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ABSTRACT Short-Term Load Forecasting (STLF) for End-User Transformer Level (EUTL) is challenging
due to the high penetration of Electric Heating Loads (EHLs), which exhibit significant uncertainty,
nonlinearity, and variability. In this paper, a STLF model is proposed based on the Stacked Auto-Encoder
Extreme Learning Machine (SAE-ELM) deep learning framework, which can be used to extract hidden
features from the time series load data. In order to improve the capability of extracting deep and diverse
features from the data and generate a useful knowledge representation structure, a novel specialized feature
indices set is proposed to construct the training sample set. The sliding trend, fluctuation rate, grade of
change, and smoothness of the time series are considered and quantified as elements of the training sample
set. Then, deep nonlinear features are extracted by using the SAE-ELM with no iterative parameter tuning
needed. To illustrate the validity of the proposed model, five numerical cases are conducted. Comparison of
results shows that the proposed model improves the capability and sensitivity of dealing with load volatility
and forecasting accuracy.

INDEX TERMS Short-term load forecasting, feature representation, deep learning, stacked auto-encoder,
extreme learning machine.

I. INTRODUCTION
Short-Term Load Forecasting (STLF) is essential for main-
taining the balance between supply and demand in a power
system [1], [2]. The rapid development of the smart grid in
addition to the deregulation of electricity markets resulted
in many smart grid applications becoming increasingly
customer-oriented (i.e., demand response [3], [4]) [5]. Load
forecasting at End-User Transformer-Level (EUTL) is an
important research area that supportsmany smart applications
and is essential for service providers that manage loads and
renewable resources. However, due to the uncertainties asso-
ciated with renewable generation [6] and new electric loads
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(e.g., air-conditioning [7], electric heating load (EHL) [8],
electric vehicle charging stations [9]), the load profile at
the transformer is now increasingly non-stationary, making
STLF at EUTL challenging.

In recent decades, a number of researchers have investi-
gated STLF. In [10], a distributed STLF method for a bulk
power system covering large geographical areas was pre-
sented. In order to improve the accuracy of STLF, the bulk
power system was partitioned into several subnetworks
and their loads were forecasted using weather information.
In [11], a STLF model based on support vector regression
and two-step hybrid parameters optimization was carried
out for distribution system load forecasting. A STLF model
considering the hierarchical structure of distribution system
was presented in terms of load features in [12]. In order to
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improve the forecasting accuracy, a hybrid STLF model was
proposed for a bulk power system in [13]. In [14], a two-
stage hybrid STLFmethod was proposed. The first stage used
a time-series load forecasting model where the forecasted
error of the first stage was corrected in the second stage by
performing a deep analysis on the impact of relative factors on
the model error. Although these aforementioned STLF meth-
ods in [10]–[14] may have good STLF performance at the
system-level, it cannot be applied to EUTL load forecasting
directly. This is because while the load capacity at EUTL is
much smaller, the load variability is much larger compared
against the load capacity at the system-level. Furthermore,
no additional weather information is available at EUTL due to
the prohibitive deployment cost and advanced technological
requirement. Therefore, the accuracy of the STLF model at
EUTL is mainly dependent on the how the historical load
data is processed. The raw load data at EUTL always exhibits
significant irregularities such as uncertainty, nonlinearity, and
large volatility. An effective deep feature extraction method
is critical for forming knowledge representation structure
to make full use of the deep hidden information from the
historical data.

In general, deep feature extraction from historical data
can be conducted in two ways: manual data preprocessing
by rules and through a deep learning neural network. The
seasonality of the load was regarded as an important feature
in [2], [15]. In [2], ten different features of the historical
load time series were used as latent regressors that were
suspected to influence the current hourly load (i.e., loads
from the previous week, hours of the day, etc.) in order to
develop appropriate regression models. In [15], the repre-
sentation of seasonality was non-parametric and the daily
and weekly cycles were not expressed as mathematical func-
tions but represented as the mean of previously observed
load patterns. The feature of seasonality was not an inte-
gral part of the forecasting algorithm. In [16], a two-stage
linear and nonlinear combined hybrid forecasting model for
mixed-use complex STLF was proposed. The labelling pro-
cess considers the type of day: workday or holiday. Load
type is used to decompose the aggregated load into several
sub-clusters. These aforementioned custom data preprocess-
ing methods were able to capture some shallow features,
but proved unsuitable for mining deep correlation features.
In addition, the impacts of some important external factors
such as electricity price were not considered. In [17], [18],
the wavelet decomposition (WD) based STLF method was
used for extracting deep features in the frequency domain.
The method reduces the non-stationary characteristics of the
load profile by decomposing the original signal into many
components with different frequencies. In [19] , the empirical
mode decomposition (EMD) method was used to decompose
energy price time series data for developing a forecasting
model. The data was decomposed into intrinsic mode func-
tions (IMFs) in the time domain with the same length as
the original signal, which proved useful for analyzing the
features directly. Both WD and EMD were useful in feature

extraction from raw time series data, but the relationships and
associations between other external factors were not included
in the decomposed components.

Deep learning has been used extensively in extracting non-
linear features from data [20]. Frequently used deep learning
algorithms for STLF models include deep belief network
(DBN) [21], deep recurrent neural network (DRNN) [22],
and deep convolutional neural network (DCNN) [23]. In [3],
a long short-term memory (LSTM) RNN-based framework
was presented to tackle the forecasting problem of a single
residential user load. In [24], the DRNN and DCNN were
carried out for short-term load forecasting and medium-term
load forecasting. In [25], DRNN and DCNN were presented
for day-ahead multi-step load forecasting in commercial
buildings. In [26], a deep belief network was built for an
hourly load forecasting model of a bulk power system. All
these deep learning algorithms exhibit excellent performance
in STLF.

Stacked auto-encoder (SAE) is a type of feed forward neu-
ral network that is composed of an encoder and decoder [27].
It is trained to reconstruct its own input in the output layer in
an unsupervised manner. This can be viewed as an advanced
feature extractor capable of preserving the hidden abstrac-
tions and has an invariant structure in its inputs [28]. A new
kind of SAE combined with extreme learning machine (SAE-
ELM) was proposed to improve the computational efficiency
of deep learning by the authors of [29]. Because of its fast
training speed and high generalizability, S-ELM has found
applications in many areas, such as representational learn-
ing [30], [31], data partitioning [32], pattern recognition [33],
and soft sensor modeling [34]. In this paper, a deep learning
framework based on SAE-ELM is introduced to construct the
STLF model. The contributions of the proposed work are as
follows.

1) A novel specialized feature extractingmodel is proposed
to construct a knowledge representation structure for the
training sample set with a variety of deep features.

2) The EMDmethod is utilized to decompose the raw time
series data in time domain. Instead of forecasting each
individual IMF independently, the EMD method is used
as a low pass filter to eliminate the non-stationary IMF.

3) The SAE-ELM based deep learning framework is intro-
duced to construct the STLF model, which is used to
predict irregularities at EUTL. By using SAE-ELM,
the deep nonlinear features are learned automatically
with no iterative parameter turning or fine-turning
needed, which renders the training process very
fast.

The remainder of this article is organized as follows. The
irregularities at EUTL and the specialized feature extrac-
tion model are presented in Section II. Section III presents
the SAE-ELM model that is utilized in the STLF method.
Case studies are conducted and the results of which are
discussed in Section IV. Finally, concluding remarks aremade
in Section V.
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II. IRREGULARITY ANALYSIS AND SPECIALIZED
FEATURE EXTRACTION
A. IRREGULARITY IN END-USER TRANSFORMER
CONTAINING HIGH PENETRATION OF ELECTRIC
HEATING LOAD
The power consumption of an EHL is typically much higher
than conventional household appliances. These loads have
closed-loop controllers that turn the EHL on and off in order
to maintain the temperature within setpoints. Thus, the load
profile of a household with EHL exhibit large random fluc-
tuations throughout the day. An end-user transformer serves
several households, so its load profile is an aggregate of
the profiles of the individual households. Due to the small
capacity and the high penetration of EHLs, randomness and
volatility are prevalent in the load profile of an end-user
transformer.

The load profile of a typical day of end-user transformer
with high penetration of EHLs is shown in Fig. 1. The notice-
able features include high peak-valley difference, sudden
large changes, and random fluctuations. There are also other
hidden features such as sliding trend, variation with different
frequency, and impact from other external factors such as
electricity price. All these features need to be extracted from
the raw time series data and quantified into a knowledge
representation that is easily learned. Then, it is utilized as
the input training sample set for the deep learning process
in order to ensure that the SAE-ELM model is well trained
with enough knowledge.

FIGURE 1. Representative daily load profile at EUTL.

B. THE NOVEL SPECIALIZED FEATURE
EXTRACTING INDICES
A set of novel specialized feature extracting indices are pre-
sented to extract and quantify features from raw data.

1) THE SLIDING TREND (SlT)
Let P indicate a vector of active power consumed by the
load as shown in (1), and t indicate the current time interval.
The SlT represents the average sliding trend during a specific
time window. It considers both the current state and the m

previous states, with m being the window length. Therefore,
it is defined by the sliding average model shown in (2).

P = [pl(1), · · · , pl(t), · · · , pl(r)] (1)

SlT (t) =
1
m

m−1∑
i=0

pl(t − i) (2)

where SlT (t) is the sliding trend index; m is the length of
sliding trend window; r is the number of time intervals in a
day; pl(t) is the active power of load.

2) THE FLUCTUATING RATE (FlR)
The FlR is defined to capture the fluctuation direction and the
relationship between the fluctuation and SlT.

FlR(t) =
(pl(t)− pl(t − 1))

SlT (t)
(3)

3) THE GRADE OF CHANGE (GoC)
The volatility of the load is divided into 5 grades with the
GoC quantifying the grade of change.

GoC(t) =



2, FlR(t) > g+1 , grade 5
1, ḡ+0 < FlR(t) ≤ g+1 , grade 4
0, g−0 ≤ FlR(t) ≤ ḡ

+

0 , grade 3
−1, g−1 ≤ FlR(t) < g−0 , grade 2
−2, FlR(t) < g−1 , grade 1

(4)

where GoC(t) is the GoC index at time t; g−1 is the threshold
separating grades 1 and 2; g−0 is the threshold separating
grades 2 and 3; ḡ+0 is the threshold separating grades 3 and 4;
g+1 is the threshold separating grades 4 and 5. Grade 3 indi-
cates that the volatility is small. Grades 2 and 4 denote larger
volatility, and grades 1 and 5 represent the highest volatility.

4) THE SMOOTHNESS OF SERIES (SoS)
The EMD method performs auto-adaptive nonlinear analysis
on non-stationary time series. The original time series can
be decomposed into several IMFs and one residue. The main
steps of the EMD method are shown in Table 1.

The raw load time series data can be decomposed into
individual frequency components as shown in (6).

P =
Nimf∑
i=1

siimf + sre (6)

where Nimf is the number of IMFs.
Let s1imf be the highest frequency component, which is

also the most non-stationary component. The other compo-
nents siimf are of decreasing frequencies with increasing i.
Because s1imf is highly unpredictable, no useful features can
be extracted from it.

The SoS index is defined as the stationary series which is
extracted from the raw series by neglecting the non-stationary
and highly unpredictable IMF. Therefore, the SoS index is
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TABLE 1. Steps of the EMD method.

defined as the sum of all IMFs except the highest frequency
component, s1imf , as shown in (7).

SoS =
Nimf∑
i=2

siimf + sre (7)

Instead of only using the raw load time series as training
sample set, all the proposed feature indices alongwith the raw
load time series are used to construct the new knowledge rep-
resentation set, which is shown in (8). Then, the input training
sample set for SAE-ELM is generated from the knowledge
representation set.

F =


pl (1) · · · pl (t) · · · pl (r)
SlT (1) · · · SlT (t) · · · SlT (r)
FlR (1) · · · FlR (t) · · · FlR (r)
GoC (1) · · · GoC (t) · · · GoC (r)
SoS (1) · · · SoS (t) · · · SoS (r)

 (8)

III. STFL MODEL BASED ON SAE-ELM
A. THE STACKED AUTO-ENCODER BASED ON EXTREME
LEARNING MACHINE
An auto-encoder (AE) is a neural network that is trained to
approximately reconstruct its input in the output layer. It is a
feed forward neural network consisting of an encoder and a
decoder, a typical architecture of which is shown in Fig. 2.

Let h ∈ RN×L be the matrix of hidden layer, the input vec-
tor x is mapped to the hidden layer by (9) and reconstructed
by (10).

h = g (ax+ b) (9)
_x = hβ (10)

where x ∈ RN is the input vector. g (a,b, x) is the activation
function of the hidden layer; in this paper, we use a sigmoid
function. a is the weight matrix mapping the input layer to
the hidden layer; b is the bias vector of hidden layer; β is the
output weight vector.

FIGURE 2. The typical architecture of an auto-encoder.

Because the AE model prioritizes the aspects of the input
that should be copied, it often learns useful properties of the
data. In order to learn sufficient representation for achieving
good generalization performance, SAE is often used for min-
ing deep features from data. However, as the number of layers
increase, the complexity and computation of the conventional
SAE trained with BP algorithm also increases. In this paper,
the deep learning framework based on SAE-ELM model is
introduced as the core of STLF model, which improves the
training efficiency significantly.

The STLF model is composed of an unsupervised deep
feature extraction (UDFE) module and a forecasting module
(FM), as shown in Fig. 3. The total number of layers of
the deep learning framework is k + 2, which includes the
input and output layers. The UDFE is composed of all layers
between the input layer and the k − 1th hidden layer, wherein
each hidden layer includes anAE-ELM. The FM is comprised
of the k−1th hidden layer, the k th hidden layer and the output
layer.

We take the AE-ELM of qth hidden layer to illustrate the
process of training AE with ELM. As shown in Fig. 4, the
training process of AE-ELM is composed of four main steps.

Step 1
Use the output H(q−1) of the q − 1th layer as the input of

the qth hidden layer.
Step 2
Map H(q−1) to the qth hidden layer space with random

input weight matrix a(q), bias vector b(q), and the activation

function g(·) in (11). Then, the output
_

H(q−1) of the qth hidden
layer is given by (12).

HAE
(q) = g

(
a(q)H(q−1) + b(q)

)
(11)

_

H(q−1) = HAE
(q) β(q) (12)

where β(q) is the output weight of AE in the qth hidden layer.
Step 3
In order to promote generalization, the output weight

β(q) is obtained by solving the optimization problem
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FIGURE 3. Deep learning framework for the STLF model.

FIGURE 4. The procedure of AE-ELM training.

of (13).

min 1
2

∥∥β(q)
∥∥2 + C

2

∥∥∥_

H(q−1) −HAE
(q) β(q)

∥∥∥2 (13)

where the first item is the regularization term with over-
fitting. C is the penalty coefficient. The objective function
minimizes both the output weight and output error simulta-
neously.

Next, we take the gradient of (13) with respect to β(q) and
equate it to zero as shown in (14) and solve for the output
weight β(q) as in (15) if H

AE
(q) is full column rank; Otherwise,

ifHAE
(q) is full row rank, the output weight β(q) can be obtained

by (16).

β(q) + C
(
HAE

(q)

)T (_

H(q−1) −HAE
(q) β(q)

)
= 0 (14)

β(q) =

((
HAE

(q)

)T
HAE

(q) +
I
C

)−1 (
HAE

(q)

)T _

H(q−1) (15)

β(q) =

(
HAE

(q)

)T (
HAE

(q)

(
HAE

(q)

)T
+

I
C

)−1
_

H(q−1) (16)

where I is the identity matrix.
Step 4
After the training of AE is completed, βT

(q) is used as the
mapping weight between the q − 1th hidden layer and the
qth hidden layer. Then the output of the qth hidden layer is
obtained by (17).

H(q) = g
(
H(q−1)β

T
(q)

)
(17)

In regards to FM, it is a typical supervised ELM regression.
The output H(k−1) of the last hidden layer in UDFE is taken
as the input. Then, the output weight β(o) can be calculated
with (18).β(o) =

(
HT

(k)H(k) +
I
C

)−1
HT

(k)y(t + 1), full column rank

β(o) = HT
(k)

(
H(k)HT

(k) +
I
C

)−1
y(t + 1), full row rank

(18)

where y(t + 1) is the target output vector of the training
process.

All of the connecting weights between two adjacent lay-
ers shown in Fig. 3 are determined after the independent
sequential training process. Once the weights are determined,
no fine-tuning is required. Finally, the forecasted output y ∗
(t + 1) of STLF model is obtained by (19).

y ∗ (t + 1) = g
(
H(k−1)β

T
(k)

)
β(o) (19)
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B. THE FORMATION OF TRAINING SAMPLE SET
The training sample set is one of the most important compo-
nents of the STLF model. It determines what can be extracted
and learned by the deep learning process. In order to make the
training sample set informative, the aforementioned knowl-
edge representation set based on feature indices are utilized to
construct the attributes series of each time interval, as shown
in Fig. 5.

FIGURE 5. AE-ELM training sample set.

Denote t to be the current time interval and (t+1) to be the
prediction time interval. A sliding window with length m is
used to update features. Then, m samples from time interval
(t − m + 1) to t of each index in knowledge representation
structure are used to construct the attribute series at time
interval t sequentially. Finally, the sample series in a day is
formed by the attribute series of all time intervals.

C. THE PROCESS OF STLF METHOD
The entire STLF method is shown in Fig. 6, which consists
of the three main steps of input attribute set selection, deter-
mination of network parameters, and final forecasting.

1) INPUT ATTRIBUTE SET SELECTION
Fig. 5 shows the training sample set for the duration of one
day. The day is split into 96 intervals with an attribute series
associated with each time interval. In order to forecast the
load of the (t+1)th time interval, all the attribute series at the
t th time interval in all previous days are input into SAE-ELM
in parallel, which is shown as step 1 in Fig. 6 and described
by (20).

A =


y1(t + 1),

[
p1l,t ,SlT

1
t ,FlR

1
t ,GoC1

t ,SoS
1
t

]
...

...
...

yd (t + 1),
[
pdl,t ,SlT

d
t ,FlR

d
t ,GoCd

t ,SoS
d
t

]
 (20)

where yd (t+1) is the target output of the (t+1)th time interval
in the d th day. The term in square bracket is the input attribute
series at the t th time interval.

2) DETERMINATION OF NETWORK PARAMETERS
First, the number of nodes in the input layer is determined by
the dimension of the input attribute series. Then, the attribute
set in (20) is taken as input to train deep learning neural net-
work based on SAE-ELM to determine connecting weights
in UDFE and FM process according to (9) - (19).

3) FINAL FORECASTING
The computed network parameters are used to construct the
STLF model. Then, the attribute set at the current time inter-
val t in the prediction day is used as input to obtain the
forecasted load _y(t + 1).

IV. NUMERICAL STUDY
A. DATA PREPERATION
The heating season in China typically lasts from Nov. 11 to
Mar. 15 of the following year. During this period, the heating
electricity price in the evening is much lower than that of non-
heating season, which greatly increases the electric heating
load. In this paper, the data of one residential transformer in
Beijing from Jan. 1, 2016 toMar. 15, 2016 is used as historical
load series, as shown in Fig. 7.

Data from Jan. 1, 2016 to Mar. 8, 2016 is used as the
initial time series to construct the knowledge representation
set and the remaining data from Mar. 9, 2016 to Mar. 15,
2016 is used as the original testing data. The historical data is
recorded every 15-minute and there are 96 time intervals in a
day. All the historical data is first extracted by the proposed
specialized feature indices and formed as a feature set. Then,
the feature set is constructed as a training sample set. Before
input to the trainingmodel, the elements in training sample set
need to be normalized to [−1, 1] within their own categories
by (21). Then, it is formed as training sample set day by day
according to Fig. 5.

y =
(
ymax
− ymin

) x − xmin

xmax − xmin + y
min (21)

where ymax is the upper bound of normalization range, set to
1; ymin is the lower bound of normalization range, set to −1.
x is the data to be normalized; xmax is the maximum value of
x and xmin is minimum value of x.

B. CASES DESIGN AND SETTINGS
For validation, the proposed STLF method is compared
against other methods such as the moving average method
(MAM), backpropagation neural network (BPNN), and long
short term memory (LSTM) method.

(1) MAM is a type of empirical forecastingmethod, which
uses the average value of a rolling time window as
forecasted value ymam(t + 1). In this paper, the rolling
time window of length 3 is used as benchmark.

ymam(t + 1) =
1
3

t∑
i=t−2

x(i) (22)
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FIGURE 6. The complete STLF method.

FIGURE 7. The load time series from Jan. 1st 2016 to Mar. 15th 2016.

(2) BPNN is used as the core of STLF model. Histori-
cal load time series is formed as training input. The
attributes of the training input are the loads of the five
previous time intervals.

(3) STLF model based on LSTM is also selected as one
of the benchmarks. The time series data from Jan. 1,
2016 to Mar. 8, 2016 is used as training input.

(4) The proposed STLFmodel is based on SAE-ELM. The
length of sliding window of input training sample set is
3. The four thresholds of GoC are −0.2, −0.08, 0.08,
and 0.2, respectively.

Some key parameters of the aforementioned methods are
listed in Table 2. For BPNN, the number of hidden layers is
set to 1 and the number of hidden nodes is 10. The number of
hidden layers of LSTM is set to 2 and the number of hidden
nodes of each layer is 200. The number of hidden layers of

TABLE 2. Key parameters.

SAE-ELM is set to 2 and the number hidden nodes in each
layer is 150.

C. RESULTS
The results of the case studies are presented in Table 3 and
in Fig. 8. In Table 3, the mean absolute percentage error
(MAPE), the maximum absolute percentage error (Max-
APE), the root mean square error (RMSE), and the maximum
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FIGURE 8. Comparison between the proposed SAE-ELM trained by feature set and the SAE-ELM trained by time series. (a) the
comparison results among the four methods and the original series; (b) the comparison of root square error of four methods.

TABLE 3. Overall forecasting errors of 7 days.

root square error (Max-RSE) are used in comparing the per-
formance of the four methods.

For clarity, only the results of the first two days (Mar. 9,
2016 and Mar. 10, 2016) are shown in Fig. 8. It can be
concluded that the load time series fluctuates significantly.
The minimum load is about 80 kW and the maximum load is
about 210 kW. The peak-valley difference is about 62%.

Among the four methods, the MAPE of the proposed
STLF method based on SAE-ELM is the lowest, followed
by LSTM, MAM, and BPNN. The MAPE of the proposed
STLF method based on SAE-ELM has decreased by 10.04%,

13.78%, 13.71% when compared against the LSTM method,
BPNN method, and MAM method, respectively. Because
the EHLs are affected by many external factors, the load
active power sometimes changes abruptly. Due to the high
variability of the load, this may result in high forecasting
error. Therefore, the Max-APEs and Max-RSE of all the
four methods are high. The proposed STLF model based
on SAE-ELM has the lowest Max-APE at 68.1% and the
lowest Max-RSE at 55.25 kW. Comparing the RMSE index,
the proposed STLF model based on SAE-ELM has the best
performance, which is 11.97% better than LSTM, 13.77%
better than BPNN, and 18.54% better than MAM.

Comparing the computational index (CI) in Table 3, it can
be seen that the proposed STLF model based on SAE-ELM
has the highest computational efficiency. It is about 1.3 times
faster than BPNN and 60.41 times faster than LSTM. This
is because no iterative parameter tuning and fine-tuning are
needed in the training process for the STLFmodel. Therefore,
the proposed STLF model based on SAE-ELM is better than
the other three methods across the five indices.

As shown in Fig. 8, the proposed STLF model based on
SAE-ELM is capable of following the variation during most
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FIGURE 9. The comparison results between the proposed SAE-ELM trained by feature set and the SAE-ELM trained by time series.

time intervals. Therefore, the root square error is lowest in
most time intervals. Due to the impacts of external factors,
there are three large volatile periods in Fig. 8 (a). Fortunately,
the proposed STLF model based on SAE-ELM is capable
of capturing most of the sudden change features effectively
while the other three methods may have a one to two time
interval delay. This is because the fluctuation and the grade
of change are extracted and represented as part of the training
sample set by the proposed specialized feature indices set.
In summary, it can be concluded from the four comparison
cases that:

(1) The proposed STLF model based on SAE-ELM is
better in dealing with small scale load forecasting with
large volatility.

(2) Due to the better deep feature extracting and learn-
ing ability, the STLF models based on deep learn-
ing framework (SAE-ELM and LSTM) generally per-
forms better than other conventional methods.

(3) The specialized feature extracting indices can help
capture and represent deep diverse information and
therefore contribute to the learning process and
improve the model accuracy.

D. ANALYSIS OF THE EFFECT OF SPECIALIZED
FEATURE SET
In order to further analyze the advantages of the proposed
specialized feature set, one more case study is conducted.
In this comparison, the STLF model also based on the same
SAE-ELM framework but trained by historical time series is
compared to the proposed STLF model.

The comparison results are shown in Fig. 9. The per-
formance of the STLF method based on SAE-ELM-TS in
dealing with volatility is worse compared to the proposed
STLF method. This is because the STLF method based on
SAE-ELM-TS is only trained by time series data instead

of by the specialized feature indices. This is especially true
for predicting sudden large changes, which is much more
difficult. Comparing with the proposed STLF model, it is
usually with one time interval delay. The root square error of
SAE-ELM-TS is also larger than that of the proposed STLF
model in most time intervals. The RMSE of SAE-ELM-TS is
23.72 which is much larger than that of the proposed STLF
model.

It can be concluded that (i) the proposed specialized feature
extracting indices can capture deep diverse features from
historical time series; (ii) the training sample set constructed
from feature indices can help improve the effect of deep
learning process and improve the capability and sensitivity
in dealing with volatility. Therefore, the forecasting accuracy
is improved.

V. CONCLUSION
In this paper, a STLF model at EUTL with high penetration
of EHLs is proposed based on a novel specialized feature
indices set and SAE-ELM deep learning framework. Due to
the large power excursions and significant randomness of
EHLs, the raw load time series at EUTL exhibit a variety
of irregularities, such as uncertainty, nonlinearity, and large
volatility. Therefore, a novel specialized feature indices set
is proposed to analyze and extract deep diverse features of
raw load time series to construct the training sample set. The
novel specialized feature indices set is proven to be helpful
in improving the deep learning process and the capability
and sensitivity in dealing with volatility. By using SAE-ELM,
the deep nonlinear features are learned automatically with no
iterative parameter turning and fine-turning needed, which
makes the learning process much faster than the LSTM,
BPNN, and MAM methods.

Although deep learning is a promising framework for
demand forecasting, it lacks strong capability in extracting
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deep features from highly volatile time series. Therefore,
more effective methods need to be further studied.
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