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ABSTRACT Recent progress of self-supervised visual representation learning has achieved remarkable
success on many challenging computer vision benchmarks. However, whether these techniques can be used
for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised
domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases.
Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning
strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two
complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within
our method, consisting of prediction layer alignment and batch normalization calibration. The experimental
results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing
self-supervision as a new alternative for reaching domain adaptation. The code is available at this link.1

INDEX TERMS Domain adaptation, semantic segmentation, object recognition.

I. INTRODUCTION
Since supervised (deep) machine learning became the key to
solve computer vision tasks, the availability of task ground
truth (i.e. supervision information) associated to the raw data
(i.e. images and videos) has been a major practical problem.
Training an image or video classifier requires to associate
some class or attributes to the whole image/video [11], [27],
[28], [53], training an object detector requires manual draw-
ing of object bounding boxes [14], [32], training a CNN for
semantic segmentation requires the delineation of the borders
between the considered classes [10], [41], etc. This kind
of ground truth (bounding boxes, class borders) is usually
provided by human labeling, which is a costly process prone
to errors due to subjectivity and fatigue. Therefore, proce-
dures aiming at reducing human labeling became a research
topic in itself too; or alternatively obtaining the most from
a fixed budget for new labels. This underlying aim appears
under different names depending on the practical situation
at hand, i.e. the learning conditions. Under this umbrella we
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find concepts such as active learning, self-labeling, transfer
learning, domain adaptation, and self-supervision.

In active learning [1], [47], [52], the learner receives a
set of unlabeled data (images/videos) for training a visual
accurate model, which must be done minimizing the labeling
effort by choosing the best training data out of the total
amount. This turns out into an iterative process where a
human worker labels new automatically selected data in each
cycle for model refinement. This contrasts with passive learn-
ing, where the training data is selected at random, eventually
requiring more labeling budget.

In self-labeling [62], [63], [69], an initial visual model
is trained on labeled data, after, the model is applied on
unlabeled data to self-collect samples which are used then for
refining the model by assuming that their label corresponds to
the prediction of the model; turning out in an iterative process
that must avoid drifting to systematic errors or easy samples.

In transfer learning [18], [43], a model is trained to per-
form a visual task (e.g. image classification) but aiming at
reusing it to perform a new task (e.g. object detection) in a
way that we minimize the amount of labeled data required to
train for the new task (e.g. fine-tuning CNNs across tasks is
a basic form of transfer learning).
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In domain adaptation [8], [21], [60], [67], a model
is trained to perform a visual task in a specific domain
(e.g. semantic segmentation in synthetic images), however,
we need to apply it to perform the same task in a correlated,
but significantly different, domain (e.g. semantic segmen-
tation in real-world images); which is done by reusing the
previous knowledge (in the form of model or labeled data)
for minimizing the labeling effort in the new domain.

Finally, self-supervised learning [17], [25], [26] focuses on
learning visual models without manual labeling; more specif-
ically, auxiliary relatively simple tasks, known as pretext tasks
in this context, are created for training a generic visual model
in the form of CNN. The supervision consists in modifying
the original visual data (e.g. a set of images) according to
known transforms (e.g. image rotations [17]), training the pre-
text CNN to predict such transforms; thus, the transforms are
the labels/supervision for the pretext task. This pretext CNN
is then concatenated with another task-specific CNN. The
former acting as generic feature extractor, and the later lever-
aging such features to create new ones specific for the main
task of interest. Sometimes, both CNN blocks are fine-tuned
[4], and sometimes the pretext CNN block is frozen and
only the task-specific CNN block is fine-tuned [26]. Overall,
the idea is that we can have a high number of supervised
samples for the pretext task and this should compensate for
a lower number of manually labeled samples for the main
task.

Active learning can be naturally combined with transfer
learning or domain adaptation [58]. Self-labeling can also be
combined with transfer learning or domain adaptation [62].
Self-supervised learning, as usually performed, can be seen
as a type of transfer learning (from the pretext task to themain
task). What has not be explored, up to the best of our knowl-
edge, is how self-supervised learning can support domain
adaptation. This is the main focus of this paper, i.e. can we
incorporate self-supervision to learn domain invariant feature
representation? The goal of this work is not to propose new
self-supervised learning methods but investigate how exist-
ing self-supervised representation learning methods can be
used to address domain adaptation problems. With this aim,
we design a multi-task learningmethod to jointly train pretext
and main tasks (Figure 1). The pretext task acts as nexus
between source and target domains for learning a domain
invariant feature representation for the main task. In this way,
we have labels for the main task in source domain, but we do
not require labels for such task in the target domain. In other
words, via self-supervised learning, we perform unsupervised
domain adaptation.

Accordingly, and using object recognition and semantic
segmentation of urban scenes as challenging main-task use
cases, the main contributions of this work are three-fold:
• We proposed a generic method for domain adaptation
with self-supervised visual representation learning.

• Focusing on the image rotation prediction pretext learn-
ing task, we proposed several variations and studied their
domain adaptation performance.

FIGURE 1. Proposed self-supervised domain adaptation framework.
We learn a domain invariant feature representation by incorporating a
pretext learning task which can automatically create labels from target
domain images. The pretext and main task (e.g. object recognition or
semantic segmentation) are learned jointly via multi-task learning. Solid
lines indicate the forwarded data flow and the dash lines indicate
optional data flow.

• We proposed additional strategies to further boost the
self-supervised domain adaptation, including prediction
layer alignment and batch normalization calibration.

This paper is organized as follows. In Section II, we review
related self-supervised representation learning and domain
adaptation methods. In Section III, we explain the proposed
method. In Section IV, we conduct experiments on domain
adaptation for object recognition as well as semantic segmen-
tation, via our method. Finally, Section V summarizes the
work and future directions.

II. RELATED WORK
A. SELF-SUPERVISED VISUAL REPRESENTATION
LEARNING
An extensive review of deep learning-based self-supervised
general visual feature learning methods from images or
videos is provided in [24]. The recent work of self-supervised
representation learning mainly focus on the design of pretext
tasks. The work of [26] gives a comprehensive study of
some state-of-the-art methods. A pretext task of predicting
the relative location of image patches was first proposed
in [12], where the patch ID is the supervision/label. This ini-
tial patch-basedmethod has been followed by several variants
[25], [40], [42]. Other works incorporate image colorization
[65] or image inpainting [44] as pretext tasks. Yet other works
focus on automatic ways of creating image samples with
corresponding labels; for instance, in [4] the labels are classes
derived from unsupervised image clustering, and in [17] the
labels are image rotation angles since from an original image
four possible rotations were created. As compared in [26],
the rotation prediction based method [17] has shown promis-
ing results for learning high-level image representations.
The rotation based method is further improved in [15] by
decoupling rotation related and unrelated features. Therefore,
in this work, we employ this pretext task as well as the loca-
tion of image patches in line with [12]. In [23], relative depth
prediction is used as a self-supervised proxy task, which
has shown improvements to the downstream tasks, including
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semantic segmentation and car detection. However, it relies
on the video data in order to obtain the relative depth.

B. UNSUPERVISED DOMAIN ADAPTATION
There have been numerous domain adaptation methods
proposed for object recognition since [48]. After the pio-
neer work of [21], [67], semantic segmentation has also
aroused increasing interests. Among existing domain adap-
tation methods, some try to align domains at input level,
including GAN-based methods [5], [20], [31] and image
stylization ones [13], [61], [68]. Some focus at feature level
adaptation [9], [21], [22], [45], [49], and others on adapting
the output space [39], [50], [55], [59]. According to recent
surveys [60], [66], most methods are built on the principle
of domain adversarial training [16], with differences on how
to incorporate it to the training of the segmentation network.
Among the adaptation strategies we use as complement to
self-supervision, the prediction layer alignment is similar to
adversarial training for output space alignment.

In [69], iterative self-labeling and fine-tuning with spa-
tial urban-scene location priors are used to perform the
domain adaptation. In [67], a curriculum learning style is
applied, where super-pixels are computed in source and tar-
get domains and their distributions must match as auxiliary
task during semantic segmentation training. The use of such
auxiliary task is similar in spirit to our multi-task learning
approach with pretext tasks as nexus between source and
target domains. However, neither our auxiliary tasks nor our
complementary adaptation strategies are restricted to seman-
tic segmentation, and they are way simpler than computing
super-pixels. Comparing to these work, our method is not
specifically designed for semantic segmentation but generic
for various computer vision tasks.

In [2], the self-supervised learning method jigsaw puzzle is
used for object recognition domain generalization and adap-
tation. As we will see in the experimental section, our method
outperforms the jigsaw puzzle based method on both object
recognition and semantic segmentation tasks. For semantic
segmentation, we compare our results to [13], [20], [22],
[49], [55], [61], [67]–[69]. The final semantic segmentation
accuracy we obtain in target domain is superior to most of
these methods, only behind [69] which is specific for seman-
tic segmentation, and still not being far apart. Moreover,
although it is out of the scope of this paper, our method can
be complementary to some of the ones aforementioned, such
as those based on adapting the input images via GANs.

III. METHOD
In this section, we first introduce our generic framework of
self-supervised domain adaptation. Then, we present the con-
sidered pretext tasks. Finally, we introduce domain adaptation
steps which complement self-supervision.

A. SELF-SUPERVISED DOMAIN ADAPTATION
1) OVERVIEW OF THE FRAMEWORK
Taking semantic segmentation as an example of main task,
but without lose of generality, our method is shown in

FIGURE 1; where E denotes an encoder network (feature
extractor) and S a decoder network (specific of themain task),
so that E+S is a CNN for semantic segmentation. This CNN
is trained end-to-end with source domain labeled samples,
{Xs, Ys}. We denote by P the network added to support the
creation of a model for solving the pretext task. This model
consists in the CNN E + P, where E is shared with the CNN
of the main task. The pretext task training samples, {Xt , Yt},
are automatically created from the target domain images so
that the training of E + P is also supervised.
The complete domain adaptation method is drawn in

Algorithm 1, where we can see how the self-supervised
domain adaptation is a joint training of models to perform
the pretext and main tasks. During the forward propaga-
tion, both source and target domain samples pass through
the shared encoder. After, the losses of the main task Lseg
and pretext task Lp are computed, they are back-propagated
and accumulated at the encoder. Because the encoder is
trained with both source and target domain samples, it learns
domain invariant feature representations. In the testing phase,
we feed the target domain images to the encoder and pass
the features to the decoder of the main task to obtain the
predictions.

Algorithm 1 Self-Supervised Domain Adaptation
Data: Labeled source domain images: {Xs, Ys}, and

unlabeled target domain images: {Xt}
Result: Model trained for main task in target domain
Create samples for pretext task: {Xt , Yt};
i = 0;
while i < max_iters do

Load target mini-batch {x ti , y
t
i};

Forward pass and compute Lp;
Back-propagate Lp gradients by P and E ;
Update weights of P;
Load source mini-batch {xsi , y

s
i};

Forward pass and compute Lseg;
Back-propagate Lseg gradients by S and E ;
Accumulate gradients from Lp and Lseg for E ;
Update weights of E and S;

end

It is also possible to create pretext task samples with the
source domain data, i.e., dash lines in FIGURE 1. In this
case, the pretext model can be trained with both source and
target domain pretext task samples. We investigate this in
Section IV.

2) PRETEXT TASKS
In this section, we first introduce the image rotation predic-
tion pretext task. Inspired by the image-patch based meth-
ods [12], [25], [40], [42], we also take into account the
spatial layout of the image and propose a new pretext
task.
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a: IMAGE ROTATION PREDICTION AS PRETEXT TASK
We select image rotation prediction as pretext task due to its
simplicity and superior performance on visual representation
learning to other proposals [17]. Given a set of Nt training
images from target domain Dt = {x ti }

Nt
i=0, similar to [17],

we define the set of geometric transformations as 2D image
rotations by 0, 90, 180 and 270 degrees. We denote the rota-
tion function by g(x ti , r), r ∈ [0, 3] rotates image x ti by r ∗ 90
degrees. The geometric transformation prediction model P
takes feature map from E as input and outputs a probability
distribution over all possible geometric transformations. The
self-supervised training objective that the geometric transfor-
mation model must learn to solve is:

min
θe,θp

1
Nt

Nt∑
i=1

Lp(x ti , θe, θp), (1)

where θe and θp are the parameters of the encoder E and
pretext network P respectively,Lp is the loss function defined
as:

Lp = −
1
4

3∑
r=0

log(P(E(g(x ti , r), θe), θp)). (2)

By learning to predict the image orientations, the con-
volutional neural networks also implicitly learn to localize
salient objects in the images, recognize their orientations and
object types [17]. Such implicitly learned knowledge contains
semantic information of the target domain images which is
expected to improve the cross-domain feature representation
power of the encoder network. In other words, the pretext task
with target domain images helps the encoder to learn domain
invariant feature representation, thus, helps to achieve domain
adaptation.

The work of [17] uses full images from ImageNet [11].
However, the images from a specific domain are usually
biased to particular structures or patterns, especially at a full
image level. If we train a rotation prediction model with
full images, the training process could find a trivial solution
and, thus, not being able to learn a domain invariant feature
representation. To avoid this problem, we first randomly
crop an image patch from the full image and then rotate
this patch. In this way, we create more difficult and diverse
samples for the pretext task.

b: SPATIAL-AWARE ROTATION PREDICTION AS PRETEXT
TASK
Beyond image rotation, we further propose to take into
account the image spatial layout to create a more complex
pretext task. As depicted in FIGURE 2, instead of randomly
cropping a patch from the full image, we first split the full
image into four regions. From each region, we apply cropping
and rotation operations as in the previous pretext task.We call
this strategy spatial-aware rotation prediction. The dimension
of a label is then extended from 4 (rotation angles) to 16
(spatial locations times rotation angles). This scheme encodes

FIGURE 2. Region-based cropping and rotation.

the geometry transform as well as spatial layout information,
which results in a more complex pretext task.

3) OBJECTIVE FUNCTION FOR
DOMAIN ADAPTATION
Given a set of Ns labeled training images from the source
domain Ds = {xsi , y

s
i }
Ns
i=0, the segmentation network takes

as input the feature maps from E(xsi ) and outputs the seg-
mentation predictions: Os

i = S(E(xsi , θe), θs) ∈ RH×W×C ,
where C is the number of semantic categories, H and W are
the height and width of the output respectively, and θe and θs
convey the parameters of E and S, respectively. The semantic
segmentation training objective that we need to solve for E
and S is:

min
θe,θs

1
Ns

Ns∑
i=1

Lseg(xsi , θe, θs), (3)

where the segmentation loss is the cross-entropy loss, defined
as:

Lseg = −
∑
h,w

∑
c∈C

ysi (h,w, c) log(O
s
i (h,w, c)). (4)

With Eq. (1) and Eq. (3), the objective function that
self-supervised domain adaptation must solve is:

min
θe,θp,θs

1
Ns

Ns∑
i=1

Lseg(xsi , θe, θs)+
λp

Nt

Nt∑
j=1

Lp(x tj , θe, θp), (5)

where λp is the weight to balance the two losses. In this work,
we simply set λp = 1 for our experiments. The training
process follows Algorithm 1.

B. COMPLEMENTARY ADAPTATION STEPS
In this section, we introduce two different strategies to com-
plement self-supervised domain adaptation, including adver-
sarial training for prediction layer alignment and batch nor-
malization.

1) PREDICTION LAYER ALIGNMENT
The proposed pretext task learning is able to perform domain
adaptation at feature level, however, the predicted semantic
labels may still not be well aligned. There have been some
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FIGURE 3. Self-supervised domain adaptation with prediction layer
alignment.

previous work tackling this problem [39], [55]. In this work,
we also consider to align the prediction layer to improve
the domain adaptation performance. The main idea is illus-
trated in FIGURE 3. For semantic segmentation, we simpli-
fied the decoder by a single up-sampling layer. In this way,
the last layer of the encoder is corresponding to the prediction
layer. By placing a domain discriminator after the prediction
layer, the commonly used domain adversarial training can
be employed. We denote by D the discriminator and θd for
its parameters. Given an input image xi, the discriminator
takes as input the feature maps from the encoder E(xi) and
performs the binary classification to distinguish whether the
feature map is from the source image or the target one,
Zi = D(E(xi)), Zi ∈ RH×W×2. The training of D is a
standard supervised training, which minimizes the following
2-D cross-entropy loss:

Ld (xi, θd ) = −
∑
h,w

[(1− z) logZi(h,w, 0)

+ z logZi(h,w, 1)], (6)

where h,w are indexing the output layer, z = 0 indicates that
the sample is drawn from the target domain, and z = 1 if it is
drawn from the source domain.

In order to learn a domain invariant feature representation,
we want the encoder to fool the domain discriminator D,
which is equivalent tominimize the following adversarial loss
function:

Ladv(xi, θe) = −
∑
h,w

[(1− z) logZi(h,w, 1)

+ z logZi(h,w, 0)]. (7)

Ladv encourages to foolD by optimizing θe whileLd encour-
ages to improve the classification accuracy of D by optimiz-
ing θd . The optimization of Eq. (6) and Eq. (7) is essentialy a
domain adversarial training. Combining the self-supervised
domain adaptation objective function Eq. (5), the overall
optimization problem that we solve is as following:

min
θe,θp,θs,θd

1
Ns

Ns∑
i=1

Lseg(xsi , θe, θs)

+
λp

Nt

Nt∑
i=1

Lp(x ti , θe, θp)

+
λadv

Nt

Nt∑
i=1

Ladv(xi, θe)

+
λd

Nt + Ns

Nt+Ns∑
i=1

Ld (xi, θd ), (8)

where λadv and λd are the weights to balance the corre-
sponding losses. These hyper-parameters are tuned on the
validation set and then fixed for all experiments. In this work,
we set λadv = 0.01 and λd = 1.0 for our experiments.
We show how this prediction layer alignment improves the
self-supervised domain adaptation in Section IV-C4.

2) BATCH NORMALIZATION CALIBRATION
The batch normalization (BN) is originally designed to
reduce the internal covariate shift and speedup the training
of deep neural networks. Given a mini-batch B = {z1...m}
as input, BN layer first calculates the mean and variance by
µB =

1
m

∑m
i=1 zi, σ 2

=
1
m

∑m
i=1(zi − µB)

2. Each example
is then normalized by ẑi =

zi−µB√
σ 2+ε

, where ε is a constant

added to the mini-batch variance for numerical stability. The
normalized values are then scaled and shifted by λẑi + β to
produce the output, where λ and β are learnable parameters.

For a trained source domainmodel,µB and σ 2 are statistics
from source domain images, which may cause domain shift
when applied with target domain images. Although during
domain adaptation training, both of source and target data are
passed through the BN layers, the statistics from both domain
can be still ambiguous for the target domain model. What
we proposed in this work is to re-calibrate these statistics to
reduce the domain shift. Given a pretrained network, we keep
all the learnable parameters fixed and feed forward the target
domain training images. During this forward propagation,
we re-calculate the mean and variation values of each BN
layer.

Our BN calibration is similar to the AdaBN method [30].
However, AdaBN adopts an online algorithm to estimate the
mean and variance, while we simply use the commonmoving
averagemean and variance available in existing deep learning
frameworks. AdaBN is applied at the inference stage, i.e. to
the testing images, while we use BN calibration as a post
training process with target domain training images.

IV. EXPERIMENTS AND RESULTS
In this section, we conduct experiments to validate the pro-
posed domain adaptation method for both object recognition
and semantic segmentation.

A. IMPLEMENTATION DETAILS
We implement the proposed method using the PyTorch
framework on a single GTX 1080 Ti GPU with 11 GB
memory. For object recognition, we use the code base of
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TABLE 1. The abbreviations of the the evaluated methods.

TABLE 2. Accuracy (%) on Office dataset (ResNet-50).

JiGen [2].2 We use the default hyper-parameters and ResNet-
18 and ResNet-50 architectures. The deep networks used
in our semantic segmentation experiments are ResNet-
101 based DeepLab-v2 [7] and dilated residual networks
(DRN) [64]. Specifically, we take the commonly used DRN-
26 architecture in order to compare to other state-of-the-art
methods. Both networks are initialized with ImageNet [11]
pretrained weights.

B. DOMAIN ADAPTATION FOR OBJECT RECOGNITION
We first evaluate the proposed domain adaptation method
with state-of-the-art methods on Office [48] dataset. Office
is the most widely used dataset for visual domain adaptation,
with 4652 images and 31 categories collected from three
distinct domains: Amazon (A), Webcam (W) and DSLR (D).
We evaluate all methods on six domain adaptation tasks,
A −→ W, D −→ W, A −→ D, D −→ A and
W −→ A. We follow the standard protocols for unsuper-
vised domain adaptation in [36], and use all labeled source
examples and all unlabeled target examples. We compare
the average classification accuracy based on three random
experiments. The abbreviations of the evaluated strategies
are listed in Table 1. The results on Office dataset based on
ResNet-50 are reported in Table 2. Rot achieves the best
average accuracy among all evaluated strategies and reach-
ing the accuracies of state-of-the-art methods. MixRot and
SPRot obtain similar accuracies which are very close to Rot.

2https://github.com/fmcarlucci/JigenDG

MixRot even outperforms Rot on D −→ W task. Because
Adv has very low accuracy comparing toRot,Rot+Adv does
not improve Rot. Rot+Adv+BN shows consistent improve-
ments to Rot+Adv, but still can not outperform the simplest
method Rot.
To better analysis the domain adaptation performance of

Rot, we visualize by t-SNE [57] the learned deep features in
FIGURE 4 on task A −→ W. FIGURE 4 (a) and (b) show
that categories are better discriminated by Rot than the
non-adapted model ResNet-50. FIGURE 4 (c) and (d) show
that the source and target domains are aligned much better by
Rot than ResNet-50.
For object recognition, we also evaluate on the multi-

ple source domain adaptation dataset PACS [29] dataset,
which has 7 object categories and 4 domains (Photo, Art
Paintings, Cartoon and Sketches). FIGURE 5 shows sam-
ple images from PACS dataset. We follow the same exper-
imental settings as [2] and trained our model considering
three domains as source datasets and the remaining one as
target. Following [2], we also compare to the domain dis-
covery method DDiscovery [38] and Dial [3]. We set three
different random seeds and run each experiment three times.
The final result is the average over the three repetitions.
To make a fair comparison, we run jigsaw puzzle method
with the same random seeds and denoted by Ours(jigsaw).
The results are shown in Table 3. We obtained similar con-
clusions to the Office dataset experiment. Our image rotation
based self-supervised domain adaptation Rot outperforms
all baselines. MixRot outperforms Rot on adaptation to art
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FIGURE 4. The t-SNE [57] visualization of deep features in A −→W task. (a)(b) are generated from category information and each color in
(a)(b) represents a category. (c)(d) are generated from domain information. Red and blue points represent samples of source and target
domains, respectively.

FIGURE 5. Sample images from PACS dataset. Each row represents a domain and each
column represents a category.

TABLE 3. Multi-source Domain Adaptation results on PACS (ResNet-18).
Three domains are used as source datasets and the remaining one as
target.

painting and photo. SPRot outperforms Rot on adaptation to
cartoon and photo. But their overall performance, i.e., average
accuracies are still lower than Rot, showing that Rot is the
most robust method. Again, due to the relatively too low
performance ofAdv,Rot+Adv can not further improveRot.
As in the previous experiment,Rot+Adv+BN consistantly
improves Rot + Adv.
For domain adaptation on PACS, we also show

t-SNE [57] visualization of deep features in FIGURE 6.
From (a) and (b), we can see that Rot has much better

discriminativity on categories than non-adapted method
SRC. From (c) and (d), Rot shows clearly much better
domain alignment than non-adaptedmethod SRC. The t-SNE
visualization reveals the effectiveness of Rot on domain
adaptation.

C. DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION
For semantic segmentation, we adapt semantic segmenta-
tion models from the source domain of synthetic images to
the target domain of real-world images. For the synthetic
datasets, we use SYNTHIA [46] and GTA5 [54], and for
the target domain, we use the Cityscapes dataset [10]. The
GTA5 [54] dataset is rendered from the Grand Theft Auto V
video game. It consists of 24996 images with resolution of
1914× 1052 and has 19 classes compatible with Cityscapes
dataset. We use the full set of GTA5 as our source domain
training set. For SYNTHIA dataset, we use the SYNTHIA-
RAND-CITYSCAPES set [46] as the source domain training
set, which contains 9400 images. We evaluate with the 16
common classes for SYNTHIA to Cityscapes domain adap-
tation. The training set of Cityscapes has 2975 images which
are used as unlabeled target domain training samples. The
validation set of Cityscapes has 500 samples which are used
as our testing set.
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FIGURE 6. The t-SNE [57] visualization of deep features in multi-source DA task (art painting is used as target domain). (a)(b) are
generated from category information and each color in (a)(b) represents a category. (c)(d) are generated from domain information. Red
and blue points represent samples of source and target domains, respectively.

TABLE 5. Comparison with jigsaw puzzle method (ResNet-101).

We conduct ablation studies to understand the impact of
each component of our self-supervised domain adaptation.
If not otherwise specified, all the experiments in this section
use ResNet-101 as backbone network and the domain adap-
tation is from GTA5 to Cityscapes.

1) PRETEXT TASK LEARNING STRATEGIES
The first two rows in Table 4 show their domain adaptation
results. As can be seen from Table 4, mixing source domain
training data in the pretext learning (MixRot) shows even
inferior results, which may because the source samples are
dominated in the mixed samples (24996 vs 2975), which
makes the model more source domain oriented and reduces
domain invariant representation power.

Next, we would like to know whether the proposed
spatial-aware rotation prediction pretext task is better than
the simple rotation prediction strategy, i.e., the Rot method.
Table 4 displays the results of the spatial-aware rotation
prediction pretext task as SPRot. It turns out that the more
difficult pretext task learning leads to worse domain adapta-
tion performance. In our practice, the pretext task learning of
SPRot has more difficulties to converge than Rot, and this
may result in the failure of learning good feature represen-
tations. Therefore, how to design a proper pretext task for
domain adaptation still needs more exploration.

We also compare our method Rot to the jigsaw puzzle
based self-supervision [2]. The results are shown in Table 5,
where SYN2CS denotes SYNTHIA to Cityscapes domain
adaptation and GTA2CS for GTA5 to Cityscapes. Rot out-
performs the jigsaw puzzle for both SYN2CS and GTS2CS.
Especially for GTA2CS, jigsaw puzzle has shown very lim-
ited gain (1.2 percentage point) while Rot still achieved 6.2
percentage point.

2) INPUT IMAGE SIZE FOR PRETEXT TASK LEARNING
As the images from Cityscapes dataset have large resolution
(e.g., 1024×2048). We are interested in what cropping size is

best for the self-supervised learning. In Table 4, we compare
three different cropping sizes. The smallest cropping size
(128×128) showsworst performance due to too small field of
view to learn good representations. Comparing the remaining
two cropping sizes, we see that the larger one (400 × 400)
does not further improve the performance. In fact, when we
use the full image as input, the pretext learning easily gets
stuck in a trivial solution, i.e. 100% prediction accuracy. As a
result, the final model fails to perform domain adaptation.
Thus, we believe that a proper cropping size is important to
control the difficulty of learning pretext tasks.

3) FEATURE EXTRACTION LAYER
By default, the pretext task takes as input the features
extracted from the last layer of the encoder. However, whether
the last layer is the best for domain adaptation is unclear.
In this section, we train self-supervised domain adaption
models with different feature extraction layers. We mainly
compare the feature extraction from the middle and the end of
the encoder. Table 4 shows the corresponding results, where
Middle represents the feature extraction from middle layer
and Final uses features from the end layer of the encoder.
As, in this case, the decoder of the segmentation network is
simply an up-sampling layer without any learnable parameter,
the Final layer is actually the prediction layer of the segmen-
tation network. As we can see from the results, the model
Middle shows slightly better results and we think the pretext
task learning is not very sensitive to the choice of feature
extraction layers.

4) EVALUATION OF COMPLEMENTARY STRATEGIES
Table 6 shows the results with different complementary
strategies. The source domain model is denoted by SRC and
the model trained with target domain samples is denoted by
TAR, which represent the lower and upper bound of the
accuracy respectively. Rot is our baseline method. +Adv
is with prediction layer alignment (Section III-B1), which
improves Rot by 1.1 percentage points. +BN is with BN
calibration (Section III-B2), which does not show improve-
ment over Rot. But when combined Adv and BN, we obtain
the best results, improving Rot by 2.1 percentage points.
Tabel 7 shows more results with other architectures and
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TABLE 4. Domain adaptation performance under different pretext task settings (ResNet-101).

TABLE 6. Evaluation of complementary strategies (ResNet-101).

TABLE 7. Comparison with the state-of-the-art methods. The result of AdaptSegNet [55] here is from the single resolution version as our output
adversarial method is built on top of this version.

datasets, where +Adv has consistent improvements to Rot
but +Adv+BN gets saturated for the SYN2CS problem.

To understand why BN does not have consistent improve-
ments, we further conduct experiments using only BN cali-
bration for domain adaptation. FIGURE 7 shows the results
on multiple datasets using multiple networks. BN calibra-
tion alone achieves surprisingly good results, and the best
domain adaptation gain even reaches 6.8 percentage points.
However, when combined with Rot or Rot+Adv, it only
improves 1 or 2 percentage points. This might be because
Rot and Rot+Adv have already learned domain invariant

representation that effectively reduces the covariate sift and
BN calibration could not contribute more to the adapted
model. The reason that Adv gives consistent rise to the base
method is because Adv further aligns the predicted label
distributions which is more complementary adaptation to the
Rot than the provided by BN.

5) QUALITATIVE ANALYSIS
Following [37], we also visualize the learned feature repre-
sentations by t-SNE [57] in FIGURE 8. For the non-adapted
features, the classes are not discriminated well. They are
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FIGURE 7. Domain adaptation performance of BN calibration. The vertical
axis denotes mIoU accuracy.

discriminated better by the Rot adaptation and Rot+Adv+
BN discriminates the classes best. In FIGURE 9, we illustrate
some qualitative results of our models. Without domain adap-
tation, the source domain model SRC produces noisy seg-
mentation.Rot shows significant improvements over SRC in
terms of segmentation quality. The results of Rot+Adv+BN
is less noisy and more accurate in details than Rot.

D. COMPARISON TO THE STATE-OF-THE-ART
Lastly, we compare our method to some recently published
state-of-the-art works which use similar architectures to ours.
The results are shown in Table 7. The compared meth-
ods cover large varieties of domain adaptation mechanisms,
including input/feature/output level alignment methods, cur-
riculum and self-labeling based methods. Some of these
methods are also surveyed in [66].We refer the readers to [66]
for more details. The results in Table 7 show that our adapted
models (Adapt) achieve comparable accuracies to the state-
of-the-art. It is worth noting some of these state-of-the-art
methods obtain worse results than we obtain when training
with the source data alone (SRC columns), so their relative
gain is higher. On the other hand, with this work we aim at
encouraging the use of pretext tasks for domain adaption of

semantic segmentation models, which, as mentioned before,
can be a complementary idea to others. We also find that
a deeper network (ResNet-101) can achieve better domain
adaptation gain than the shallow one (DRN-26).

E. DISCUSSION
The experimental results reveal several insightful observa-
tions. (1) The current deep learning methods learn good
feature representations for single domain but can not remove
cross-domain discrepancy. (2) Using self-supervised rep-
resentation learning can help to reduce domain shift, and
the simplest image rotation prediction pretext task Rot can
even achieve comparable performance to the state-of-the-
art domain adaptation methods. (3) Rot turns out to be
more robust than other alternatives, e.g.,MixRot, SPRot and
Jigsaw. (4)Rot is complementary to existing domain adapta-
tion methods, e.g., adversarial based and batch normalization
based ones.

The reasons that self-supervised learning helps domain
adaptation are as following: (1) the self-supervised learn-
ing involves source and target domain samples in a com-
mon supervised learning process which can help to learn
cross-domain feature representations. This can be verified
from the feature visualization on domain alignment, e.g.,
FIGURE 4 and FIGURE 6. (2) Because the self-supervised
learning and the main task are in a joint multi-task learning
process, the model of the main task also learns from the
cross-domain feature representations. As a result, the final
model achieves domain adaptation on target domain.

Based on our experiments, we also have following find-
ings about how to design a good self-supervised pretext
task for domain adaptation: (1) As a common practice on
many deep learning tasks, a deeper architecture can achieve
better self-supervised domain adaptation performance than a
shallow one. (2) Better performance on representation learn-
ing, better performance on domain adaptation, e.g., Rot vs
Jigsaw. (3) More complex pretext task does not lead to better

FIGURE 8. The t-SNE [57] visualization of the learned features. (a): A target domain image. (b): A non-adapted results. (c) Adapted result of Rot.
(d) Adapted results of Rot+Adv+BN. (e) ground truth segmentation. We map the high-dimensional features of (b), (c) and (d) to a 2-D space with t-SNE
[57] shown in (f), (g) and (h). For clear illustration, we visualize features of 4 classes, including building (grey), car (blue), vegetation(green) and rider(red).
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FIGURE 9. Qualitative results of GTA2CS domain adaptation. The first row and last row are the input images and corresponding groundtruthes
respectively. The second row shows results from source domain model. The third and fourth rows are results from the proposed Rot and Rot+Adv+BN
models. ResNet-101 is used as backbone.

domain adaptation performance, e.g., SPRot is outperformed
by Rot. (4) Adv and Adv+BN can further improve Rot if
the performance of Adv is not worse than Rot. In this work,
we only investigated several simple self-supervised learning
strategies, we believe that for better self-supervised domain
adaptation there are still large space to explore.

V. CONCLUSION
In this work, we have explored self-supervised learning for
domain adaptation. We have shown that a simple image
rotation prediction (pretext task) self-supervision can achieve
state-of-the-art domain adaptation performance. We have
studied several pretext tasks as well as complementary
domain adaptation strategies. Taking object recognition and
semantic segmentation of urban scenes as relevant use cases,
we have performed an ablative analysis of the different com-
ponents included in our overall domain adaptation procedure.
As future work, we would like to investigate more pretext
tasks and to apply our method to other relevant vision tasks.
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