‘I − 0(t)CB’ to ‘I ’, and then the more
convergence speed of ek (t + 1) is reduced. On the other hand,
it can also be seen that the eigenvalue at (t + 1, t + 1) in
Hk−n+1,k−n(t) is changed from ‘I − 0(t)CB’ to ‘I − (n +
1)0(t)CB’. Due to the data dropout is a random process,
it is hard to establish the connection between data dropout
probability and the number of consecutive data dropouts,
while the maximum number of input data dropped suc-
cessively could be expressed as nmax = T ∗ Pd ,

Hk−n+1,k−n(t) =



I − 0(0)CB 0 · · · · · · 0

−0(1)CAB
. . .

. . .
...

...
...

. . .
. . .

...

−0(t − 1)CAt−1B · · · · · · I − 0(t − 1)CB 0
−0(t)CAtB · · · · · · −0(t)CAB I − (n+ 1)0(t)CB

 (26)
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where Pd is the input data dropout probability. Obviously,
if 0 < 0(t) < 2/(nmax + 1)CB holds, the condition
0 < ‖I − (nmax + 1)0(t)CB‖ < 1 is satisfied, and 0 <

‖I − (n+ 1)0(t)CB‖ < 1 is established for all values of
n, so the convergence of ek (t + 1) is guaranteed. Otherwise,
some eigenvalues at (t + 1, t + 1) in the transition matrices
are equal or greater than one. Moreover, the higher input
data drop probability is, the more input data are dropped
successively in iteration domain, the more eigenvalues I −
(n + 1)0(t)CB are equal or greater than one. And then,
the convergence of ek (t + 1) cannot be guaranteed.

B. CONVERGENCE SPEED ANALYSIS OF OUTPUT ERRORS
AT TIME t + 1+ i,1 ≤ i ≤ T − t − 1
In this part, we continue to analyze the convergence of
‖ek (t + 1+ i)‖ , 1 ≤ i ≤ T − t − 1. Due to the similarity in
the analysis process, the convergence of ‖ek (t + 2)‖ would
be proved, and then the convergence of ‖ek (t + 1+ i)‖ ,
2 ≤ i ≤ T − t − 1 would be proved by analogy.

The output error ek (t + 2) can be represented as

ek (t + 2)
= yd (t + 2)− yk (t + 2)

=C
t+1∑
i=0

At+1−iB (ξk (i)δuk (i)+(1−ξk (i)) δũk−1(i)) (27)

According to (5) and (27), δuk+1(t + 1) can be written as

δuk+1(t + 1)
= ud (t + 1)− uk+1(t + 1)
= ud (t + 1)− uk (t + 1)− 0(t + 1)ek (t + 2)

= δuk (t + 1)− 0(t + 1)
t+1∑
i=0

CAt+1−iB

× (ξk (i)δuk (i)+ (1− ξk (i)) δũk−1(i)) (28)

When the input data uk (t) is dropped and compensated
by ũk−1(t), (28) can be rewritten as

δuk+1(t + 1)

= δuk (t + 1)− 0(t + 1)CBδuk (t + 1)

−0(t)CABδũk−1(t)−
t−1∑
i=0

CAt+1−iBδuk (i)

= Hk+1,k (t + 1) · ϕk (t + 1)− 0(t)CABδũk−1(t) (29)

where

Hk+1,k (t + 1)

=
[
−0(t + 1)CAt+1B · · · −0(t+1)CA2B 0 I−0(t+1)CB

]
(30)

ϕk (t + 1)

=
[
δuk (0) δuk (1) · · · δuk (t + 1)

]T (31)

If the input data input data uk−1(t) is dropped successively
and compensated by ũk−2(t), uk (t + 1) can be represented as

δuk (t + 1) = δuk (t)− 0(t + 1)CBδuk (t + 1)

−0(t)CABδũk−2(t)−
t−1∑
i=0

CAt+1−iBδuk−1(i)

(32)

Because δuk (t) = δũk−1(t) = δũk−2(t), and

δuk (j) = δuk−1(j)− 0(j)CBδuk−1(j)

−0(t)
t−1∑
i=0

CAt−jBδuk−1(j) (33)

where 0 ≤ j ≤ t − 1, ϕk (t + 1) can be rewritten as

ϕk (t + 1) = Hk,k−1(t + 1) · ϕk−1(t + 1)

+
[
0 · · · 0 1 −0(t)CAB

]T
· δũk−2(t)

(34)

where Hk,k−1(t + 1) and ϕk−1(t + 1) are given in
(35) and (36), as shown at the bottom of this page.
If the input data input data ũk−2(t) is received correctly,

δũk−1(t) = δũk−2(t) = δuk−2(t), and then ϕk−1(t + 1) can
be expressed using ϕk−2(t + 1) in matrix form as

ϕk−1(t + 1) = Hk−1,k−2(t + 1) · ϕk−2(t + 1) (37)

where Hk−1,k−2(t + 1) and ϕk−2(t + 1) are given in
(38) and (39), as shown at the bottom of the next page.
Thus, δuk+1(t+1) can be represented using ϕk−2(t+1) as

δuk+1(t + 1) = Hk+1,k (t + 1) · Hk,k−1(t + 1)

· Hk−1,k−2(t + 1) · ϕk−2(t + 1) (40)

Due to successively dropped input data uk (t) and uk−1(t)
are replaced by uk−2(t), elements in (t + 1)−th row
of Hk+1,k (t + 1), Hk,k−1 (t + 1) and Hk−1,k−2 (t + 1) are

Hk,k−1(t + 1) =



I − 0(0)CB 0 · · · · · · · · · 0

−0(1)CAB
. . .

. . .
...

...
. . .

. . .
...

−0(t − 1)CAt−1B · · · · · · I − 0(t − 1)CB
. . .

...

0 · · · · · · 0 I 0
−0(t + 1)CAt+1B · · · · · · −0(t + 1)CAB 0 I − 0(t + 1)CB


(35)

ϕk−1(t + 1) =
[
δuk−1(0) δuk−1(1) · · · δuk−1(t + 1)

]T (36)
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changed. Specially, the eigenvalues in (t + 1)−th row
of Hk,k−1 (t + 1) and Hk−1,k−2 (t + 1) are all changed
from ‘I − 0(t)CB’ to ‘I ’. Since Hk,k−1 (t + 1) and
Hk−1,k−2 (t + 1) are lower triangular matrices, and all of
these eigenvalues are the diagonal elements, it can be eas-

ily derived that λm

(
∞∏
i=0

∥∥Hi+1,i (t + 1)
∥∥) → 0,m = 0,

1, · · · t + 1, then lim
k→∞
‖δuk+1(t + 1)‖ = 0 is guaranteed.

With regard to ‖δuk+1(t + i)‖ , 2 ≤ i ≤ T − t − 1,
according to proving the convergence of ‖δuk+1(t + 1)‖,
it can be easily seen that eigenvalues in (t + 1)−th row of
Hk,k−1 (t + i) and Hk−1,k−2 (t + i) would be changed to ‘I ’.

For this condition, we can also have λm

(
∞∏
i=0

∥∥Hi+1,i (j)∥∥)→
0,m ∈ [0, j] , j ∈ [t + 2,T − 1], then lim

k→∞
‖δuk+1 (i)‖ =

0, i ∈ [t + 2,T − 1] is guaranteed.
Correspondingly, it can be easily conclude that

lim
k→∞
‖δũk+1 (i)‖ = 0, i ∈ [t + 2,T − 1] as lim

k→∞
uk (i) =

lim
k→∞

uk−2 (i). Because ‖ek (t + 1+ i)‖ , i ∈ [1,T − t − 1]

is a function of ‖δũk (j)‖ , j ∈ [0, t + i], the convergence
of ‖δũk (j)‖ , j ∈ [0, t + i] indicates lim

k→∞
‖ek (t + 1+ i)‖ ,

i ∈ [1,T − t − 1].
It is noteworthy that the convergence of output errors at

the time t + 1 + i, i ∈ [1,T − t − 1] is guaranteed by
trading the convergence speed. The reason is that eigenvalues
in (t + 1)−th row of Hk,k−1 (t + 1) and Hk−1,k−2 (t + 1) are
increased from ‘I −0(t)CB’ to ‘I ’, and then the convergence
speed of ‖δuk+1(t + 1)‖ is reduced, which further makes a
slowdown in the convergence speed of output errors at the
time t + 1+ i, i ∈ [1,T − t − 1].
Further, we continue to analyze the convergence of out-

put errors with general successive input data compensation.
If uk (t), uk−1(t),. . . , uk−n+1(t) are dropped successively and
all replaced by uk−n(t), by analogy, uk+1(t + 1) can by
rewritten using ϕk−n(t+1) = [uk−n(0), . . . , uk−n(t+1)]T in

matrix form as

δuk+1(t + 1) =
n∏
j=0

Hk−j+1,k−j(t + 1) · ϕk−n(t + 1) (41)

where Hk−j+1,k−j(t+1) = Hk,k−1(t+1), 2 ≤ j ≤ n−1, and
Hk−n+1,k−n(t + 1) is given in (42), as shown at the bottom of
this page.

It can be easily seen that the higher input data drop prob-
ability is, the more input data are dropped successively and
compensated using the method given in (8), the more eigen-
values at (t + 1, t + 1) in the transitionmatrices are increased
from ‘I − 0(t)CB’ to ‘I ’, the more convergence speed of
output errors at the time t + i, i ∈ [2,T − t] is reduced.
Based on the discoveries in last two subsections, it is

easy to indicate that 0 < ‖I − (n+ 1)0(t)CB‖ < 1 is
the condition to guarantee the convergence of networked
ILC systems with n input data compensated successively
in iteration domain, which can be established when 0 <

0(t) < 2/(nmax + 1)CB holds. Moreover, the convergence of
system is guaranteed by trading its convergence speed. The
more input data are dropped successively and compensated
in iteration, the more convergence speed of the system is
reduced.

IV. SIMULATION RESULTS
In this section, some numerical results are given to corrob-
orate the theoretical analysis about convergence speed of
networked ILC systems with successive input data compen-
sation. Consider the system (4) with matrices given by

xk (t + 1) =

−0.5 0 0
1 1.24 −0.87
0 0.87 0

 xk (t)+
 1
0
0

 ũk (t)
yk (t) =

[
2 2.6 −2.8

]
xk (t) (43)

Hk−1,k−2(t + 1) =



I − 0(0)CB 0 · · · · · · 0

−0(1)CAB
. . .

...
...

. . .
...

... · · ·
. . .

. . .
...

0 · · · 0 I 0
−0(t + 1)CAt+1B · · · · · · −30(t + 1)CAB I − 0(t + 1)CB


(38)

ϕk−2(t + 1) =
[
δuk−2(0) δuk−2(1) · · · δuk−2(t + 1)

]T (39)

Hk−n+1,k−n(t + 1) =



I − 0(0)CB 0 · · · · · · 0

−0(1)CAB
. . .

...
...

. . .
...

... · · ·
. . .

. . .
...

0 · · · 0 I 0
−0(t + 1)CAt+1B · · · · · · −(n+ 1)0(t + 1)CAB I − 0(t + 1)CB


(42)
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The desired trajectory is

yd (t) = 5 sin
[
8 (t − 1)

/
T
]

(44)

The P-style ILC method is described in (5). Initial state
error δxk (0) and initial input u0(t) are 0, respectively.
T = 200, Prob {ξk (t) = 0} = E {ξk (t) = 0} = α is the
input data dropout probability. In this example, the mean
of output errors is used to demonstrate the convergence of
ILC systems with successive input data compensation, and
three data dropout cases are simulated, that is, α = 6%,
12% and 18%. Correspondingly, the maximum numbers of
input data dropped successively are 12, 24 and 36, and the
maximum values of learning gain are 0.385, 0.2 and 0.136.
In order to demonstrate the effect of the selected of learning
gain on the convergence of ILC systems with successive input
data compensation, three learning gains are used including
0 = 0.12, 0.20 and 0.28.
Fig. 2 shows the convergence of output errors when

0 = 0.12. Because 0.12 is less than the maximum of learning
gain in the three data dropout cases, it can be easily seen that
the mean of output errors all converges to zero. Fig. 3 shows
the convergence of system when 0 = 0.2. It can be easily
seen that the mean of output errors converges to zero when
α = 6% and 12%. For the case α = 6%, the convergence
of output errors’ mean is guaranteed because 0.2 is less than
0.385. For the case α = 12%, the used learning gain equal
to the maximum value of learning gain. The convergence of
output errors’ mean is still guaranteed because the chance of

FIGURE 2. The mean of output errors with three input data dropout
probabilities when 0(t) = 0.12.

FIGURE 3. The mean of output errors with three input data dropout
probabilities when 0(t) = 0.2.

this worst-case scenario that nmax input data are all dropped
successively in each iteration is extremely remote. For the
case α = 18%, the convergence of output errors’ mean
cannot be guaranteed because 0.2 is far larger than 0.136.
Fig. 4 shows the convergence of system when 0 = 0.28.
Because 0.28 is less than 0.385 and larger than 0.2 and 0.136,
The convergence of output errors’ mean is guaranteed when
α = 6%, and not guaranteed when α = 12% and α = 18%.
Fig. 5-7 show the ILC system outputs with successive input
data compensation in 50-th iteration with three input data
dropout probabilities when 0 = 0.2, which further corrob-
orates the theoretical analysis about the convergence of ILC
systems with successive input data compensation in iteration
domain.

FIGURE 4. The mean of output errors with three input data dropout
probabilities when 0(t) = 0.28.

FIGURE 5. The output with successive input data compensation at
50-th iteration when α = 6% and 0(t) = 0.2.

FIGURE 6. The output with successive input data compensation at
50-th iteration when α = 12% and 0(t) = 0.2.
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FIGURE 7. The output with successive input data compensation at 50-th
iteration when α = 18% and 0(t) = 0.2.

V. CONCLUSION
In this paper, we addressed the convergence of networked
ILC systems with successive input data compensation, which
uses the data actuator received correctly in the latest iter-
ation to replace the lost ones with the same time instant
label in current iterations. Assuming there are two input data
dropped successively in iteration domain, the convergence
of output errors is addressed through analyzing the variation
of elements in the transition matrices of the input error at
the controller side. After that, the discuss is extend to the
condition with the general successive input data dropouts in
iteration domain. The analysis reveals that the convergence
of networked ILC systems with successive compensation in
iteration domain is guaranteed by trading the convergence
speed. Additionally, the selection range of learning gain is
found to guarantee the convergence of ILC systems with
successive input data compensation. Theoretical analysis
and simulation results corroborates the correctness of our
conclusion.

In order to accelerate the convergence of networked ILC
systems with successive input data compensation in iteration
domain, we would design new learning strategies or process
the received input data at the actuator side in the future
study.
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