
Received September 23, 2019, accepted October 11, 2019, date of publication October 28, 2019, date of current version November 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2949799

Crop Area Identification Based on Time Series
EVI2 and Sparse Representation Approach:
A Case Study in Shandong Province, China
LAN XUN 1,2,3, JIAHUA ZHANG 1,2,3, DAN CAO 1,2,3, SHA ZHANG 2,4, AND FENGMEI YAO3
1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
3College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

Corresponding author: Jiahua Zhang (zhangjh@radi.ac.cn)

This work was supported in part by the Key Basic Research Project of Shandong Natural Science Foundation of China under Grant
ZR2017ZB0422, in part by the Shangdong Key Research and Development Project under Grant 2018GNC110025, in part by the ‘‘Taishan
Scholar’’ Project of Shandong Province under Grant TSXZ201712, and in part by the Natural Science Foundation of China under Grant
31671585 and Grant 41871253.

ABSTRACT The accurate and timely spatial distribution information of various crop types is vital for
food security. In this study, the 2-band enhanced vegetation index (EVI2) data from Moderate Resolution
Imaging Spectroradiometer (MODIS) were combined with sparse representation approach to identify the
distribution of various crop types in Shandong Province, China. Three groups of input variables derived
from EVI2 including annual time series EVI2 (TS), harmonic features (HF), and combined vector formed
by harmonic features and texture features (HFT) were used. The online dictionary learning and orthogonal
matching pursuit algorithms were applied to generate the dictionary and solve the sparse coefficients of
the identified samples, respectively. Then, the label of the identified samples can be obtained according to
the minimum residuals between the dictionary and the sparse coefficients of the identified samples. At the
provincial level, the validation based on the statistical data showed that three groups of input variables
presented lower than ±25% at relative errors, and input variables of HFT performed better than the other
two. At the municipal level, the results achieved by using input variables of HFT also agreed well with the
statistics with the coefficient of determination R2 > 0.85 for wheat and maize, as well as R2 > 0.71 for
peanut and cotton during 2014-2016. These results demonstrate that the combination of the input variables
of HFT derived from time series MODIS EVI2 data and sparse representation approach can be used for crop
identification in the study area.

INDEX TERMS Crop area identification, harmonic features, sparse representation, texture features, time
series EVI2.

I. INTRODUCTION
Crop area identification is of great significance for crop
production [1]. The estimation of crop cultivated area is
crucial for yield estimation, policymaking, and adjustment of
crop planting structures [2], [3]. The traditional methods for
obtaining the information of crop cultivated area are based
on manual measurement and statistical sampling, which are
time-consuming and labor-intensive [4]. Remotely sensed
data are an obvious and promising source of information for
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crop mapping and for monitoring the land cover changes at
the regional or global scales [5]–[7].

Previous studies have used the differences of spectral, phe-
nological, and spatial features from remotely sensed data for
crop classification [8]–[10]. The implementation of informa-
tion on the phenology of crops derived from multi-temporal
images into the classification process introduces possibilities
for crop classification [11]–[14]. The phenological features
derived from time series Moderate Resolution Imaging Spec-
troradiometer (MODIS) data have shown good performance
in crop classification [15], [16]. At present, vegetation indices
such as normalized difference vegetation index (NDVI)
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and enhanced vegetation index (EVI) have been widely
applied for vegetation phenology studies [17], [18].
Skakun et al. [7] applied aGaussianmixturemodel (GMM) to
discriminate winter crops from other crops using time series
MODIS NDVI and growing degree days (GDD) information.
Zhang et al. [4] estimated the maize cultivated area in North-
east China using time series MODIS EVI data integrated with
crop phenological information, and the overall classification
accuracy reached 79%. The development of EVI is aimed
to reduce the effect that NDVI can saturate at high leaf
area index while minimizing soil and atmosphere influences,
which is more suitable for vegetation growthmonitoring [19].
However, EVI is limited to sensor systems designed with
a blue band, in addition to the red and near-infrared bands,
making it limited to generate time series EVI using sensors
without a blue band. Therefore, a 2-band enhanced vegetation
index (EVI2) without a blue band developed and evaluated
by Jiang et al. [20] was used in this study, which has the best
similarity with the EVI and has been successfully utilized in
crop area identification and yield estimation [21], [22].

In recent years, sparse representation has shown promising
performance in many applications, such as face recogni-
tion [23], target detection [24], image fusion [25], image
compression [26], image classification [27], and others [28].
From the theory of sparse representation, an identified sam-
ple is assumed to be approximately represented by a linear
combination of as few atoms as possible of a given dic-
tionary. The sparse representation-based classifier is more
robust to the effect of noise [29]. Taking remote sensing
image scene classification as an example, the results from
Zhao et al. [30] showed that sparse representation-based
classifiers can obtain satisfactory results without high feature
dimensions, and perform better than linear support vector
machine and random forest classifiers. Among the exist-
ing studies, sparse representation-based methods have also
shown impressive performance in hyperspectral image clas-
sification. Both results fromYu et al. [31] and Yuan et al. [32]
showed that sparse representation-based classifiers generally
performed better than support vector machine. However, little
emphasis has been placed on crop classification by combin-
ing time series data and sparse representation approach.

Several studies have been carried out for crop classifica-
tion by integrating both spectral and spatial information and
achieved better effects [33]. Spatial features are often used as
auxiliary features in crop classification, with the assumption
that neighboring pixels tend to belong to the same class [34].
The implementation of spatial features of crop distribution
into the classification process introduces further possibili-
ties for improvement of classification performance [35]. The
results from Zhang et al. [34] showed that combining spectral
and textural features for classification achieved the highest
overall accuracy of 98.65%. Reshma et al. [36] raised the
classification accuracy to 98.07% by integrating the vegeta-
tion indices along with the spectral and spatial features for
classification. The studies mentioned above indicated that the
combination of spectral and spatial features was useful for the

identification of various crop types. However, little emphasis
has been placed on crop mapping by the combination of
phenological and spatial information.

Shandong Province is the major agricultural production
areas of China where the wheat, maize, peanut, and cotton
acreage accounts for about 16%, 9%, 16%, and 14% of the
national total of the corresponding crops in 2016, respec-
tively [37]. There is an increasing demand for accurate and
objective acquisition of the spatial distribution of these crops,
which is of great significance for regional crop production.
The spectral and phenological information have been utilized
to discriminate the distribution of crops in Shandong Province
in the last decade. Li et al. [38] applied a decision tree clas-
sification model to identify cotton planting area based on the
analysis of spectral characteristics of typical objects derived
from CBERS01 and HJ1B satellite images in Dingzhuang
town, Shandong Province. Guo et al. [39] extracted the distri-
bution of winter wheat, maize, and cotton based on the thresh-
olds between the time series MODIS NDVI and the reference
time series NDVI in Dezhou, Binzhou, and Dongying city,
Shandong Province. However, the studies mentioned above
mainly focus on crop area identification at the small scale
(town or municipal level). Therefore, this study incorporated
the phenological and spatial features with a sparse representa-
tion approach to discriminate the distribution ofwheat, maize,
peanut, and cotton at the provincial level. Because of its high
temporal resolution and the fact that it only needs red and
near-infrared bands, time series MODIS EVI2 data have been
successfully utilized in the detection of crop phenology [40].

The objectives of this study are: (1) to evaluate the feasi-
bility of sparse representation approach for crop area iden-
tification based on time series MODIS EVI2 data, (2) to
compare the classification accuracies achieved by using three
groups of input variables including annual time series EVI2,
harmonic features, and texture features, and (3) to present the
mapping results in Shandong Province during 2014-2016.

II. MATERIALS AND METHODS
A. STUDY AREA
In this study, Shandong Province was selected as the study
area (34◦22.9’ −38◦24.01’ N, 114◦47.5’ −122◦42.3’ E),
which located along the east coast of China (Fig. 1). It occu-
pies an area of 15.8 million hectares, 47.8% of which are
cropland. There are 17 administrative units at the municipal
level during our study period. This region has a warm tem-
perate monsoon climate, having four seasons with a mean
annual temperature of 11 – 14 ◦ andmean annual precipitation
of 550 – 950 mm. The difference in temperature between
east and west is higher than that between north and south.
This region is rich in light resources and its heat conditions
can meet the needs of the double cropping system. Wheat,
maize, peanut, and cotton are four major crops in the region,
accounting for approximately 35%, 29%, 7%, and 4% of
the total crop acreage in 2016, respectively [37]. There are

157514 VOLUME 7, 2019



L. Xun et al.: Crop Area Identification Based on Time Series EVI2 and Sparse Representation Approach

FIGURE 1. The spatial distribution of agro-meteorological stations and
samples in the study area.

several big production counties for peanut and cotton, with
the planting areas more than 600 hectares.

B. DATA DESCRIPTION AND PRE-PROCESSING
1) MODIS DATA AND PRE-PROCESSING
The MODIS surface reflectance products (MOD09Q1)
for tile h27v05 (h for horizontal, v for vertical) for
the years 2014-2016 were obtained from the Land Pro-
cesses Distributed Active Archive Center (LP DAAC,
https://lpdaac.usgs.gov). The temporal resolution of
MOD09Q1 is 8 days and spatial resolution is 250 m. The red
and near-infrared bands for each compositing period (8 days)
were extracted and clipped to the extent of the study area.
Then the EVI2 was calculated for each compositing period
as follows [20]:

EVI2 = 2.5×
ρnir − ρred

ρnir + 2.4× ρred + 1
(1)

where ρnir , ρred are the reflectance in the near-infrared
band (841-876 nm) and red band (620-670 nm), respectively.
Annual 46 MODIS EVI2 images were available and the
results were stacked for each year.

Additionally, the MODIS land cover type product
(MCD12Q1) with a spatial resolution of 500 m was adopted
in this study. This product is produced for each calendar year
for five different classification schemes. Plant Functional
Types (PFT) classification scheme was used in this study
to distinguish the cropland from non-cropland areas. More
details about the MODIS products are available on the web-
site (https://lpdaac.usgs.gov). The MODIS land cover maps
were re-projected to the Lambert Azimuthal Projection and
resampled to a spatial resolution of 250 m, enabling us to
create a cropland mask for further identification of various
crop types.

2) OBSERVATION DATA OF THE AGRO-METEOROLOGICAL
STATIONS AND STATISTICAL DATA
The phenology information of crops observed at 22 agro-
meteorological stations in Shandong Province were obtained
from the National Meteorological Information Center, China
Meteorological Administration (http://data.cma.cn/). The

FIGURE 2. Crop calendar in the study area.

locations of these agro-meteorological stations are shown
in Fig. 1. Both single cropping (one crop a year) and double
cropping (two crops a year) systems are observed in the study
area. Double cropping cycles tend to be shorter than single
cropping (Fig. 2). In double cropping areas, the first crop
(e.g., winter wheat) is planted in September and harvested
in June of the following year, whereas the second crop (e.g.,
summer maize, summer peanut, summer cotton) is planted
in May or June and harvested in September. Winter wheat is
only planted in the first season, whereas maize, peanut, and
cotton are planted in the first or the second seasons around
summer. Eventually, winter wheat-summer maize, winter
wheat-summer peanut, winter wheat-summer cotton, winter
wheat-others, spring maize, spring peanut, spring cotton, and
others were selected as the identified types.

Based on the locations of agro-meteorological stations,
and the samples from the published papers [41]–[43], the
geographical coordinates of samples for different crop types
were obtained. Then, combined with crop calendar data, the
characteristics of samples shown onGoogle Earth images and
the variation characteristics of annual time series EVI2 of the
samples were analyzed. According to Google Earth images
and the characteristics of EVI2, such as the number of peak
times of EVI2 series, maximum EVI2 values and its occur-
rence time, and the time with the highest EVI2 increase rates,
the samples were supplemented. In total, 418 samples were
obtained, as shown in Fig. 1. The number of samples for
winter wheat-summer maize, winter wheat-summer peanut,
winter wheat-summer cotton, winter wheat-others, spring
maize, spring peanut, spring cotton, and others are 108, 16,
30, 32, 24, 28, 26, and 154, respectively. The 50% of the
samples were selected as training samples for the generation
of the dictionary, and the others preserved for estimating
classification accuracy. The statistical cultivated areas data
regarding wheat, maize, peanut, and cotton during 2014-
2016 at the provincial and municipal level were collected
from the Shandong Statistical Yearbook [37]. A summary of
the methodological framework employed for classification of
the aforementioned crop types in this study is given in Fig. 3,
and is described in detail in subsequent sections.

C. SPARSE REPRESENTATION-BASED CLASSIFICATION
The sparse representation-based classification (SRC) method
assumes that the training samples from a single class lie on
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FIGURE 3. Flowchart for crop area identification based on time series
EVI2 and sparse representation approach.

a subspace [44]. As a result, an identified sample can be
represented as a linear combination of the training samples.
This representation is sparse when the number of training
samples is large enough. According to the sparse representa-
tion theory, if an identified sample y belongs to the mth class,
it could be represented approximately by a linear combination
of training samples from the mth class as follows [45]:

y = xm1 d
m
1 + x

m
2 d

m
2 + · · · + x

m
Nmd

m
Nm = Dmxm (2)

where Dm
=

{
dmj
}
j=1,...,Nm

∈ Rw×Nm is a sub-dictionary

formed by training samples belonging to the mth class. dmj ∈
Rw is a basis vector consisting ofw values, which represents a
feature column vector of the jth training sample from the mth
class.w denotes the number of input variables.Nm denotes the
size of sub-dictionary, representing the number of samples for
the mth class. xm ∈ RNm is the sparse coefficients of y, and
each element in xm represents the weight of the corresponding
atoms in Dm. R represents a set of real numbers.

Suppose the training dataset consists of M classes,
the identified sample y could be in a collection of all the sub-
dictionaries of total M classes {Dm}m=1,...,M , which can be
represented by a sparse coefficient vector x multiplying the
dictionary D as follows:

y = D1x1 + D2x2 + · · · + DMxM = Dx (3)

where D ∈ Rw×N is the dictionary, containing N training

samples for M classes, N =
M∑
m=1

Nm. x ∈ RN is the sparse

matrix consisting of {xm}m=1,...,M associated with y, where
only a few entries are non-zero. Ideally, if y belongs to the
mth class, xj = 0, ∀ j = 1, . . . ,m, j 6= m. The label of

the identified sample y can be obtained based on the above
formulation.

1) GENERATION OF DICTIONARY
One of the key issues of the SRC method is to obtain an over-
completed dictionary that allows the sparse representation
of the identified samples to the obtained dictionary, which
means that the number of atoms in the dictionary should
outweigh the feature dimension of the samples (N >> w).
In this study, the training samples were used as the input to
initialize the dictionary, and the online dictionary learning
algorithm [46] was used for the generation of the dictionary.
The learning process is explained as follows [47]:

Step 1: Initialize the matrices A0 and B0, A0 = O (A0 ∈

Rk×k ), B0 = O (B0 ∈ Rw×k ). Let D0 ∈ Rw×N be the
initial dictionary to be trained, amatrix consists of the training
samples for M classes. Set D = D0,Nm = 200. Initialize the
number of iterations q as 1.

Step 2: The sparse coefficients after the qth iteration can
be calculated using the least angle regression algorithm [48]
as follows:

xq , argmin
x∈RN

1
2

∥∥yq − Dq−1x
∥∥2
2 + γ

‖x‖1 (4)

where ‖·‖2 =

√
w∑
η=1

∣∣·η∣∣2 represents the l2-norm, and ‖x‖1 =

w∑
η=1

∣∣xη∣∣ represents the l1-norm. γ ∈ R represents a regular-

ization parameter, with a value that specifies the compromise
between data reconstruction error and sparsity, and is set to
0.15 in this study.

Step 3: Update the dictionary after the qth iteration Dq
using the algorithm in [46];

Step 4: Set the max iteration number qmax = 200. Set q =
q + 1 when q < 200, and repeat steps 2-3 for loop iteration.
Exit the iteration when q = 200, and Dq is as requested.

2) SOLUTION OF SPARSE COEFFICIENTS
From the theory of sparse representation, given an overall
dictionary, the sample y can be represented linearly by a few
atoms of the dictionary, and a projection coefficient vector
can be obtained as follows [45]:

x = argmin ‖Dx− y‖2 , s.t. ‖x‖0 ≤ K0 (5)

where ‖x‖0 denotes the l0-norm of x, representing the number
of non-zero entries of the vector. K0 is an upper bound on the
sparsity level.

However, the solution of (5) is nondeterministic
polynomial-time hard (NP-hard), and it is difficult to approx-
imate in the general case [49]. The orthogonal matching
pursuit [50] can be used to solve the problem. This algorithm
solves the sparse coefficients x of the identified sample
y based on the dictionary D = [D1D2 . . .DM ], which is
assumed as known at first. The detailed description can be
found in [50].
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3) CATEGORY IDENTIFICATION
Based on the above algorithms, the dictionary D and sparse
coefficients x can be obtained, both of which are used to
identify the class label of y. Ideally, most of the coefficients in
x are zero, whereas few coefficients which correspond to its
class-specific sub-dictionary are nonzero. In practice, some
coefficients in x corresponding to other class-specific sub-
dictionaries are also nonzero because of the effect of noise.
The reconstructed residuals on different class-specific sub-
dictionaries are usually different. The smaller the residual
on the class-specific sub-dictionary, the more likely that the
sample belongs to the corresponding class. Thus, y is assigned
to the class corresponding to the minimum residual rm(y) as
follows [45]:

rm(y) =
∥∥y− Dmxm

∥∥
2 , m = 1, 2, . . . ,M (6)

class (y) = arg min
m=1,2,...,M

rm(y) (7)

The generation of the dictionary, solution of sparse coef-
ficients, and category identification were all implemented
using MATLAB software.

D. GROUPS OF INPUT VARIABLES FOR CLASSIFICATION
Several groups of input variables were developed using time
series MODIS EVI2. The classification was performed by
using each group of input variables, including: (i) annual
time series EVI2 (TS), containing 46 yearly Savitzky-Golay
filtered values; (ii) harmonic features (HF), containing the
amplitudes of the terms 0-5 and the phases of the terms
1-5 derived from the Fourier transform; (iii) a combined vec-
tor formed by the 11 harmonic features and 2 texture features
(HFT). Details of data processing procedures for each group
are given in the following sections.

1) SAVITZKY-GOLAY FILTER
The annual time series EVI2 derived from MODIS images
still include various noise components due to the presence of
cloudiness, seasonal snow, instrument problems, and some
other problems. Therefore, a data smoothing method needs
to be applied to minimize the impact of noise before utilizing
time series EVI2 data to reflect the growth status and temporal
variation of crops. Compared with other methods such as
the best index slope extraction (BISE) [51] and asymmetric
Gaussian function fitting method [52], the upper envelope
Savitzky-Golay filter is designed to fit the upper envelope and
to reflect the changing patterns of the time series data through
an iteration process. The main advantage of this method is
that it tends to preserve the curve shape features, which is
important for crop classification [53]. Therefore, the upper
envelope Savitzky–Golay filter was applied to smooth the
annual time series EVI2 data. The general equation can be
given as follows [54]:

EVI2st =
∑g

h=−g

ChEVI20t+h
2g+ 1

(8)

where t is an integer with a value ranging from 1 to 46,
which corresponds to the compositing periods, 1, 2, . . . , 46.
g is the half-width of moving window to perform filtering,
and is set as 2 in this study. Ch is the coefficient, which
can be found in [54]. EVI20t+h is the hth original EVI2 in
the smoothing window. EVI2st is the filtered data, which is
the linear combination of Ch and EVI20t+h. In this study,
subsequent data processing is based on the filtered data.

2) FEATURE EXTRACTION BASED ON FOURIER TRANSFORM
Statistical techniques that work in the frequency or time
domain, such as Fourier transform, have been used to extract
information from time series of vegetation index and proved
to be suitable in the analysis of the temporal dynamics of
vegetation [18]. A time-dependent periodic phenomenon can
be decomposed into a series of cosine waves defined by
unique amplitude and phase values by Fourier transform,
which are correlated with information on crop types. In this
study, discrete Fourier transform was employed to process
the 46 Savitzky-Golay filtered EVI2 (EVI2st ) in a year as
follows [55]:

Fz =
1
46

∑45

t=0
EVI2st exp (−

2π izt
46

) (9)

where Fz is the zth Fourier coefficient, z =0, 1, 2 . . . 45, and
i2 = −1. Amplitude and phase can be calculated according
to Fz. Based on the previous work [47], the amplitudes of the
terms 0-5 and the phases of the terms 1-5 derived from the
Fourier transform were used as the feature vector for crop
identification.

3) FEATURE EXTRACTION BASED ON TEXTURE ANALYSIS
The detailed structures of ground objects can be represented
by texture effectively. It reflects the repeated occurrence of
image grayscale without depending on the color and bright-
ness of ground objects, which is a common internal feature
of all surface features. Various methods have been reported
to extract the texture feature from the image. The grey level
co-occurrence matrix (GLCM), one of the best-known spa-
tial and textural feature analysis methods for images, pro-
vides information about the joint distribution of two pixels
through spatial correlation analysis of the grey levels of the
image [56]. Therefore, the entropy of the GLCM was used
for crop area identification in this study, which is one of the
widely-used textural features for image classification [57].
The amplitude of the term 0 derived from the Fourier trans-
form represents the mean value of the time series data,
accounting for a large percentage of the total variance in
the time series data. The phase of term 1 defines the offset
between the original time series data and the peak of the first
wave over the range 0 to 2π [58]. Therefore, the entropy val-
ues for both the amplitude of the term 0 and the phase of the
term 1 were obtained using ENVI software. The expression
for entropy (H) is given as follows [56]:

H = −
∑
u

∑
v

c(u, v) log (c(u, v)) (10)
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FIGURE 4. The time series EVI2 for main crop types in the study area.

FIGURE 5. Residual value map of a test sample of winter wheat-summer
maize. The numbers 1-8 correspond to winter wheat-summer maize,
winter wheat-summer peanut, winter wheat-summer cotton, winter
wheat-others, spring maize, spring peanut, spring cotton, and others,
respectively.

where c(u, v) is the element of GLCM, u and v represent the
row and column elements of the matrix, respectively.

III. RESULTS AND DISCUSSION
A. ANALYSIS OF TIME SERIES EVI2
The annual time series EVI2 for main crop types are shown
in Fig. 4. The results showed that there were two significant
peaks of the time series EVI2 in double cropping areas. Also,
there was a small peak around November, which corresponds
to the tillering stage of winter wheat. There was one signif-
icant peak of the time series EVI2 in single cropping areas
including spring maize, spring peanut, and spring cotton. The
peak of the time series EVI2 for cotton maintained for a
longer time than other crops. The peak occurrence time of
the time series EVI2 for maize and peanut in single cropping
areas were earlier than those in double cropping areas.

B. THE RESIDUALS OF DIFFERENT CLASS
Based on the dictionary and sparse coefficients, the residuals
of identified samples were calculated. Taking a test sample
of winter wheat-summer maize as an example, the residual
value map corresponding to each category is shown in Fig. 5.
The horizontal axis indicates the category of training samples,
and the vertical axis is the residual of the test sample corre-
sponding to each category. The result showed that the residual
corresponding to the sub-dictionary of winter wheat-summer

maize was minimal. It indicated that the test sample was
predicted to belong to winter wheat-summer maize. That is
to say, the test sample is correctly assigned to the class which
has the minimum residual.

C. CLASSIFICATION ACCURACY ANALYSIS
1) COMPARISON OF CLASSIFICATION ACCURACIES USING
THREE GROUPS OF INPUT VARIABLES
The classification experiments were conducted using the SRC
method with three groups of input variables, respectively.
The distribution of various crop types in the study area is
shown in Fig. 6. To assess and compare the accuracies of
classification results achieved by using three groups of input
variables, validation samples of each type in 2016 were used
for confusion matrix calculation. The user’s accuracy (UA),
producer’s accuracy (PA), and overall accuracy (OA) were
calculated (Table 1). The results showed that the overall accu-
racies of 3 classification results varied between 76.56% and
80.86%, which were acceptable accuracies for crop identifi-
cation. The overall accuracy of classification results achieved
by using input variables of HFT was the highest, followed by
using input variables of HF, and the lowest by using input
variables of TS. For three groups of the input variable, user’s
and producer’s accuracies achieved by using input variables
of HFT were much higher than those by the other two groups
of input variables, except for spring maize, spring cotton, and
others. Compared with the results achieved by using input
variables of TS, user’s and producer’s accuracies achieved
by using input variables of HF were much higher for win-
ter wheat-summer peanut, winter wheat-others, and spring
maize. Compared with the results achieved by using input
variables of HF, we observed that adding texture features
for classification resulted in an increased in user’s accuracy
except for spring maize and others, as well as increased of

FIGURE 6. Spatial distribution of crop types in Shandong Province in
2016 using three groups of input variables: (a) TS, (b) HF, and (c) HFT.
(d) is the legend.

157518 VOLUME 7, 2019



L. Xun et al.: Crop Area Identification Based on Time Series EVI2 and Sparse Representation Approach

FIGURE 7. Spatial distribution of crop types in Shandong Province using
the SRC method with input variables of HFT in the years of (a) 2014 and
(b) 2015. (c) is the legend.

TABLE 1. Comparison of classification accuracies achieved by using three
groups of input variables in 2016.

producer’s accuracy except for winter wheat-summer cot-
ton and others. This indicated that texture features derived
from MODIS image with the spatial resolution of 250 m
can improve the performance in classification and detection,
which is consistent with [59].

Moreover, theMODIS-derived results were compared with
official statistical results at the provincial level. The relative
errors for the four crops were calculated as shown in Table 2.
The results indicated that three groups of input variables
presented lower than ±25% at relative errors, and the input
variables of HFT presented lower than 15% at relative errors.
The estimated areas obtained using three groups of input
variables were all overestimated in different degree, except
for maize area obtained using input variables of HFT. The
phenological characteristics of crops led to the variation
of different growth stages and different types of vegetation
have different seasonal rhythms, which can be reflected in
time series vegetation index data [4]. The 46 annual time
series EVI2 values were used as input variables for crop area

TABLE 2. Relative errors of four crops using three groups of input
variables at the provincial level in 2016.

identification and presented lower than 25% at relative errors
for four crops. Compared with this group of input variables,
the 11 harmonic features performed better, presenting lower
than 22% at relative errors. Compared with the input vari-
ables of TS, the input variables of HF is more efficient at
saving the storage space and improving the recognition rate
in data processing. The main features of time series data
can be reflected in the first few harmonic features so that
the noise can be further removed. Furthermore, when texture
features were added for classification, the classification result
produced the lowest relative errors. Thus, the texture features
have shown their effectiveness in crop classification. This
effect is especially noticeable for the classification accura-
cies of wheat and maize. The probable reason is that the
planting areas of wheat and maize are relatively larger than
other crops in the study area and the spatial distribution is
more continuous. Moreover, the classification accuracy of
cotton has also been greatly improved compared with the
other 2 groups of input variables. Compared with the input
variables of HF, both phenological and spatial features of
crops were considered when using the input variables of HFT
during the classification process.

The relative errors of wheat and maize obtained using
three groups of input variables were smaller than those for
peanut and cotton. One of the potential sources that cause
errors in the results is the effect of mixed pixels. In some
areas, the fields of peanut and cotton are relatively small
compared with the 250 m MODIS cell size so that the areas
for peanut and cotton may be overestimated. Moreover, the
characteristics of the key growth stage reflected in the time
series EVI2 of part samples for peanut and cotton are similar
to each other. Thus the relative errors of these two crops are
not higher than the other two crops using the SRC method
based on different groups of input variables.

2) ANALYSIS OF CLASSIFICATION ACCURACY DURING
2014-2016
The distribution maps of wheat, maize, peanut, and cotton
during 2014-2015 were obtained using the SRC method
with the input variables of HFT (Fig. 7). At the municipal
level, a comparison between estimated and statistical crop
areas during 2014-2016 was performed, and the coefficient
of determination (R2) was calculated (Fig. 8). The results
showed that the R2 reached 0.85 for wheat and maize, and it
reached 0.71 for peanut and cotton. The corresponding points
stay closer to 1:1 line as shown in Fig. 8(a) and (b) than those
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FIGURE 8. Comparison between MODIS-derived area with input variables
of HFT and statistical data at the municipal level during 2014-2016.
(a)-(d) represent wheat, maize, peanut, and cotton, respectively.

in Fig. 8(c) and (d). The slopes of the linear fitted line for the
four crops were between 0.83 and 1.19. These results showed
that using both harmonic features and texture features derived
from time series EVI2 as well as SRC method for multi-year
crop identification was feasible and stable.

There are some points that need to be noted in the clas-
sification process. First, the classification accuracy of the
method used in this study mainly depends on the differences
in the features between the identified samples and training
samples of multiple crop types in the dictionary. As wheat
is only planted in the first season in the study area, which
is usually from September to June of the following year, with
fewer crops planted at the similar growing seasons. It is easier
to discriminate winter wheat from other crops because the
differences of both harmonic and texture features between
winter wheat and other crop types are obvious. As a result,
winter wheat planting areas were well identified with a higher
R2 of 0.86 and a slope of the linear fitted line of 1.06 as
shown in Fig. 8(a). There are multiple autumn harvest crops
in the study area, such as maize, peanut, cotton, soybean, etc.
The planting areas of maize are relatively larger and more
continuous than other autumn harvest crops planted at the
same time. As a result, the texture features of maize planting
area are easier to distinguish than those of other crops. The
classification accuracy of maize was much higher with R2

of 0.85 and slope of the linear fitted line of 1.19 as shown
in Fig. 8(b). The classification accuracies of peanut and cot-
ton were much lower, with R2 of 0.71 and 0.73, respectively.
Second, one of the potential sources that cause errors in

the MODIS-derived results is pixel purity. Although high-
spatial-resolution datasets such as Landsat have advantages
for capturing the fine spatial details of the land cover, such
datasets do not have high temporal coverage frequency over
large regions and are often affected by extensive cloud
cover. Coarse-resolution sensors such as MODIS provide

data at a near-daily observational coverage frequency and
over large areas. However, in some areas where cropland
is relatively fragmented, mixed pixels containing different
ground objects might cause uncertainties in the classification
results. This might lead to the non-identification of broken
cropland. Therefore, the problem incurred by mixed pixels of
MODIS data need to be addressed in future work to improve
the classification accuracy, e.g., decomposition of the mixed
pixel, fusion of Landsat 8, Sentinel 2, and MODIS data.

Third, in this study, the spatial accuracy of classifica-
tion results was assessed by validation samples, which were
obtained partly from the published papers and supplemented
based on phenology features of various crops. More field sur-
vey data should also be adopted in further research.Moreover,
the MODIS land cover type product was used in this study
to distinguish croplands from non-croplands, which maybe
result in the errors of the MCD12Q1 product being propagate
into the mapping results. Also, another potential source that
caused errors in the MODIS-derived results is the differences
in crop growth conditions in various fields influenced by
sowing dates, management measures, and other factors.

D. DISTRIBUTION OF CROP PLANTING AREAS
OVER STUDY AREA
The spatial distribution of crops in the MODIS-derived
results is consistent with the general patterns of crop culti-
vation over the study area (Fig. 6(c), Fig. 7). Single cropping
and double cropping systems were the main crop patterns in
the study area. First season winter wheat followed by second
season summer maize was the dominant double cropping
system, and the spatial distribution was relatively continuous.
The distribution of winter wheat-summer maize was largely
concentrated in the northwest part of Shandong Province.
The planting areas of winter wheat-summer peanut, winter
wheat-summer cotton, and winter wheat-others were rela-
tively small. The planting patterns of peanut and cotton were
dominated by single cropping system, supplemented by rota-
tion or relay cropping with winter wheat.

The spatial distribution of peanut and cotton was relatively
dispersed. The planting areas of cotton and peanut showed a
decreasing trend from 2014 to 2016. Cotton planting areas in
Dongying and Heze city were relatively concentrated during
2014-2015. It can be observed that the planting areas of
winter wheat-summer cotton in Heze city were relatively
concentrated in 2014. The planting areas of peanut were
mainly distributed in the central and southern parts of Shan-
dong Province. It is consistent with the fact that there are
the largest peanut planting areas in Linyi city of Shandong
Province during 2014-2016. Moreover, crop planting areas
in the central and eastern parts of Shandong Province were
relatively sparse due to the influences of topography and
climate.

E. PARAMETER ANALYSIS
To evaluate the influences of parameters in the SRC
method, correlation analysis between statistical data and

157520 VOLUME 7, 2019



L. Xun et al.: Crop Area Identification Based on Time Series EVI2 and Sparse Representation Approach

FIGURE 9. Comparison of classification accuracy with different parameter
settings including sub-dictionary size, dictionary iteration number,
regularization parameter, and sparsity level. (a), (c), (e), and (g) represent
a, b values with different parameter settings, respectively; (b), (d), (f), and
(h) represent R2 values with different parameter settings, respectively.

MODIS-derived area achieved by using input variables of
HFT with different parameters were performed at the munic-
ipal level in 2016. The values of slope (a), intercept (b),
and R2 were calculated for the four crops with different
parameter settings, respectively, andwere used to evaluate the
classification performance. The basic parameter settings are
sub-dictionary size (Nm) of 200, dictionary iteration number
(qmax) of 200, regularization parameter (γ ) of 0.15, and spar-
sity level (K0) of 10. The a,b, and R2 values corresponding
to the results of a certain varying parameter based on the
basic parameter settings are shown in Fig. 9. The R2 val-
ues of wheat, maize, and peanut with different parameters
including sub-dictionary size, dictionary iteration number,
regularization parameter, and sparsity level were higher than
0.77, 0.77, and 0.72, respectively. The R2 values of cotton
were relative lower with obvious change as the change of
the four parameters. The more effective method for cotton
mapping will be our future work. Among the four parame-
ters, it can be observed that a, b, and R2 values were sta-
ble with varying sparsity level as shown in Fig. 9 (g)-(h).
The sub-dictionary size, dictionary iteration number, and

regularization parameter have greater influences than the
sparsity level on the final results, since they determine the
dictionary for category identification. As shown in Fig. 9 (a),
with the sub-dictionary size increasing, the a and b values
showed a decreasing trend around a = 1 and b = 0, respec-
tively. This indicated that the MODIS-derived area showed a
trend from overestimation to underestimation.

Fig. 9 (b) indicates that it is not always performedwell with
larger sub-dictionary size, especially for cotton. Therefore,
the default parameter setting for the sub-dictionary size was
set to 200 with the full consideration of the optimum a, b,
and R2 values. Fig. 9 (c)-(d) illustrate that with the dictionary
iteration number changing, the a, b, and R2 values show
the fluctuating tendency. Although the R2 values for four
crops except peanut obtained using the dictionary iteration
number of 100 were better than those with the dictionary
iteration number of 200, the a and b values for the former
were relatively poor. Therefore, qmax = 200 was set as the
default parameters setting. Also, the a and b values obtained
using the regularization parameter of 1.00 were much better
than those with the regularization parameter of 0.15 as shown
in Fig. 9 (e), whereas the R2 values for the latter was compar-
atively higher with full consideration of four crops as shown
in Fig. 9 (f). Therefore, the regularization parameter of 0.15 is
a good choice in this study.

IV. CONCLUSION
The accurate spatial distribution information of crops is
important for national food security. In this study, combined
with time series MODIS EVI2 data, the SRC method was
successfully implemented for the identification of wheat,
maize, peanut, and cotton in Shandong Province. At the
provincial level, the results achieved by using input variables
of HFT presented lower than ±15% at relative errors and
performed better than those by using the input variables
of TS and HF. At the municipal level, the results showed
that the cultivated area estimated from MODIS were well
correlated with the statistical data with R2 > 0.85 for wheat
and maize as well as R2 > 0.71 for peanut and cotton dur-
ing 2014-2016. It indicated a robust potential of combining
phenological and texture information for crop identification.
Resultant maps presented consistent patterns for the spatial
distribution of crops across multiple years. Besides, there
are different effects on the results with varying parameter
settings using the sparse representation approach. The spar-
sity level has little influence on the final results, whereas
sub-dictionary size, dictionary iteration number, and regular-
ization parameter have obvious effects on the performance
since they influence the generation of dictionary for cate-
gory identification. Of course, there are still many challenges
in crop area identification while considering the variety of
cropping systems, including management practices and field
sizes. Further research could also explore to improve the
classification accuracy by fusion of Landsat 8, Sentinel 2, and
MODIS data.
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