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ABSTRACT Ant Colony Optimization has achieved good results in solving Traveling Salesman Prob-
lem (TSP), it has a tendency to fall into local optima and the convergence speed is limited. To address this
problem, multi-colony ant colony optimization based on the generalized Jaccard similarity recommendation
strategy (JCACO) is proposed. Firstly, two classical ant populations, Ant Colony System and Max-Min Ant
System are selected to form heterogeneous multi-colony. Secondly, attribute-based collaborative filtering
recommendation mechanism is proposed to balance the diversity and convergence of the algorithm, three
strategies have been implemented under this recommendation mechanism: The attribute cross-learning
strategy is used to highlight the effect of excellent attributes and improve the attribute comprehensive perfor-
mance; According to the diversity results of the population measured by information entropy, the attribute
recommendation learning strategy is used to enrich the diversity of the population adaptively; The pheromone
reward strategy is implemented on the public path to accelerate the convergence speed; Among which,
according to the generalized Jaccard similarity coefficient, the most suitable communication object is
recommended in order to achieve the best learning efficiency. Finally, when the algorithm stagnates, the elite
reverse learning mechanism is used to jump out of the local optimum. Experimental results show that JCACO
has good performance and high stability in TSP instances, especially in large-scale TSP instances.

INDEX TERMS Attribute cross-learning, attribute recommendation learning, ant colony optimization, elite

reverse learning, generalized Jaccard similarity coefficient, traveling salesman problem.

I. INTRODUCTION
TSP is one of the famous NP-hard problems, which refers
to the shortest path problem that a traveler starts from a
certain starting point, passes all the given demand points, and
each demand point only passes once, finally returns to the
starting point. Many algorithms can solve the TSP problem,
include Particle Swarm Optimization (PSO) [1], [2], Genetic
Algorithm (GA) [3], Simulated Annealing (SA) [4], Ant
Colony Optimization (ACO) and so on. Every algorithm has
advantages and disadvantages in solving TSP problems, Ant
colony optimization is the main algorithm to solve the TSP
problem.

Ant colony algorithm starts from ant foraging mecha-
nism and it has the characteristics of positive feedback and
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strong robustness. Ant colony algorithm has been success-
fully applied in several fields, the most successful of which
is used for combinatorial optimization problems, therefore,
the ant colony optimization proposed in this paper adopts the
TSP problem for experimental testing. In the future, we will
use ant colony optimization to solve the robot path planning
and task scheduling problems [5].

Ant Colony Optimization [6], [7] was originally proposed
by Italian scholar M. Dorigo in 1996 based on the ant foraging
mechanism to solve the traveling salesman and distributed
optimization problems. The experimental results show that
the algorithm can provide a better solution, but it will fall into
the problem of local optimum and slow convergence when
solving large scale TSP problem; Then, Dorigo proposed
Ant Colony System (ACS) [8], combining local pheromone
update with global pheromone update to improve the con-
vergence speed of the algorithm. In 2000, T. Stutzle et al.
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proposed the Max-Min Ant System (MMAS) [9], by limiting
the range of pheromones, the problem of premature stagna-
tion in the algorithm is improved. The above are classical Ant
Colony Optimization, they have efficient search ability and
provide valuable experiences to further research, but there are
still problems such as easy to fall into local optimum and slow
convergence.

In order to balance the diversity and convergence of algo-
rithm, some scholars have made different improvements to
ACS. W. Deng et al. proposed an improved ant colony
optimization algorithm based on multi-population strategy,
coevolution mechanism, pheromone updating strategy and
pheromone diffusion mechanism, which can improve the
optimization performance of solving large-scale optimiza-
tion problems by balancing the convergence rate and solv-
ing diversity [10]. J. Li et al. proposed a 2-opt domain
search strategy to enhance the ability to build solutions and
improve the quality of the solution [11]. L. Zhang et al.
proposed combining the bacterial foraging algorithm with the
ant colony algorithm to improve the slow convergence of the
traditional algorithm [12]. X. Meng et al. proposed a new
direction pheromone to describe the global information in
the optimization process, which improved the global solution
and accelerated the convergence of the algorithm [13]. The
parameters setting of the ant colony optimization (ACO)
have a profound impact on the experimental results, many
researchers use various methods to optimize the parameters
of the ACO [14], [15], they all used the PSO to optimize
the parameters in ACO, which reduce the impact of param-
eter selection on the experiment and enhance the quality of
solutions. F. Olivas et al. used fuzzy control theory to make
the parameters of ant colony algorithm achieve the dynamic
adaptive effect, and the improved ant colony algorithm is
applied to robot path planning [16]-[21].

With the improvement of single colony ant colony algo-
rithm, researchers studied multiple ant colony optimization
algorithms, hoping to achieve better performance through
the collaborative work between multiple ant colonies. The
concept of multiple ant colonies was first proposed by
Gambardella to solve the vehicle routing problem with time
windows [22]. Multiple ant colony optimization are divided
into homogenous ant colony optimization and heterogeneous
ant colony optimization, Chu S C et al. proposed a homoge-
nous multiple colonies ant colony optimization with seven
communication methods to update the pheromones based on
the best route of all colonies [23]. M. Birattari et al. proposed
a migration integration strategy for homogeneous ant colony
communication [24]. The homogenous ant colony algorithms
are relying on the basic ant colony algorithms to enhance the
feature of single colony, to some extent, the heterogeneous
ant colony algorithms, in which different ant colonies have
different behaviors, are more likely to take full advantage of
different ACO. M. Xu et al. proposed a heterogeneous double
colonies ant colony algorithm based on heuristic information,
by introducing exchange factors and carrying out information
exchange regularly, the convergence and diversity of the
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algorithm are balanced in large scale problems, but the self-
adaptability of the algorithm still needs to be improved [25].
T. Zheng used the adaptive migration rules based on pop-
ulation diversity to propose a parallel multi-group adaptive
ant colony algorithm for automatic test case generation [26].
X. He et al. proposed a two-population ant colony optimiza-
tion based on heterogeneous ant colony, which improved
the diversity of solutions through heterogeneous evolution
and information exchange, due to the exchange frequency is
related to the number of iterations, the algorithm mode was
relatively fixed [27].

There are three main problems in multi-colony ant colony
algorithm: 1. How to communicate among populations?
2. What is exchanged between the populations? 3. When
to communicate? According to the references, the optimal
solution and pheromone matrix can be exchanged between
populations, or the worst solution can be replaced by the
optimal solution. P. Zhang et al. selected communication
objects according to the similarity between populations, and
then exchanged the optimal solution and pheromone between
populations [28]. In the communication mechanism, different
communication strategies can be adopted in different situa-
tions, X. Deng et al. proposed two neighborhood topologies
for exchange between populations [29]. X. Chen proposed
random weight, asynchronous change factor and population
elimination strategy to increase the communication between
populations [30].

The existing multi-colony algorithm balances the diversity
and convergence of the algorithm and reflecting the advan-
tages of the multi-colony algorithm, however, the interaction
strategy between populations is relatively simple, and the
adaptability of the algorithm needs to be improved. To solve
these problems, some scholars have introduced the principle
of recommendation system into ant colony optimization and
adopted interdisciplinary methods to make the direction of
the improvement more clear. There are two ways to combine
recommendation algorithm with ant colony algorithm. One is
to use ant colony algorithm to optimize the recommendation
algorithm [31], [32], and the other is to use the recommen-
dation algorithm to optimize the ant colony algorithm [33].
Experiments of both methods verify the effectiveness of
the algorithm and optimize the overall performance of the
algorithm.

This paper focuses on the diversity and convergence of the
balance algorithm and the accuracy of the solution in large-
scale TSP problems. Multi-colony ant colony optimization
based on the generalized Jaccard similarity recommendation
strategy is proposed, the collaborative filtering recommenda-
tion algorithm is adopted to optimize ant colony algorithm.
The main contributions of this paper are as follows:

1. Multiple subpopulations of ACS and MMAS were
selected to form heterogeneous multi-population ant colony
optimization to balance the diversity and convergence speed
of the algorithm.

2. Attribute-based collaborative filtering recommendation
mechanism is proposed to exchange information and learn
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between populations, there are three strategies for this mech-
anism: attribute cross-learning strategy, attribute recommen-
dation learning strategy, public path reward strategy. In the
attribute cross-learning strategy, the concept of attribute com-
prehensive performance of the population was proposed to
measure whether a population is excellent or not, excellent
populations exchange information through attribute cross-
learning strategy, so that they can give full play to the role
of excellent attributes and improve the attribute compre-
hensive performance of the population; In the attribute rec-
ommendation learning strategy, information entropy is used
to measure diversity of population, when the information
entropy of population is lower than the threshold, the fusion
of pheromones through attribute recommendation learning
strategy to improve the diversity of population; In the public
path reward strategy, the public path between the current
optimal path of the population with poor convergence and
the historical optimal path was found, the pheromone reward
is applied to the public path, which makes the algorithm
directional and accelerating the convergence speed. These
three strategies adjust the communication frequency adap-
tively according to the dynamic information feedback of
the population, to balance between breadth optimization and
depth exploration of the algorithm.

3. The attribute cross-learning strategy and attribute recom-
mendation learning strategy mentioned in contribution 2 need
appropriate communication objects when they are executed,
the generalized Jaccard similarity coefficient is constructed
to measure the similarity between populations, and the most
suitable communication objects are recommended for the
above strategies, so as to achieve the best learning effect
between populations.

4. The strategy in contribution 2 may cause excessive
accumulation of pheromones, which may cause the algorithm
to stagnates, to avoid this situation, the elite reverse learning
mechanism is proposed to jump out of the local optimum and
obtain a more accurate solution.

This paper is organized as follows: Section II briefly
introduces the ACS, MMAS, generalized Jaccard similarity
coefficients and information entropy. Section III introduces
the relevant content of the JCACO including the constructing
the generalized Jaccard similarity coefficient, attribute-based
collaborative filtering recommendation mechanism and elite
reverse learning mechanism. Section IV verifies the effec-
tiveness of the relevant strategies proposed in this paper
through experiments, and compares JCACO with traditional
ant colony algorithm and other optimization algorithms.
Section V includes summary and future work.

Il. RELATED WORK

A. ANT COLONY SYSTEM WITH TSP

In the early 1990s, scientists discovered through experiments
that when ants are foraging, they will leave a similar chem-
ical substance—pheromone on the path they walk through.
The ants will choose the next path based on the pheromone
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concentration, the higher the concentration, the higher the
probability of being selected, at the same time due to the
volatile nature of pheromones, the pheromone on the poor
path will be less and less, thus the optimal path can be
selected.

1) CONSTRUCT THE SOLUTION
The selection formula for each ant in the ACS from city i to
city j:

B
7= argmax{r,-j [7i7] }, q9=qo (1)
S, q > q0

where 1;; represents the reciprocal of the distance between
city 7 and city j, t; represents pheromone concentration
between city i and city j, go is a parameter which is a con-
sistent value. ¢ is a random variable subjected to a uniform
distribution between 0 to 1. J is the next city to be selected.
s is equal to Eq.(2). The Eq. (1) shows that cities with high
pheromone or with relatively close distances are more likely
to be selected. When ¢ < ¢o, use Eq.(1); otherwise, use
Eq. (2).

B
[]" [ni] j e Nk
) B i
= Zk [zit]® [ )
leNl.
0, j &Nk

where o is information heuristic factor; B is expectation
heuristic facto; Nl.k is a collection of cities that ants can reach
directly and have not visited yet. n;; is heuristic function, its
expression is formula (3).

1
Nij = - 3)

dij
2) PHEROMONE UPDATE
Local pheromone update rule: when the ant carries out path
construction, it moves from the current city i to the next city j,
and immediately updates the pheromone on the path, which
can be expressed as equation (4).

tj < (1 = p) 7 + p7o “

where p is local pheromone evaporation coefficient whose
rang is [0, 1]; to is pheromone initial value.

Global pheromone update rule: After all ants completed
their tour, only the global optimal path can update the
pheromone, which accelerates the convergence of the algo-
rithm, and its expression is formula (5).

T < (1—&) 7 +EAT) )
1
b.
A'L'ijs = @ (6)

where £ is global pheromone evaporation coefficient, C” is
the length of the global optimal path; Aré?x is the pheromone
added to the global optimal path, its expression is formula (6).
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B. MAX-MIN ANT SYSTEM

In order to avoid fast convergence and stagnation of the algo-
rithm, the MMAS algorithm limits the size of pheromones:
[Tmins Tmax]- If Tjj < Tmin, We set Tj; = Tin; If 7jj > Tmax, we
set Tjj = Tmax. The value of Tmax and Ty, are in formula (7)
and formula (8).

Toax = (1/p) 5 (1 /T¥) )
Tmin = Tmax/zn )]

where T¢” is global optimal path.

1) PHEROMONE UPDATE
In MMAS, only the pheromone on the best tour can be update

in each iteration. The pheromone update rules are as shown in
formula (9) and formula (10).

7t + 1) = (1 — p)7;j(t) + Argest )
Agbest — l/f(sbest) (10)

)

where f (s”¢*") is the best tour.

C. GENERALIZED JACCARD SIMILARITY COEFFICIENT

The Jaccard similarity coefficient is used to compare simi-
larities and differences between finite sample sets. The larger
the Jaccard coefficient value, the higher the sample similarity.
The generalized Jaccard coefficient is an extension of the
Jaccard coefficient, also known as the Tanimoto coefficient.
Its expression is (11).

A-B
IAI? + IBI*> —A-B

where A and B are two n-dimensional vectors. A - B is vector

n
product, lA||? is vector norm: ||A||? = 3 al.z.
V i=1

D. INFORMATION ENTROPY

Information Entropy is a word borrowed from thermody-
namics by C. E. Shannon in 1948 to solve the problem of
quantitative measurement of information. It’s also one of
several ways to measure diversity. Entropy can be written
explicitly:

EJ(A,B) = an

HX) = — Z P(x)Ib(P(x)) 12)
xeX
where b is the base of the logarithm. P (x) is the probability
mass function.
The entropy of the unknown result is maximized if each
probability is fair. Therefore, this paper uses information
entropy to measure the diversity of population [34], [35].

Ill. MULTI-COLONY ANT COLONY OPTIMIZATION BASED
ON GENERALIZED JACCARD SIMILARITY
RECOMMENDATION STRATEGY

The recommendation algorithm is a computer science algo-
rithm that uses some user behavior to guess what the user
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might like through some mathematical algorithms. There
are six main types of recommendation algorithms: content-
based, collaborative filtering, association rules, utility-based,
knowledge-based and combination recommendation. The
recommendation algorithm based on collaborative filtering is
the most commonly used and the effect is better. Therefore,
this paper chooses a collaborative filtering recommendation
algorithm.

A. ATTRIBUTE-BASED COLLABORATIVE FILTERING
RECOMMENDATION MECHANISM
1) SIMILARITY MEASURE
The core of the recommendation algorithm is the measure
of similarity of the use. Traditional ant colony optimiza-
tion has poor diversity and slow convergence. Therefore,
this paper uses the diversity factor and convergence factor
of the population to form a 2-dimensional vector and uses
the generalized Jaccard similarity coefficient to measure the
similarity between populations. In this paper, we use infor-
mation entropy to measure the diversity of populations and
use formula (13) to measure the convergence of populations.
iterg

Con; = — (13)
iter;

where Con; is the convergence of the population i, iterg is
the iteration number of optimal convergence in history, iter;
is the iteration number of current optimal convergence in
population i.

A-B

" A+ IBI>—A-B

_ arby + axby (14)

\/a% +a§+\/b%+b% — (a1by + azby)

JEA, B)

We use formula (14) to measure the similarity between pop-
ulation A and B. Where JE(A, B) is the similarity between
population A and B, A(ay, ay) is the vector describing pop-
ulation A, a; is the diversity of population A and the value
of aj is ratio of current information entropy of population
to maximum information entropy, a; is the convergence of
population and the value of a, is obtained by Equation(13).
The larger the value of JE(A, B), the more similar the popu-
lation A and B are.

2) ATTRIBUTE CROSS-LEARNING STRATEGY

After one iteration, the similarity matrix of each pair of
populations is calculated according to the Equation (4), and
the population with the best attribute comprehensive perfor-
mance is found, the attribute comprehensive performance of
the population is measured using the formula (15). Every
M generation, the population with the best attribute com-
prehensive performance is communicated with its most sim-
ilar population. There are two reasons: One is due to the
positive feedback of pheromones, when the two population
information exchanges too frequently, too many pheromones
will cause both populations to fall into local optimum, so it
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is necessary to control the exchange frequency of the pop-
ulation. The other is according to formula (15), the attribute
comprehensive performance of the population includes diver-
sity, convergence, and quality of the solution, the population
with the best attribute comprehensive performance does not
necessarily have all the excellent attributes, therefore, choos-
ing the most similar population for communication can help
each other learn excellent attributes(As shown in FIGURE 1,
the red box is the excellent attributes of the two population),
play the role of excellent attributes, and improve the attribute
comprehensive performance of excellent populations.

Per; = Div; - Sol; - Con; (15)
Pop 1 attributes | Divi | Soit | Conl |
Pop 2 attributes [ Div2 | Sol2 | con2 |

Div1 | Sol2 | Conl |

Pop's attributes after learning

FIGURE 1. Attribute cross-learning strategy.

Formula (15) is the measurement of attribute comprehen-
sive performance, where Per; is the attribute comprehensive
performance of the population i, Div; is the ratio of the
current information entropy of the population i to the global
maximum information entropy, it reflects the diversity of
the population; and Sol; is the ratio of the standard optimal
solution of the population i to the current optimal solution,
itreflects the accuracy of the solution; Con; from formula (13)
and it reflects the convergence of the population.

JE1 1 JE1 2
JE> 1 JE> >

JEl,sH-sZ
E
Similartyjze, = TE2 51452
JEsi12,1 JEsi4522 ... JEg1 45251452
(16)

Formula (16) is the similarity matrix between the populations,
where JE; ; is the similarity between population i and popu-
lation j, if i = j, JE; j = 0;if i # j, JE; j calculated according
to formula (14), s1 is the number of ACS subpopulation, s2 is
the number of MMAS subpopulation.

3) ATTRIBUTE RECOMMENDATION LEARNING STRATEGY

When the information entropy of a population is below
the threshold, that is, the diversity of the population is too
low, then the attribute recommendation learning strategy is
executed. Firstly, & populations with a higher similarity with
this population are filtered out according to formula (16).
Secondly, the population with the highest information
entropy of the k populations is recommended for learning.
The reasons are as follows: One is, if we choose the best
diversity subpopulation directly from the whole population
for learning, the attribute comprehensive performance of
these two populations may differ greatly, learning between
them will lose the better solutions that have been found,
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which will cause the rate of convergence to slow down. The
other is, the low diversity of the population will reduce the
search performance of the algorithm, choosing the population
with the highest information entropy among the k populations
for learning will improve the diversity of the population and
increase the search breadth of the algorithm. The learning rule
is the fusion of pheromones. See formula (17).

1
Plfnew = 5 (P] +P2) (17)

where Py ey is a new pheromone matrix of the population
whose information entropy is below the threshold, P is the
original pheromone matrix of the population whose informa-
tion entropy is below the threshold, and p; is the pheromone
matrix of the population whose communicating with the pop-
ulation P;. The pheromone of the two populations is fused by
formula (17), so that the excellent performance in the original
population is preserved and the excellent performance of the
exchange population is obtained.

4) PUBLIC PATH REWARD STRATEGY

This algorithm not only needs to maintain the diversity of the
population, but also needs to improve the convergence of the
algorithm. Here, the convergence of a population is measured
by formula (13). When the convergence of the population is
lower than the threshold, which is Con < w(w is convergence
threshol), to improve the convergence speed, the public path
between the current optimal path of the population with poor
convergence and the historical optimal path was found, and
reward certain pheromone to the public path. The definition
of public path is shown in FIGURE 2, if three or more nodes
are identical in succession, they are regarded aspublic path.
The reward rule is formula (18).

1 .
Phew = (1 + —e”“’r> P (18)
n

where P is the original pheromone matrix of the public path,
Pjew 1s pheromone matrix of the public path after rewar,
n is the number of cities. Pheromone rewards related to the
number of iterations. In the early stage of the algorithm,
a path is selected by both populations and is part of the
current optimal path, it can be considered that there is a
component of the optimal solution around the path or the
path, reward this part with pheromones, this will make the
algorithm more directional and speed up the convergence.
To prevent the excessive accumulation of pheromone, then
lead the algorithm to fall into local optimum at the later stage,
we use formula (18) for rewards. As the number of iterations
increases, fewer pheromones are rewarded.

O C—C—G
O E—=0C—0GH>{)

FIGURE 2. Public path.

157307



IEEE Access

D. Zhang et al.: Multi-Colony ACO Based on Generalized JCACO

B. ELITE REVERSE LEARNING MECHANISM
The traditional ant colony optimization algorithm often
encounters the problem of local optimization in the later
stage. When the population falls into local optimization,
the appropriate learning object needs to be selected to jump
out of local optimization. Here the selection of learning
objects is the key. There are generally two options, option 1:
the general population was randomly selected for learning;
Option 2: select the population with the current optimal solu-
tion for learning. Although option 1 can maintain diversity,
the optimal solution of the subpopulation may deviate from
the standard optimal solution, leading to a decrease in con-
vergence rate and solution accuracy. Although option 2 is the
closest to the standard optimal solution, if the selected popu-
lation also falls into the local optimal solution, the diversity
and learning efficiency of the population after learning will
be reduced. To balance the advantages and disadvantages of
these two options, this paper proposes the concept of the Elite
Mixed Knowledge Board (EMKB), which is used to store the
elite status of the population, when the algorithm is stagnant,
the population performs the elite reverse learning mechanism
to achieve the goal of jumping out of the local optimum. The
specific operation is as follows:

Stepl: First build an EMKB to store elite status, EMKB
structure as shown in TABLE 1.

TABLE 1. Elite mixed knowledge board.

Length of elite path Pheromone matrix

L E, 0§

Information entropy

P

sl+s2

E

s1+52

L

51452

Step2: Each subpopulation generates a current elite state
with each iteration, the length of the elite path, information
entropy, and pheromone matrix are stored in EMKB.

Step3: EMKB updates itself as the number of iterations
changes. The update rules are: If the length of the elite path
of the current iteration is better than the length of the worst
elite path in the EMKB, the replacement is then performed,
including the length of the current elite path, the information
entropy, and the pheromone matrix.

Step4: When a subpopulation falls into local optimum,
adds the length of the elite path obtained by the current
population to EMKB and sort by the length of the elite path
from small to large, if the length of this elite path is sorted,
the sequence number is x, then its reverse sequence number
is x*, the calculation method is formula (19).

x* = Xmin + Xmax — X (19)

where X, is the minimum sequence number of the elite path
length, and xpax 1s the maximum sequence number of the elite
path length. The reverse learning area of the population is
(min (x, x*) , max (x, x*)).
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Step5: Select the elite state with the highest information
entropy in the learning area to learn, learning the length of
the current elite path, information entropy, and pheromone
matrix.

C. ALGORITHM FRAMEWORK
The following is the execution process of JCACO:

Stepl: Initialize parameters and pheromone matrices that
appear in JCACO, calculate the distance between cities;

Step2: Tteration starts from here, path construction of each
subpopulation of ACS and MMAS according to Eq. (1) and
Eq. (2), local pheromone update of subpopulations according
to Eq. (4), note the limitations of MMAS pheromone;

Step3: When all subpopulations complete an iteration,
updating the global pheromone of each subpopulation
according to Eq. (5) and Eq. (9), preserve the current optimal
solution of the algorithm at this time, if the current optimal
solution is better than the historical optimal solution, it is
retained after replacing the historical optimal solution, oth-
erwise, it is not replaced;

Step4: Calculate the information entropy of subpopulations
according to Eq. (12), calculate the similarity between pop-
ulations according to Eq. (14), measure the convergence of
subpopulations according to Eq. (13);

Step5: Every M iterations, calculate the attributes compre-
hensive performance of the population according to Eq. (15),
according to the similarity between populations, recom-
mend appropriate populations and population with the high-
est attribute comprehensive performance execution attribute
cross-learning strategy;

Step6: When the information entropy of the subpopulation
is below the threshold, according to the similarity matrix,
the most suitable population and the population with low
entropy were selected to implement attribute recommenda-
tion learning strategy;

Step7: When the convergence of the subpopulation is
below the threshold, the public path between the current opti-
mal path of this subpopulation and the historical optimal path
was found, the pheromone reward strategy is implemented on
the public path;

Step8: If the current optimal path length of a subpopulation
has not changed continuously for T iterations, then we think
that the subpopulation may fall into local optimum, at this
moment, the elite reverse learning mechanism is executed by
this subpopulation;

Step9: The number of iterations increases, back to Step2;

Stepl0: When the maximum number of iterations is
reached, the global optimal solution of the algorithm is
output.

In this framework, the number of iteration is nc, the number
of subpopulation ant is m, the number of city is 7, all subpop-
ulations run in parallel in the computer.

Through the analysis of the algorithm framework, we know
that the time complexity of JCACO is O(nc * m x (n — 1)),
and the maximum time complexity is O(nc * m * n). As we
known, the maximum time complexity of ACS and MMAS
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Algorithm 1 JCACO Algorithm for TSP

1 Initialize the pheromone and the parameters

2 Calculate the distance between cities

3 While termination condition is not satisfied do

4 Construct ant solutions for ACS, MMAS with Eq.(1),
Eq.(2)

5 Update pheromone for MMAS, ACS with Eq.(4),
Eq.(5), Eq.(9)

6 Calculate information entropy with Eq.(12)

7 Calculate Generalized Jaccard coefficient with
Eq.(14)
8 If nc % M ==0 then
9 Executive attribute cross-learning strategy
10 End-If
11 If subpopulation information entropy below the
threshold then
12 Executive attribute recommendation learning
strategy
13 End-If
14 If subpopulation convergence is below the threshold
then
15 Execute public path reward strategy
16 End-If
17 If subpopulations fall into local optimum then
18 Executive elite reverse learning mechanism
19 End-If

20 nc =nc+1
21 End-While

is O(nc * m*n). Therefore, the maximum time complexity of
JCACO is the same as ACS and MMAS, indicating that this
algorithm does not require additional time consumption.

IV. EXPERIMENT AND SIMULATION
A. SIMULATION ENVIRONMENT AND PARAMETER
SETTINGS
The experiment was simulated in MATLAB R2016a environ-
ment in Windows 10. To verify the performance of JCACO,
we selected TSP instances of various scales for experiments
and compared them with ACS and MMAS. To enable JCACO
to have better performance, three levels and four factors
orthogonal experiments were used to determine the value of
each parameter and the levels are based on pre-experiments,
the optimum scheme of each factor is found out by orthogonal
experiment. Each combination of the various parameters was
tested 10 times, the average value was taken for analysis, take
eil51 as an example to determine the parameter value (the
internal operations of the ACS and MMAS subpopulations
have not been changed, therefore, the parameters of ACS
and MMAS can be determined separately to achieve the best
effect of each).

Based on the above experiments, it can be known that: in
MMAS, the best scheme of parameters is that « is equal to 1,
B isequal to 3, and p is equal to 0.1; in ACS, the best scheme
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TABLE 2. Experimental factors and levels of MMAS.

o B p
Level 1 1 1 0.1
Level 2 2 2 0.2
Level 3 3 3 0.3
Note: /O is pheromone updating parameter of MMAS algorithm.
TABLE 3. Orthogonal test scheme and test results of MMAS.
no. a £ P results
1 1 1 0.1 436.2
2 1 2 0.2 433.8
3 1 3 0.3 428.9
4 2 1 0.3 439.8
5 2 2 0.1 4352
6 2 3 0.2 433.5
7 3 1 0.2 439.3
8 3 2 0.3 436.4
9 3 3 0.1 433.2

Note: The 7O. is the number of the test, and the results is the average value after 10 tests in

each group.

TABLE 4. Analysis of test results of MMAS.

T a i p
T 1298.9 13153 1304.6
A 1308.5 1305.4 1306.6
A 1308.9 1295.6 1305.1
4 432.97 438.43 434.87
t 436.17 435.13 435.53
[ 436.30 431.87 435.03
max 436.30 438.43 435.53
min 432.97 431.87 434.87
range 3.33 6.56 0.66
scheme Level 1 Level 3 Level 1

Note: 7] (7=1,2,3 )are the sum of results. £, (7=1,2,3 ) are the means of every level.
1ange is the difference by the MaX minus the min , which will be applied to determine
which one factor is important, and larger 7@71Z€ is generally more important. And scheme is

the project of every factor by orthogonal test to obtain the best result.

TABLE 5. Experimental factors and levels of ACS.

Level | Level 2 Level 3
a 1 2 3
B 2 3 4
p 0.1 0.2 0.3
4 0.2 0.3 0.4

of parameters is that « is equal to 1, g is equal to 4, p is equal
to 0.1, and £ is equal to 0.2.

B. EXPERIMENT ANALYSIS

1) STRATEGY TESTING AND PERFORMANCE ANALYSIS
There are three strategies for the attribute-based collaborative
filtering mechanism proposed in this paper: attribute cross-
learning strategy, attribute recommendation learning strategy,
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TABLE 6. Orthogonal test scheme and test results of ACS.

no. a B 1% 4 results
1 1 2 0.1 0.2 429.9
2 1 3 0.2 0.3 428.9
3 1 4 0.3 0.4 4279
4 2 2 0.2 0.4 430.6
5 2 3 0.3 0.2 428.5
6 2 4 0.1 0.3 427.7
7 3 2 0.3 0.3 431.5
8 3 3 0.1 0.4 429.5
9 3 4 0.2 0.2 4279

Note: /2 is local pheromone updating parameter of ACS algorithm, and & is global pheromone
updating parameter of ACS algorithm.

TABLE 7. Analysis of test results of ACS.

T a B p 4
A 1286.7 1292.0 1287.1 1286.3
7 1286.8 1286.9 1287.4 1288.1
A 1288.9 1283.5 1287.9 1288.0
4 428.90 430.67 429.03 428.77
t 428.93 428.97 429.13 429.37
2 429.63 427.83 429.30 429.33
max 429.63 430.67 429.30 429.37
min 428.90 427.83 429.03 428.77
range 0.73 2.84 0.27 0.60
scheme Level 1 Level 3 Level 1 Level 1

public path reward strategy. To verify the validity of the three
strategies, we selected kroA 100, kroB 150 for the experiment,
the selected TSP instances was tested 15 times, and each
experiment was performed 2000 iterations. This experiment
was analyzed from the following aspects: the optimal solu-
tion (Best), the worst solution (Worst), the average solution
(Mean), iteration number of optimal solution (Convergence).
Experimental data are shown in TABLE 8. Wherein, LOS-3
is an algorithm that has an attribute cross-learning strategy
and an attribute recommendation learning strategy but lacks
a public path reward strategy. LOS-2 is an algorithm that has
an attribute cross-learning strategy and a public path reward
strategy but lacks an attribute recommendation learning strat-
egy. LOS-1 is an algorithm that has attribute recommendation
learning strategy and publi cpath reward strategy but lacks
anattribute cross-learning strategy.

Firstly, the optimization effects of the three strategies are
analyzed. The comparison groups were ACS and MMAS,
and the experimental group were JCACO, LOS-3, LOS-2
and LOS-1. As can be seen from TABLE 8, compared with
the ACS and MMAS algorithms, the optimization effect
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was achieved in all four experimental groups. All the four
improved algorithms and ACS can find the optimal solution
in kroA100, while MMAS cannot find the optimal solu-
tion, only JCACO can find the optimal solution in kroB150.
In TABLE 8, the quality of the worst solution and average
solution of the four improved algorithms are better than ACS
and MMAS. Therefore, the four improved algorithms formed
by the three strategies have better stability and higher solution
accuracy. It can be seen from FIGURE 3 that the convergence
speed of JCACO, LOS-3, LOS-2 and LOS-1 algorithms is
faster than ACS and MMAS.

x10%

——JCACO
28 LOS-3
LOS-2
—LOS-1
ACS
—MMAS

!
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration

(a) kroA 100

<104
:

—JCACO
LOS-3
LOS-2

—LOS-1
ACS

—MMAS | ]

400 600 800 1000 1200 1400 1600 1800 2000
Iteration

(b) kroB150

FIGURE 3. Comparison of convergence rates of different algorithms.

Then, the respective effects of the three strategies were
analyzed. The comparison group was JCACO, and the exper-
imental group were LOS-3, LOS-2, and LOS-1. As can be
seen from TABLE 8, JCACO found the optimal solution
in both the kroA100 and kroB150, the optimal solution,
the worst solution and the average solution of the LOS-1 and
LOS-2 algorithms are worse than the other two algorithms,
therefore, attribute cross-learning strategy and attribute rec-
ommendation learning strategy focus on improving the accu-
racy of the solution and the stability of the algorithm. It can
be seen from the convergence columns in TABLE 8 and
FIGURE 3 that compared with the other three algorithms,
the convergence rate of the LOS-3 algorithm is the slowest.
Therefore, the public path reward strategy focuses on improv-
ing the convergence speed of the algorithm.
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TABLE 8. Performance analysis of algorithms composed of different strategies.

TSP Instances algorithm Best Worst Mean Convergence
JCACO 21282 21443 21322 171
LOS-3 21282 21389 21323 1704
LOS-2 21282 21440 21350 690
kroA100
LOS-1 21282 21470 21341 269
ACS 21282 21926 21433 1538
MMAS 21346 22075 21652 1272
JCACO 26130 26389 26233 836
LOS-3 26178 26655 26332 1061
LOS-2 26146 26835 26421 867
kroB150
LOS-1 26194 26605 26431 990
ACS 26358 26941 26498 923
MMAS 26704 27887 27107 1559

Finally, these three strategies have different improvements
to the algorithm, and after the composite use, the accuracy,
convergence speed and stability of the solution are improved.
They complement each other so that the improvement effects
of each strategy play a better role in the combination of each
other.

2) COMPARATIVE ANALYSIS OF JCACO AND TRADITIONAL
ANT COLONY ALGORITHM

In order to compare the performance of ACS, MMAS with
JCACO, this paper selects 18 TSP instances of different
scales for experiments. This experiment was analyzed from
the following aspects: the optimal solution (Best), the worst
solution (Worst), the average solution (Mean), iteration
number of optimal solution (Convergence), minimum error
rat (Er) and Standard deviation (dev). Experimental data are
shown in TABLE 9. The minimum error rate is expressed by
the formula (20).

Laco — Lmin

Er = x 100% (20)

Liin
where Laco is the optimal solution found for the algorithm,
Ly is the standard optimal solution for the TSP instances.

N
1
dev= |~ Zl (li = Lavg? @1
=

Eq. (21) is the standard deviation, where N is the number of
times each TSP instance is tested (in this paper N = 15), [;
is the current optimal solution for each experiment, /g is the
average solution of N experiments.

As can be seen from TABLE 9: The JCACO is superior
to ACS and MMAS in the selected TSP Instances, whether
it is the optimal solution, the worst solution, the average
solution, and the error rate. In small scale TSP instances such
as eil51, eil76, rat99, kroA100, and kroB100, JCACO can
quickly find the standard optimal solution, due to the informa-
tion exchange strategy among the populations and the public

VOLUME 7, 2019

path reward strategy, JCACO has the fastest convergence
rate and the highest solution accuracy compared with ACS
and MMAS; In medium scale TSP instances such as ch130,
kroA150, kroB150, ch150, kroA200, kroB200, the JCACO
obtains the standard optimal solution in the kroB150 and
ch150, although other instances do not achieve the standard
optimal solution, the error rate remains within 1%. The elite
reverse learning mechanism enables JCACO to jump out of
the local optimal, but ACS and MMAS are easily trapped in
the local optimal, for example, ACS stagnates in the 595 and
299 generations of ch150 and kroA200, respectively; In large
scale TSP instances such as tsp225, a280, rand300, 1in318 and
1417, it is difficult to find the optimal solution due to the large
size of the city, although JCACO did not find the standard
optimal solution, it still converges slightly faster than ACS
and MMAS, the error rate of the optimal solution remains
within 1%, and the solution accuracy is higher than ACS and
MMAS.

In short: The JCACO algorithm improves the accuracy of
the solutions, speeds up the convergence, and can jump out
of the local optimum. The search ability greatly exceeds ACS
and MMAS.

FIGURE 4 shows the convergence changes of JCACO,
ACS and MMAS on 18 TSP instances. It can be seen from the
figure that the JCACO algorithm retains a faster convergence
rate than ACS and MMAS at the early stage, and makes the
solution converge to the optimal solution nearby, no matter
it is small TSP instance, medium TSP instance or large TSP
instance. ACS and MMAS algorithms tend to fall into local
optimum in the later stage, this algorithm adopts an elite
reverse learning mechanism, which enables the algorithm to
jump out of local optimum and improve the accuracy of the
solutions.

This paper uses the standard deviation (Eq. (21)) to reflect
the stability of the algorithm, FIGURE 5 shows the standard
deviation of 18 different TSP instances participating in the
experiment (15 tests per TSP instance). As can be seen from
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TABLE 9. Performance comparison of JCACO, ACS, MMAS in different TSP instances.

TSP Instances Opt algorithm Best Worst Mean Er dev Convergence

JCACO 426 428 427 0.00 1.067 279
eil51 426 ACS 426 435 428 0.00 6.867 1092
MMAS 427 441 432 0.23 8.400 352

JCACO 538 542 539 0.00 2.400 174
eil76 538 ACS 538 553 544 0.00 9.067 1528
MMAS 543 574 555 0.93 18.590 437

JCACO 1211 1223 1214 0.00 9.067 80
rat99 1211 ACS 1213 1228 1219 0.16 8.800 1987
MMAS 1230 1275 1253 1.57 21.600 1193

JCACO 21282 21443 21322 0.00 120.067 171
kroA100 21282 ACS 21282 21926 21433 0.00 492.333 1538
MMAS 21346 22075 21652 0.30 422.533 1272

JCACO 22141 22295 22248 0.00 46.467 461

kroB100 22141 ACS 22246 22358 22311 0.47 46.933 536
MMAS 22274 22962 22648 0.60 313.467 1945
JCACO 6129 6197 6172 0.31 24.267 1040
ch130 6110 ACS 6146 6370 6220 0.59 149.533 1096
MMAS 6189 6367 6284 1.29 82.467 1387
JCACO 26621 27074 26845 0.36 228.600 1595
kroA150 26524 ACS 26664 27447 27108 0.53 338.067 1434
MMAS 26856 27906 27536 1.25 369.467 880

JCACO 26130 26389 26233 0.00 155.600 836

kroB150 26130 ACS 26358 26941 26498 0.87 418.500 923
MMAS 26704 27887 27107 2.20 780.067 1559
JCACO 6528 6584 6558 0.00 25.133 1792

ch150 6528 ACS 6553 6671 6596 0.38 74.600 595
MMAS 6616 6831 6727 1.35 103.333 1247

JCACO 29406 29635 29542 0.12 92.200 1821

kroA200 29368 ACS 29486 29926 29604 0.40 521.267 299
MMAS 30232 31532 30650 2.94 881.400 1541
JCACO 29525 30270 29982 0.29 287.800 1807
kroB200 29437 ACS 29819 30888 30194 1.29 693.200 1114
MMAS 30423 31514 31073 335 440.867 1708

JCACO 3935 4048 4007 0.48 41.067 1711
tsp225 3916 ACS 3944 4145 4023 0.72 121.733 1880
MMAS 4104 4298 4192 4.80 105.800 1986

JCACO 2590 2681 2628 0.42 52.267 712

a280 2579 ACS 2605 2717 2642 1.00 74.400 1885
MMAS 2722 2911 2784 5.54 126.867 1987
JCACO 11976 12377 12082 0.93 294.400 1626

rand300 11865 ACS 12022 12387 12139 1.32 247.667 1721
MMAS 12346 12932 12637 4.05 294.667 1985

JCACO 42399 43548 43163 0.88 384.800 1858

lin318 42029 ACS 43203 44391 43626 2.79 764.800 1583
MMAS 44794 46745 45285 6.57 528.067 1881

JCACO 11969 12431 12216 0.91 165.200 1353

1417 11861 ACS 12193 12584 12330 2.80 254.267 1989
MMAS 12664 13987 13116 6.77 257.733 1890

JCACO 108375 112994 110700 1.08 2292.100 1793

pr439 107217 ACS 109037 115188 110650 1.70 4540.900 1906
MMAS 117104 129770 122830 9.22 6935.300 1808

JCACO 88895 93723 90842 2.49 1382.200 1881

att532 86729 ACS 89652 92531 91044 3.37 1487.300 1986
MMAS 93211 98259 95398 7.47 2861.000 1878
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algorithms.
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FIGURE 4. Comparison of convergence rates of different algorithms.
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participating in the experiment.

3) COMPARATIVE ANALYSIS OF JCACO AND OTHER
OPTIMIZATION ALGORITHMS

The improved algorithm JCACO in this paper is also
compared with other optimization algorithms to verify its
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FIGURE 6. (Continued.) Optimal solution path for each TSP instance
found by JCACO.

performance, as shown in TABLE 10, including improved
multi-colony Ant Colony Optimization [15], [36], [37],
Single colony Ant Colony Optimization [3], Particle Swarm
Optimization [40], Genetic Algorithm and Artificial Bee
Colony Algorithm [41]. The PCCACO algorithm data comes
from [36], EDHACO algorithm data comes from [37],
PACO-3opt algorithm data comes from [15], D-ACS algo-
rithm data comes from [3], TACA algorithm data comes
from [3], IMRGHPSO algorithm data comes from [40], GA
and ABC algorithm data comes from [41].

It can be seen from TABLE 10 that JCACO has higher
solution accuracy and faster convergence speed than intelli-
gent algorithms such as single colony ant colony optimization
(see TABLE 9, comparison with traditional ant colony algo-
rithm); Compared with the improved multi-colony ant colony
optimization, the algorithm can find the optimal solution in
small-scale instances, and the quality of the solution obtained
by JCACO is better in medium and large-scale instances, and
the error rate of the optimal solution is kept within 1% (as
shown in TABLE 9).

Through comprehensive analysis of experimental data,
it can be seen that JCACO has certain advantages compared
with traditional ant colony algorithm, improved ant colony
optimization and other intelligent algorithms, and improves
solution quality and convergence speed to some extent.
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TABLE 10. Comparison of JCACO and other algorithms in TSP instances.

TSP Instances JCACO PCCACO EDHACO PACO-3opt D-ACS IACA IMRGHPSO GA ABC
eil51 426 426 426 426 426 449 429 - 426
eil76 538 538 538 538 538 573 - 545 541
rat99 1211 - - 1213 - 1339 1231 - -

kroA100 21282 21282 21282 21282 21282 23190 21316 21292 21379
kroB100 22141 - 22237 - 22235 - 22338 - -
kroA150 26621 26654 26727 - 26792 30312 - - -
kroB150 26130 26130 26328 - 26147 - - - -
ch150 6528 - - 6570 - - 6652 6615 6533
kroA200 29406 29391 29694 29533 29539 34530 30189 - -
kroB200 29525 29541 - - - - 30175 - -
tsp225 3935 3937 - - - - - - 3926
a280 2590 - - - - 3315 - - -
lin318 42399 42461 43291 - - - - - -
1417 11969 - - 11972 - - - - -
pr439 108375 - - 108482 - - - - -

V. CONCLUSION

This paper proposes a multi-colony ant colony optimization
based on the generalized Jaccard similarity recommendation
strategy, s1 ACS subpopulations and s2 MMAS subpop-
ulations are selected to form heterogeneous multi-colony,
the diversity and convergence speed of the algorithm are
balanced. Introducing the generalized Jaccard coefficient to
measure the similarity between two populations and using it
in the attribute-based collaborative filtering recommendation
mechanism. Three optimization strategies are proposed under
this recommendation mechanism: Strategy 1 is an attribute
cross-learning strategy, it is used between population with
high attribute comprehensive performance and its most sim-
ilar population to highlight the role of excellent attributes,
and improve the performance of the algorithm; Strategy 2 is
an attribute recommendation learning strategy, which is used
between the population with poor diversity and the population
with the best diversity among k similar populations, it is
used to increase the diversity of population and enhance the
breadth search ability of algorithm; Strategy 3 is a public path
reward strategy, which is used in the population with poor
convergence, to reward the public path of the current optimal
path and the historical optimal path, making the algorithm
directional and accelerating the convergence speed. Finally,
an elite mixed knowledge board is proposed to store the
elite state of subpopulations, when the algorithm is stagnant,
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the elite reverse learning mechanism is used to jump out of
local optimal. Experimental results show that compared with
other ant colony optimization, the proposed algorithm bal-
ances the diversity and convergence speed of the algorithm,
and improves the quality of solutions.

Future research directions are:

1. We will continue to study the optimization effect of
the ant colony algorithm combined with the recommendation
system on the larger TSP instances, and an improved ant
colony algorithm is applied to other problems (For example
robot path planning problems).

2. Study the optimization effect of ant colony algorithm
combined with other disciplines, for example, ant colony
algorithm combined with game theory, and it will be tested
in practical application.

3. The application of the algorithm in a multi-objective
problem is further studied. For example, in robot path plan-
ning problems, the multi-objective problem that turning
Angle is the most suitable and the moving path is the shortest
is considered simultaneously.
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