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ABSTRACT Numerous studies have demonstrated that exposure to live poultry or live poultry markets
is the significant risk factor for human infection with avian influenza A(H7N9). However, the specific
live poultry markets that are major infection sources for A(H7N9) human cases have not been explored
in detail. In this study, we extract data associated with poultry farms, live poultry markets and farmers’
markets from Baidu Map using the JavaScript language and then construct the live poultry transport
network. From this, we establish our A(H7N9) transmissionmodel over the network based upon probabilistic
discrete-time Markov chain. On the basis of the obtained network and model, we propose spatiotemporal
backward detection and forward transmission algorithms to detect the most likely infection sources and to
compute the first arrival times of the infection sources. Our simulations use these algorithms to identify the
specific locations of the infection sources, the first arrival times of the infection sources and the most likely
transmission map of the A(H7N9) virus along the live poultry transport network. The results reveal that,
in addition to the hazards posed by the live poultry markets, backyard poultry also contributed to A(H7N9)
human infections; this risk source was significant especially in the newly affected provinces, in the fifth wave
of infection. In particular, by analyzing the temperature characteristics at a given location when the infection
source arrived, we find that the risk of human infection with the influenza A(H7N9) virus was high under
9◦C∼19◦C; moderate under 0◦C∼9◦C or 19◦C∼25◦C; and low for temperatures < 0◦C or > 25◦C. Our
results suggest that strengthening the supervision of the live poultry market system and immunizing poultry
at both live poultry markets and the backyard poultry operations under the high risk temperature band of
9◦C∼19◦C, will be able to significantly contribute to the control of avian influenza A(H7N9) in the future.

INDEX TERMS Live poultry transport network, avian influenza A(H7N9), transmission model, detecting
infection sources.

I. INTRODUCTION
The novel avian influenza A(H7N9) virus emerged in 2013.
It is a bird flu strain of the influenza virus A (avian influenza
virus or bird flu virus) [1]. The avian influenza A(H7N9)
virus is only transmitted between poultry or from poul-
try to human. Human can be infected through direct expo-
sure to poultry, poultry secretions or excreta, inhalation of
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viral aerosols, and exposure to environments contaminated
with the virus [2]–[4]. Human cases of A(H7N9) infection
have occurred since 2013, during the annual winter-spring
epidemics in mainland China [5], [6]. After peaking in
2013-2014, the human infection cohort in subsequent epi-
demics was generally smaller [7], but it sharply increased
in the fifth epidemic wave in December 2016 [8]. This
fifth epidemic wave (lasting from October 1st, 2016, to
September 31st, 2017) was the most significant up until that
point; 746 human cases were reported across 27 provinces
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in mainland China. The A(H7N9) virus strains circulating
among poultry had been classified as low pathogenicity avian
influenza (LPAI) in the previous four epidemic waves in
China [9], but evolved to be highly pathogenic in poultry in
the fifth epidemic wave [10]. The earlier start date, larger
epidemic size, wider epidemic range and higher pathogenic-
ity in the fifth epidemic wave A(H7N9) prompted panic and
aroused public concern.

Most of the confirmed A(H7N9) cases in human had an
etiology involving a history of recent exposure to live poul-
try or potentially contaminated environments, especially the
live poultry markets, where live poultry is sold [11], [12].
Wang et al. [13] demonstrated that contaminated of poultry-
related environments, including live poultry markets and
backyard poultry, are the two major sources for exposure to
diseased poultry; they divided human cases into rural, urban
and semiurban cases and discovered that in each type of
human case, all had visited a live poultry market and/or back-
yard poultry, in differing proportions for each type of human
cases. The closure of live poultry markets was highly effec-
tive in reducing the risk of human infection with A(H7N9)
by reducing human exposure to poultry [14]. Furthermore,
other studies also confirmed the significant role of the live
poultry trade on the occurrence of human infection with
A(H7N9) [15], [16]. However, the specific live poultry mar-
kets were the main infection sources of A(H7N9) cases in
human and the characteristics of these sources have not yet
been explored in detail.

Detecting the source of an infection for disease transmis-
sion depends on two key determinants: the network structure
and the transmission model. A number of existing algorithms
and mathematical theories can locate the source of diffusion
in complex networks. For instance, Shah et al. [17]–[19] first
presented a systematic study to find the virus source based
upon rumor centrality by using maximum likelihood (ML)
estimation in regular trees, general trees, and general graphs.
The rumor centrality of a node is the number of permit-
ted permutations of nodes that begin with that node and
result in a virus graph. The rumor centrality measure is
performed by selecting any node as the source node and
calculating its rumor centrality for all nodes in the virus
graph, referring to the node that maximizes the rumor cen-
ter of the graph. Later, Luo et al. [20], [21] expanded
this method to identify multiple infection sources in net-
works. In addition, the Bayesian inference algorithm based
on dynamic message-passing equations via belief propa-
gation (BP) was developed by Altarelli et al. [22] and
Loco at al. [23]. The dynamical message passing (DMP)
approach and discrete-time Markov chain approach have
been widely used to study the spreading dynamics on net-
works [24], [25]. Furthermore, Antulov-Fantulin et al. [26]
proposed using Monte-Carlo methods with soft-margin algo-
rithms to detect the sources of epidemics, using snapshots
of spreading patterns in static and temporal networks. The
use of the NetSleuth algorithm, employing the minimum
description length (MDL) principle, showed high accuracy in

the detection of seed nodes and the correct automatic identifi-
cation of their numbers [27], [28]. Moreover, Shen et al. [29]
developed a time-reversal backward-spreading algorithm to
locate sources of infection, and tested this algorithm by
employing epidemic spreading and consensus dynamics
as typically dynamic processes and by applying it to the
H1N1 pandemic in China. Thus, the detection of infection
sources in networks is advancing in the field of infectious
diseases.

In this paper, we extract data associated with poultry farms,
live poultry markets and farmers’ markets from Baidu Map
by using the JavaScript language. We construct a live poultry
transport network on the basis of the data obtained. Following
this, we establish an A(H7N9) transmission model, based
on probabilistic discrete-time Markov chain to describe the
state transition for each of the type nodes in the network.
According to the network constructed and model established,
we propose spatiotemporal backward detection and forward
transmission algorithms to detect the infection source of the
epidemic. The simulation results from the algorithms are
shown, which include the detected infection sources, first
arrival time and maximum likelihood L(t, u) of infection
sources, most likely spread map, and temperature character-
istics in a given location at the arrival time of the A(H7N9)
virus. In the final section of the paper, we present our major
conclusions.

II. DATA AND NETWORK CONSTRUCTION
Live poultry and their surrounding environments are sig-
nificant risk factors for human infection with A(H7N9).
According to the present situation in China, the susceptible
sites associated with live poultry are classified into poultry
farms, backyard poultry, live poultry markets and farmers’
markets [30]–[32]. Poultry farms are engaged in hatching and
growing poultry to produce meat and eggs, and are usually
characterized by their large-scale and industrialization.When
they have reached a sufficient size, live poultry from poultry
farms are transported to live poultry markets for wholesale.
Backyard poultry refers to the poultry raised in the backyards
of farmers in rural areas, which are usually characterized
by low levels of technology and the scarcity of biosecurity
practices. After feeding is finished, backyard poultry are
transported to the nearby live poultry markets or farmers’
markets for sale. Live poultry markets are the secondary
wholesale markets for live poultry, where the live poultry
from poultry farms and backyard poultry are wholesaled to
the farmers’ markets. Farmers’ markets are the fixed places,
mainly used for retailing. In addition to retailing live poultry,
farmers’ markets also sell vegetables, fruits, aquatic products,
and other agricultural products and foods. Farmers’ markets
are generally located in the community, to facilitate residents’
purchases of agricultural products. Operators of these mar-
kets buy live poultry from live poultry markets that are an
approximately one hour round-trip drive away, usually before
the opening of the farmers’ market each morning. It is worth
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FIGURE 1. Transmission diagram of the A(H7N9) virus along live poultry transport route.

noting that there is no trading relationship between the same
types of sites, because they are independent and competitive.

In the present study, the human infected with A(H7N9)
virus are divided into three types [13]: urban residents, rural
non-farmers and rural farmers. Urban residents and rural
non-farmers may be infected by visiting a farmers’ market
or live poultry market, because they usually purchase live
poultry or other agricultural products from nearby farmers’
markets; the minority of people in this group go to nearby live
poultry markets to purchase live poultry. Rural farmers may
be infected through exposure to backyard poultry [33], [34].

The diagram presented in Fig 1 describes the transmission
diagram of the A(H7N9) virus along the live poultry transport
route. In the following sections, we collect data, construct
network and establish transmission model according to this
mode of live poultry transport and virus transmission.

A. DATA COLLECTION
1) DATA FOR A(H7N9) HUMAN CASES
The data on weekly reported human cases of avian influenza
A(H7N9) used in the present study are obtained from the
Center for Health Protection (http://www.chp.gov.hk) and
cover the dates of October 1st, 2016 to May 17th, 2017.
Individual case information includes geographic location,
occupation, date of disease onset, date of reporting and the
clinical condition of the environment at the time of disease
reporting. Confirmed cases are all as defined by the World
Health Organization criteria and the national authorities.

2) DATA FOR LIVE POULTRY TRANSPORT
Baidu Map (map.baidu.com) is the most popular online
map service in China. It is similar to Google Map, com-
prises satellite images, street maps, street view and indoor

view perspectives, and functions as a route planner for travel
by foot, car, or public transportation. We extract the data
associated with poultry farms, live poultry markets and farm-
ers’ markets from each city in the Baidu Map database using
JavaScript language. The search terms include ‘‘city name’’
and ‘‘poultry farm, chicken farm, and duckery’’; ‘‘city name’’
and ‘‘live poultry or poultry trade, wholesale’’; and ‘‘city
name’’ and ‘‘farmers’ market, agricultural market, vegetable
market’’. The extracted data contain information about the
names and locations of all sites. As a key additional data set,
we obtain the opening and closing times of the live poultry
markets in each province or city from government documents.

B. DATA CLEANING AND PRE-PROCESSING
1) DATA CLEANING
To ensure the accuracy of the data associatedwith live poultry,
it is necessary to manually perform data cleaning to discard
some extraneous data. For example, when we extract poultry
farm information in a city using the search terms ‘‘city name’’
and ‘‘poultry farm, chicken farm, and duckery’’, livestock
farms also appear in the search results, although they are not
relevant to live poultry. We thus need to exclude data that are
not relevant to live poultry from the obtained data set, such as
livestock farms.

2) DATA PREPROCESSING
Using Eq.(1), we compute the distances ÂB between the
following four types of sites based on their longitudes and
latitudes:

• each A(H7N9) human case and each farmers’ market;
• each A(H7N9) human case and each live poultry market;
• each farmers’ market and each live poultry market;
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• each live poultry market and each poultry farm.

0 = sin(MLat.A) ∗ sin(MLat.B)

∗ cos(MLon.A−MLon.B)

+ cos(MLat.A) ∗ cos(MLat.B),

ÂB = R ∗ arccos(0) ∗ π/180. (1)

In Eq. (1),MLon.A (MLon.B) is the longitude of site A (B)
and MLat.A (MLat.B) is the latitude of site A (B) in Baidu
Map; ÂB is the spherical distance between sites A and B; R is
the equatorial radius.

C. NETWORK CONSTRUCTION
Using the cleaned and preprocessed data, we construct the
live poultry transport network as a directed and weighted
graph G = (V ,E), where V denotes a set of nodes and E
is the set of edges in the network. The weight of each edge is
defined as the actual distance between the two linked nodes.
The detailed network construction is described as follows:
Nodes. Nodes can be divided into four types: A(H7N9)

infected human, farmers’ markets, live poultry mar-
kets (LPM) and poultry farms. The infected human nodes
include three subtypes: urban residents, rural non-farmers and
rural farmers. Backyard poultry (BP) are considered the ‘‘sun
node’’ in every city, and are assumed to be only transported
to live poultry markets, farmers’ markets, or to contact with
rural farmers, according to the present situation in China.
Edges. Four directed edges are established, according to

the distance between the different types of nodes as follows:
• Within 3 kilometers from farmers’ markets to infected
urban residents or rural non-farmers;
Reason for the distance determination: The Chinese
population usually commutes 1 to 3 kilometers in their
communities every day [35].

• Within 3 kilometers from live poultry market to infected
urban residents or rural non-farmers;
Reason for the distance determination: The Chinese
population usually commutes 1 to 3 kilometers in their
communities every day [35].

• Within 20 kilometers from live poultry markets to farm-
ers’ markets;
Reason for the distance determination: a) Investigations
indicate that most respondents transport live poultry
from live poultry markets to farmers’ markets over dis-
tances of approximately 10 kilometers [36]. b) Accord-
ing to the present situation in China, farmers’ market
operators usually travel to purchase live poultry from
live poultry markets that are an approximately one hour
round-trip drive away (10-20 kilometers), prior to the
opening of the farmers’ markets each morning. Thus,
we determine 20 kilometers to be the maximum distance
from live poultry markets to farmers’ markets.

• Within 100 kilometers from poultry farms to live poultry
markets.
Reason for the distance determination: a) In China,
poultry farms are most often located in the suburbs or

TABLE 1. Descriptions of the variables used in the model.

rural areas far from the live poultry markets. Investiga-
tion indicates that live poultry can be transported for
sale much longer distances (in excess of 100 kilome-
ters) [36]. b) We determine 100 kilometers as the max-
imum distance, by comparing the average degree and
degree distributions, in the network within the different
distances from poultry farms to live poultry markets in
APPENDIX A.

Furthermore, the spatial transmission probability is pro-
portional to the actual distance from the infectious node to
the susceptible node, as shown in Eq.(2) in the next section.
In summary, our creation of directed edges according to the
distance between different types of nodes and the choice of
distances is, thus scientific and reasonable.
Time-varying. Our network is temporally dynamic. Nodes

and edges are deleted or added according to the closing and
reopening of live poultry markets over time.

III. TRANSMISSION MODEL
The transmission dynamics are considered for the A(H7N9)
virus as a multi-group model. Fig 2 shows the state transition
graph for the four types of nodes in this model. The main
variables and parameters used are described in Table 1 and
Table 2.
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FIGURE 2. Node state transitions in the A(H7N9) transmission model.

TABLE 2. Descriptions and values of the parameters used in the model.

In our model, the nodes representing poultry farms, back-
yard poultry, live poultry markets and farmers’ markets,

are classified as susceptible or infected. As such, Sp (Sb)
and Ip (Ib) represent susceptible and infected poultry farms
(backyard poultry), respectively. Sl (Sf ) and Il (If ) describe
susceptible and infected live poultry markets (farmers’ mar-
kets), respectively. Contagion transfer was considered to
occur only between different types of nodes, through the
transport of live poultry. Human nodes were classified into
three states as susceptible, infected or recovered. The avian
influenza virus is only transmitted to human from backyard
poultry, live poultry markets and farmers’ markets; it cannot
spread among human. Sr , Ir and Rr represent susceptible,
infected and recovered rural farmers, respectively. Su, Iu
and Ru describe susceptible, infected and recovered rural
non-farmers or urban residents, respectively.

The detailed state transition is described as follows:
1) The susceptible poultry farm (Sp) can be infected with

probability βp, and then become an infected poultry
farm (Ip);

2) The susceptible backyard poultry (Sb) can be infected
with probability βb, and then become an infected back-
yard poultry (Ib);

3) The susceptible live poultry market (Sl) can be infected
by infected poultry farm neighbors (Ip) or backyard
poultry (Ib) with probability λpl(j, t) + βbl , and then
become an infected live poultry market (Il);

4) The susceptible farmers’ market (Sf ) can be infected by
infected live poultry market neighbors (Il) or backyard
poultry (Ib) with probability λlf (k, t) + βbf , and then
become an infected farmers’ market (If );
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5) The susceptible rural farmer (Sr ) can be infected by
infected backyard poultry (Ib) with probability βbr , and
then recover with probability γ ;

6) The susceptible rural non-farmer or urban resident (Su)
can be infected by infected farmers’ market neigh-
bors (If ) or live poultry market neighbors (Il) with
probability λfu(m, t)+ λlu(m, t), and then recover with
probability γ .

To describe states more precisely in different types of
nodes at time t , we introduce two sub-states for infected
nodes (I ): ‘‘contagious’’ (C) and ‘‘maintained contagious’’
(M ) in Fig 2. Once an S node is infected, it first becomes
C and then transits to M . The C state describes nodes that
are newly infected. More specifically, a node that is C at
time t means that this node is susceptible at time t − 1 but
becomes infected at time t . The M state describes nodes that
are infected but not newly infected.More explicitly, once an S
node is infected, it first becomes C at time t and then transits
to M at time t + 1. The M node will stay infected until it
recovers or is removed from the network [37].

According to the transmission dynamics of the A(H7N9)
virus described above, we establish a transmission model
based on a Markov chain to calculate the probabilities of
each node in the various states. For simplicity, the state
transition of a live poultry market is described here as an
example, which can then be applied to other types of nodes.
A susceptible live poultry market can be infected by infected
poultry farm neighbors or backyard poultry in the city, it then
becomes an infected live poultry market. βbl is defined as the
infection rate of infected backyard poultry nodes to a sus-
ceptible live poultry market node, and ηij(t) is the spreading
probability from a poultry farm node i to live poultry market
node j at time t . ηij(t) is a function of the actual distance of
the link ωij as follows:

ηij(t) =
ω−1ij∑

iε∂jin
ω−1ij

βpl . (2)

Then, we can use Eq.(2) to calculate the probability λpl(j, t)
of a susceptible live poultry market j being infected by its
infected poultry farm neighbors at time t . Because the proba-
bility that node j is not infectedmeans that none of its infected
poultry farm neighbors spread the virus to it through their
links, we can calculate the probability as follows:

λpl(j, t) = 1−
∏
iε∂jin

[1− ηij(t)P
p
I (i, t − 1)]. (3)

where, the product runs over all poultry farm neighbors of
live poultry market node j.
After this, we can then calculate the probability of an

arbitrary live poultry market node j being susceptible at time
t as follows:

PlS (j, t) = [1− λpl(j, t)− βbl]PlS (j, t − 1). (4)

A susceptible live poultry market node first becomes con-
tagious once it has been infected. We can calculate the

probability that an arbitrary live poultry market node j is
contagious at time t as follows:

PlC (j, t) = [λpl(j, t)+ βbl]PlS (j, t − 1). (5)

The infected state of a live poultry market node means
that it is in either C or M state. In other words, the infected
node is either a new infection at time t or the infected one
before time t . Thus, the probability of an arbitrary live poultry
market node j being infected at time t , is represented by:

PlI (j, t) = PlC (j, t)+ P
l
I (j, t − 1). (6)

All other terms in the model can be deduced in a similar
manner, and the full model equations are given by the fol-
lowing.

PbS (∗, t) = (1− βb)PbS (∗, t − 1),

PbC (∗, t) = βbP
b
S (∗, t − 1), (7a)

PbI (∗, t) = PbC (∗, t)+ P
b
I (∗, t − 1),

PpS (i, t) = (1− βp)P
p
S (i, t − 1),

PpC (i, t) = βpP
p
S (i, t − 1), (7b)

PpI (i, t) = PpC (i, t)+ P
p
I (i, t − 1),

PlS (j, t) = [1− λpl(j, t)− βbl]PlS (j, t − 1),

PlC (j, t) = [λpl(j, t)+ βbl]PlS (j, t − 1), (7c)

PlI (j, t) = PlC (j, t)+ P
l
I (j, t − 1),

PfS (k, t) = [1− λlf (k, t)− βbf ]P
f
S (k, t − 1),

PfC (k, t) = [λlf (k, t)+ βbf ]P
f
S (k, t − 1), (7d)

PfI (k, t) = PfC (k, t)+ P
f
I (k, t − 1),

PuS (m, t) = [1− λfu(m, t)− λlu(m, t)]PuS (m, t − 1),

PuC (m, t) = [λfu(m, t)+ λlu(m, t)]PuS (m, t − 1), (7e)

PuI (m, t) = PuC (m, t)+ (1− γ )PuI (m, t − 1),

PuR(m, t) = PuR(m, t − 1)+ γPuI (m, t − 1),

PrS (m
′, t) = [1− βbr ]PrS (m

′, t − 1),

PrC (m
′, t) = βbrPrS (m

′, t − 1), (7f)

PrI (m
′, t) = PrC (m

′, t)+ (1− γ )PrI (m
′, t − 1),

PrR(m
′, t) = PrR(m

′, t − 1)+ γPrI (m
′, t − 1).

where the other terms λlf (k, t), λfu(m, t), and λlu(m, t) are
deduced in a manner similar to the above:

ηjk (t) =
ω−1jk∑

jε∂kin
ω−1jk

βlf ,

λlf (k, t) = 1−
∏
jε∂kin

[1− ηjk (t)PlI (j, t − 1)],

ηkm(t) =
ω−1km∑

kε∂min
ω−1km

βfu,

λfu(m, t) = 1−
∏

kε∂min

[1− ηkm(t)P
f
I (k, t − 1)],
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FIGURE 3. Flow chart of spatiotemporal backward detection and forward transmission algorithms in the directed and weighted network.

ηjm(t) =
ω−1jm∑

jε∂min
ω−1jm

βlu,

λlu(m, t) = 1−
∏
jε∂min

[1− ηjm(t)PlI (j, t − 1)]. (8)

IV. ALGORITHM
Based on the network constructed and on the model estab-
lished, we present spatiotemporal backward detection and
forward transmission algorithms to detect the most likely
infection sources, and compute the first arrival time and
maximum likelihood L(t, u) of the infection sources.
The rationale of the algorithms is the spread of the

A(H7N9) virus along the reversed dynamic connections from
each infected person node to exhaust all possible paths for
spreading the virus, and then compute the probability of each
detected node is an infection source using the Eq.(7). A sim-
ple example is provided next to describe the spatiotemporal
backward detection and forward transmission algorithms pre-
sented in Fig 3. For the infected person node o1 at infection
time t1, we first reverse detect to derive the farmers’ market
nodes f1, f2, and f3 and the live poultry market node l2 at
time t1 − 1, and then obtain the live poultry market nodes
l1, l2 and the poultry farm node p2 at time t1 − 2. Finally,
we acquire the poultry farm nodes p1, p2 at time t1 − 3

in Fig 3(A). This allow the identification of the most likely
live poultry market or poultry farm infection source of o1
by computing the maximum likelihood value of the detected
nodes l1, l2 or p1, p2, respectively. In addition, poultry farm
node p1 can spatiotemporal forward transmit the virus to both
infected human nodes o1 and o2, which is true for the live
poultry market l2 in Fig 3(B). We can compute the first arrival
time and maximum likelihood value of the detected infection
sources p1 and l2 using a spatiotemporal forward transmission
algorithm.

A. SPATIOTEMPORAL BACKWARD DETECTION
The spatiotemporal backward detection algorithm is inspired
by the time-reversal backward spreading and reverse dissem-
ination algorithm [29], [37], [38]. However, the spatiotem-
poral backward detection algorithm proposed here is more
advanced than these two algorithms. Because our network
dynamically changes over time, the probability that each node
connects to its neighbor node varies with the spatial distance,
and the number of infection sources is greater than one.
A detailed description of the algorithm is shown in Table 3.

The live poultry transport network constructed here records
not only the spatial location of the nodes and edges, but also
the time at which each infected person becomes contagious.
The real infection source is expected to transmit the virus both
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TABLE 3. Spatiotemporal backward detection algorithm.

spatially and temporally, therefore presenting a better match
to the infected person node compared to the other nodes in
the set of infection sources U . The core of the algorithm
proposed here is the virus transmission model, as explained
in the previous section, which provides an estimate of the
probability that an arbitrary node is contagious (C) at time t .
For an arbitrary infected person node om, we use PC (u, ts|om)
to denote the probability that an arbitrary node u is contagious
(C) after time ts, starting with backward detection from the
infected person node om, where ts is the time span of the
whole backward detection process. With the use of Bayes’
rule, the probability that node u transmits the virus to om
is proportional to the joint probability of node om reverse
transmitting the virus to u at time tm, P(om|u) ∼ P(u|om).

P(u|om) =
∏
om∈O

PC (u, ts|om). (9)

Mathematically, the node with the maximum likelihood,
L(u, t), of being the most likely infection source is defined as
follows:

L(u, t) = ln
∏
om∈O

PC (u, ts|om). (10)

For computation convenience, we adopt a logarithmic
function ln(·) in (10) to derive the maximum likelihood.
Among all the nodes in Um, we can estimate the most likely
sources of node om infection by selecting the maximum value
of L(u, t) as follows:

(u∗, t∗) = arg max
u∈Um

L(u, t). (11)

TABLE 4. Spatiotemporal forward transmission algorithm.

FIGURE 4. Live poultry transport network constructed for Suzhou City.

B. SPATIOTEMPORAL FORWARD TRANSMISSION
Because a single infection source may infect more than one
of its neighbors, it might be the source of multiple infected
human nodes. For instance, the poultry farm node p1 can
forward transmit the virus to both infected human nodes o1
and o2, as can the live poultry market l2 in Fig 3(B). The
spatiotemporal forward transmission algorithm is developed
to compute the probability of node u being the infection
source and the first arrival time of the virus. The detailed
algorithm description is shown in Table 4.
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FIGURE 5. Box plots showing the sorting of L(u, t) for all detected
suspectable live poultry market infection sources with infected human
nodes o1 and o2 as examples. (a) The maximum likelihood L(u, t) of each
detected live poultry market infection source of infected person o1. The
marks on boxes are the labels of live poultry market nodes in the
network. (b) The maximum likelihood L(t,u) of each detected live poultry
market infection source of infected person o2.

L(t, u) is used to denote the maximum likelihood of the
virus spreading to infected human nodes at the infection
source node u at time t , andPC (om, ts|u) to calculate probabil-
ity of an arbitrary infected person node om being contagious
(C) after time ts, starting spatiotemporal forward transmis-
sion from source node u, where ts is the time span of the
entire forward transmission process. For computing purposes,
we adopt the logarithmic function ln(·) in (12) to derive the
maximum likelihood.

L∗(t, u) = ln
∏
om∈O

PC (om, ts|u). (12)

Furthermore, we also have an estimation of the infection
scale I (t, u) as a byproduct, as in (13). Later, we can justify
the effectiveness of the algorithm and maximum likelihood

FIGURE 6. Partial rank correlation coefficients (PRCCs) for parameters
βlf , βfu, βlu, βbl , βbf , βbr with respect to the maximum likelihood L(u, t).
(a) The PRCCs for parameters βlf , βfu, βlu, βbl , βbf , βbr with respect to the
maximum likelihood L(u, t) associated with all the detected suspected
live poultry market infection sources (l2, l1, l3, l4, l8, l5, l9, l6, l7) of
human case o1. (b) The PRCCs for parameters βlf , βfu, βlu, βbl , βbf , βbr
with respect to the maximum likelihood L(u, t) associated with all the
detected suspect live poultry market infection sources (l10, l13, l1, l12) of
human case o2.

method by examining the accuracy of I (t, u) as follows:

I (t, u) =
∑
u∈U

∑
om∈O

PI (om, t|u). (13)

V. RESULTS
In this section, we provide the simulation results from the
above algorithms based on the constructed live poultry trans-
port network and the established A(H7N9) transmission
model. The results include detected infection sources, first
arrival time and L(t, u) of the infection sources, and the most
likely spread map of the A(H7N9) virus and the temperature
characteristics of the arrival time.

A. DETECTED INFECTION SOURCES
Take Suzhou City, where the A(H7N9) virus first occurred
and the largest number of A(H7N9) human cases occurred in
the 5th wave, as an example. Fig 4 shows our constructed
live poultry transport network, and information about the
closure or reopening of live poultry markets in Suzhou City.
Fig 5 shows the rank of L(u, t) for all detected suspect live
poultry market infection sources of human cases o1 and o2
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FIGURE 7. The proportion of infected human cases whose the most likely
infection source is live poultry market or backyard poultry during the fifth
wave epidemic. (a) Proportion of infected human cases that the most
likely infection source is live poultry market or backyard poultry in
Suzhou City (SZ), Jiangsu (JS), Zhejiang (ZJ), Guangdong Province (GD) and
the whole mainland China (CN). (b) Proportion of infected human cases
that the most likely infection source is live poultry market or backyard
poultry in Guangxi (GX), Guizhou (GZ), Sichuan (SC), Henan (HA) and
Hebei(HE) Province.

as examples. The parameters βlf , βfu, βlu, βbl , βbf , and βbr in
the transmissionmodel Eq.(7), are sampled 1000 timeswithin
their respective ranges using a Latin hypercube sampling
(LHS) method to optimize the sampling of parameter space.
The results are presented as box plots depicting the median,
lower and upper quartiles of L(u, t) from the 1000 simula-
tions. For infected person node o1, 9 live poultrymarket nodes
are detected. Live poultry market node l2 is the most likely
infection source of o1, because its L(u, t) is far greater than
that of the other 8 nodes in Fig 5(a). Similarly, the live poultry
market node l10 is the most likely infection source of infected
person node o2 in Fig 5(b).When the likelihood values L(u, t)
of the first two nodes had approximately the same rank, they
are both considered as the most likely infection sources.
Uncertainty and sensitivity analyses. The estimations of

βlf , βfu, βlu, βbl , βbf , and βbr are uncertain, so we use

FIGURE 8. The proportion of infected urban residents, rural non-farmers
and rural farmers. (a) The proportion of infected urban residents, rural
non-farmers and rural farmers in the five waves epidemics in the whole
mainland China (CN), Jiangsu (JS), Zhejiang (ZJ), Guangdong (GD) Province
and Suzhou City (SZ). (b) The proportion of infected urban residents, rural
non-farmer and rural farmer in the 5th wave epidemic in Guangxi (GX),
Guizhou (GZ), Sichuan (SC), Henan (HA) and Hebei (HE) Province.

FIGURE 9. Geographic distribution of the proportion of human A(H7N9)
cases whose detected infection source is live poultry market or backyard
poultry during the 5th wave epidemic in mainland China.

the Latin hypercube sampling method to sample these 6
parameters, which appear in the transmission model Eq.(7)
and the derived expression L(u, t). Latin hypercube sampling
(LHS) is an extension of the Latin square sampling method.
Uncertainty and sensitivity analyses based on LHS and partial
rank correlation coefficients (PRCCs) have been applied to
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FIGURE 10. (a) First arrival time and L(t,u) for each detected live poultry
market infection source in Suzhou City. Numbers on the red stars are the
labels of live poultry market nodes in the network; the time on the
horizontal axis is unevenly divided for more convenient presentation.
(b) The human infection scale of all newly reported cases, the newly
reported rural non-farmer and urban cases, and the estimated cases.

disease transmission models in previous studies [39]–[42].
In our work, we perform uncertainty and sensitivity analyses
for the parameters βlf , βfu, βlu, βbl , βbf , and βbr in the
model Eq.(7) using LHS with 1000 samples. The parame-
ter values and their corresponding 95% confidence intervals
are listed in Table 2, and a normal distribution function is
used for all parameters [43]–[45]. As an example, the partial
rank correlation coefficients (PRCCs) for the parameters with
respect to the maximum likelihood L(u, t) associated with
all detected suspected live poultry market infection sources
for human cases o1 and o2 are shown in Fig 6. The results
indicate that the PRCCs associated with the parameters βbl
and βbf are the most influential in determining the magnitude
of the aggregate L(u, t), (|PRCC| > 0.5), and are statistically
significant (p < 0.05).

Using this approach, we analyze the infection sources of
all infected human nodes in Suzhou City and found that
approximately 68.5% of the infected human cases could be
detected as having their infection source in the live poultry

FIGURE 11. The live poultry transport network constructed for Jiangsu
Province.

markets, and the infection source of the remaining 31.5%
of infected human cases as a result of backyard poultry,
as shown in Fig 7. Furthermore, we identify the infection
source of all human cases in every province of mainland
China. The proportion of infections originating in the live
poultry market is also higher than that originating from
backyard poultry in the provinces of Jiangsu, Zhejiang and
Guangdong, as shown in Fig 7(a). The chi-square test is used
to compare the proportion of infected human cases whose
the most likely infection source is live poultry market or
backyard poultry among different areas. There is no signif-
icant difference among the Jiangsu, Zhejiang and Guang-
dong Province (χ2

= 4.229, p = 0.376), as shown in
TABLE 6 (APPENDIX C). However, the source of more
than 80% of infected human cases stems from backyard
poultry in several provinces, including Guangxi, Guizhou,
Sichuan, Henan and Hebei Provinces, and this proportion is
90% or higher in Guizhou and Hebei in Fig 7(b). Overall,
the source of approximately 65.1% of humanA(H7N9) infec-
tions in mainland China is the live poultry market while the
remaining 34.9% resulted from backyard poultry. There is
no significant difference among Guangxi, Guizhou, Sichuan,
Henan and Hebei Provinces (χ2

= 5.282, p = 0.261),
as shown in TABLE 7 (APPENDIX C). The other live
poultry transport networks in China, Zhejiang, Guangdong,
Guangxi, Guizhou, Sichuan, Henan, and Hebei, are given in
APPENDIX B.

As a result of the above discovery regarding infection
sources, we compare the A(H7N9) human cases across
the five epidemics. Fig 8(a) shows that the residences of
infected human in mainland China gradually shifted from
urban (urban residents) to rural areas (rural farmers and
rural non-farmers) from the first to the fifth epidemics
with a significant difference (χ2

= 21.207, p < 0.01),
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FIGURE 12. (a) First arrival time and L(t,u) of each detected live poultry
market infection source in the whole Jiangsu Province. t r on the
horizontal axis represents the rank of the first arrival time. The blue cross
mark denotes the live poultry market that are reported to be A(H7N9)
positive. (b) First arrival time of infection sources in each infected city in
Jiangsu Province. The sign on horizontal axis is the acronym of cities:
Suzhou, Nantong, Wuxi, Taizhou, Yancheng, Changzhou, Nanjing,
Zhenjiang, Yangzhou, Huai’an, Lianyungang, and Xuzhou. The cities are
sorted by the first arrival time of infection source.

although the precise situation varied by province, as shown
in TABLE 8 (APPENDIX C). This shift also explains
the changes in the proportion of the sources is backyard
poultry in Fig 8(a). In addition, for the newly infected
provinces in the fifth wave epidemic, i.e. those that with
no or fewer human cases in the previous four epidemics,
such as Sichuan (the number of infected human in the
1st, 2nd, 3rd, 4th, and 5th wave epidemic is 0, 0, 0, 0, 30,
respectively), Guangxi (0, 2, 0, 0, 25,respectively), Guizhou
(0, 0, 1, 0, 15,respectively), Henan (4, 0, 0, 1, 22, respec-
tively), and Hebei (1, 0, 0, 6, 20,respectively), the proportion
of rural infected human cases is relatively high in the 5thwave
epidemic, as shown in Fig 8(b). This reveals that backyard
poultry is also an important risk factor for the spread of
A(H7N9) virus, especially in the fifth wave, as shown in com-
bination with Fig 8(b). Furthermore, we show the geographic

FIGURE 13. First arrival time of infection sources in each infected
province of mainland China.

distribution of the proportion of human cases in which the
detected infection source was live poultry markets and back-
yard poultry, in the 5th avian influenza A(H7N9) wave in
mainland China, as shown in Fig 9. The difference in the
proportion of human cases whose detected infection source is
the live poultry market or backyard poultry across provinces
was significant (χ2

= 121.206, p < 0.01), as shown in
TABLE 9 (APPENDIX C).

From the above, we can see that, in addition to live poultry
markets, backyard poultry is an important infection source of
human A(H7N9) infections, and the risk presented by back-
yard poultry was high, especially in the fifth wave epidemic
in newly infected provinces. This may be due to the accu-
mulation of live poultry in rural areas after the closing of the
live poultry markets in some cities or provinces. Therefore,
live poultry market closure was effective for controlling the
human risk of infection with avian influenza A(H7N9) virus,
but cleaning and transforming live poultry markets, chang-
ing the trading mode, and immunizing live poultry would
have more substantial effects than just closing live poultry
markets.

B. FIRST ARRIVAL TIME AND THE MAXIMUM
LIKELIHOOD VALUE OF INFECTION SOURCES
It is known that a single infection source may infect multiple
infected persons. For example, the live poultry market node
l2 is detected as the infection source of person node o1 at
time t1 − 2, as shown in Fig 3, but also transmit virus to
infected person node o2 at time t2−2. There are many similar
examples, and thus, we compute the first arrival time of each
detected infection source.
Node. Fig 10(a) shows the first arrival time and maxi-

mum likelihood L(t, u) of the detected live poultry market
infection sources in Suzhou City, where the total number of
live poultry markets is 22, 10 of these markets are detected
as the most likely infection sources. Whereas the deviation
between the estimated cases and all newly reported cases is
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FIGURE 14. Inference of the most likely spread map of the A(H7N9) virus in mainland China. (a) The geographic distribution of A(H7N9)
human cases in the beginning of the 5th wave. (b) The geographic distribution of A(H7N9) human cases by May 17th, 2017. (c) The
constructed live poultry transport network of infected cities in mainland China. (d) The map of the most likely spread map of the A(H7N9)
virus. The provinces marked with yellow star, represent that the infection sources for their first human cases were backyard poultry.

relatively large, the deviation between the estimated cases and
the sum of reported rural non-farmer and urban cases is small,
as shown in Fig 10(b). This is because the virus can only
be transmitted to urban residents and rural non-farmers from
the live poultry market infection source using the forward
transmission algorithm. However, backyard poultry are the
infection sources of rural farmers and some non-farmers. The
small deviation between the estimated cases and the sum
of reported rural non-farmer and urban cases demonstrates
that our algorithm is valid. The large deviation between the
estimated cases and all newly reported cases reveals the high
risk of backyard poultry spreading the A(H7N9) virus.
City. Our network displayed connections between adja-

cent cities in the same province, especially in the urban
fringes. Therefore, we expand from a single city to the whole
province, to analyze the characteristics of A(H7N9) trans-
mission among cities. Fig 11 shows our constructed live
poultry transport network for Jiangsu Province. Fig 12(a)
shows the first arrival time andmaximum likelihood L(t, u) of
the detected live poultrymarket infection sources in thewhole
of Jiangsu Province, where there are 75 live poultry markets,
30 of which are detected as the most likely infection sources.

In addition, four of these markets were reported as A(H7N9)
positive markets [46]. We must take into account that not
every live poultry market was tested for A(H7N9) virus on
any given day, and therefore we are using limited data to
illustrate the live poultry markets in which the virus was
detected. Cities are sorted according to the first arrival time of
the infection source, as shown in Fig 12(b), which shows that
the A(H7N9) virus spread from southeast to northwest China
through the live poultry trade. In Changzhou, Zhenjiang, and
Huaian City, the infection sources for the first human cases
were the live poultry market (LPM) in their adjacent cities,
and the first arrival time of the infection source was later
than human cases in their own cities. In Taizhou, Yancheng,
Nanjing, Yangzhou City, the virus was first found in backyard
poultry (BP).
Province. Furthermore, we expand the research object

from a single province to all of mainland China to ana-
lyze the characteristics of A(H7N9) transmission among
infected provinces through the live poultry transport net-
work. In Fig 13, the first arrival time of infection sources
to each province are displayed. The infection sources of the
first human cases were the live poultry markets (LPM) in
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FIGURE 15. The geographic distribution of weekly temperature on the first and peak arrival time of infection sources. (a) Weekly minimum
temperature on first arrival time; (b) Weekly temperature on first arrival time; (c) Weekly average temperature on first arrival time;
(d) Weekly minimum temperature during the peak arrival time; (e) Weekly maximum temperature during the peak arrival time; (f) Weekly
average temperature during the peak arrival time.

the neighboring provinces of some provinces. The A(H7N9)
virus was first detected in backyard poultry (BP) in Guizhou,
Henan, Sichuan, Gansu, Jilin, Shaanxi Province and Inner
Mongolia Autonomous Region.

C. THE MOST LIKELY TRANSMISSION MAP
Human A(H7N9) influenza cases first occurred in Jiangsu,
Guangdong, Fujian and Zhejiang Provinces, at the begin-
ning of the 5th wave epidemic, as shown in Fig 14(a).
By May 17th, 2017, the epidemic had spread across
25 provinces in mainland China, as shown in Fig 14(b).

Fig 14(c) shows the live poultry transport network
constructed for infected cities in mainland China. Based
on this network, we infer the most likely spread map of
A(H7N9) virus using Algorithm 1 and Algorithm 2, as shown
in Fig 14(d). The A(H7N9) virus spread westward along
four paths (i.e. the red, pink, green and blue paths) from
the Yangtze and Pearl River Deltas, Zhejiang and Jiangsu
Provinces and from there, spread to more provinces. In the
7 provinces marked with a yellow star (i.e. Guizhou, Henan,
Sichuan, Gansu, Jilin, and Shaanxi Provinces and Inner Mon-
golia Autonomous Region), A(H7N9) virus was first found
in the backyard poultry kept within the area.
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D. TEMPERATURE CHARACTERISTICS
Previous studies have demonstrated that temperature con-
tributed significantly to the occurrence of human infec-
tion with the influenza A(H7N9) virus [47]–[49]. In this
subsection, we analyze the temperature characteristics on
the first and peak arrival times of the infection sources
detected in each city. Fig 15 shows the geographic dis-
tribution of weekly temperature on the first and peak
arrival time of infection sources. The weekly temperatures
(minimum, maximum and average temperature) during the
study period were obtained from the Weather Underground
(http://www.wunderground.com). Fig 16 shows the propor-
tion of infected cities in which the weekly temperature is
concentrated in different temperature ranges on the first
and peak arrival times of infection sources. At the first
arrival time of the infection sources, the minimum temper-
ature in 52.3% of infected cities was concentrated in the
range of 0◦C∼9◦C, the proportions of infected cities with
minimum temperatures of < 0◦C, 9◦C∼19◦C, 19◦C∼25◦C
and > 25◦C were 9.8%, 34.6%, 2.6%, and 0.7%, respec-
tively, as shown in Fig 16 (a). The maximum temperature
in 61.4% of infected cities was concentrated in the range
of 9◦C∼19◦C, the proportion of infected cities with maxi-
mum temperatures of < 0◦C, 0◦C∼9◦C, 19◦C∼25◦C and
> 25◦C were 1.3%, 11.1%, 19.6%, and 6.6%, respectively,
as shown in Fig 16 (b). The average temperature in 56.9% of
infected cities was concentrated in the range of 9◦C∼19◦C,
the proportion of infected cities with average temperatures
of < 0◦C, 0◦C∼9◦C, 19◦C∼25◦C and > 25◦C are 2.0%,
30.7%, 9.8%, and 0.6%, respectively, as shown in Fig 16 (c).
During the peak arrival time of infection sources, the temper-
ature presented the same characteristics, although the propor-
tions varied among temperature ranges. In summary, the risk
of human infection with the influenza A(H7N9) virus was
high when the temperature is 9◦C∼19◦C, moderate when the
temperature was 0◦C∼9◦C or 19◦C∼25◦C, and lowwhen the
temperature was < 0◦C or > 25◦C.

VI. CONCLUSION
In conclusion, this study first constructed a live poultry trans-
port network using data extracted from Baidu Map using the
JavaScript language. Then, an A(H7N9) transmission model
of a network based on probabilistic discrete-time Markov
chains was established. Significantly, we introduced spa-
tiotemporal backward detection and forward transmission
algorithms to detect the infection source, compute the first
arrival time of A(H7N9) virus, and analyze their charac-
teristics. By detecting the infection source of each human
case, we discovered that, in addition to the live poultry mar-
kets, backyard poultry were also a very significant source of
infection for A(H7N9) human cases. The risk from backyard
poultry infection was high, which was most especially seen in
the 5th wave of avian influence in newly infected provinces.
Therefore, we believe that live poultry market closures were
effective in controlling the risk to human from the avian

FIGURE 16. The proportion of infected cities in which the weekly
temperature is < 0◦C, 0◦C∼9◦C, 9◦C∼19◦C, 19◦C∼25◦C or > 25◦C for
(a) Weekly minimum temperature on first arrival time; (b) Weekly
maximum temperature on first arrival time; (c) Weekly average
temperature on first maximum arrival time; (d) Weekly minimum
temperature during the peak arrival time; (e) Weekly maximum
temperature during the peak arrival time; (f) Weekly average
temperature during the peak arrival time.

influenza A(H7N9) virus infection. However, beyond simply
closing the live poultry markets, there would be amore signif-
icant effect from cleaning and transforming the live poultry
markets, changing the trading mode and immunizing live
poultry. Meanwhile, we drew the most likely transmission
map of the A(H7N9) virus along the live poultry transport
network. The result shows that the A(H7N9) virus spread
westward along the Yangtze River Delta and Pearl River
Delta, and then the virus was spread tomore provincesmainly
from the Yangtze River Delta. Furthermore, we analyzed
the temperature characteristics of A(H7N9) virus transmis-
sion according to the arrival time we obtained for detected
infection sources in each city. When the temperature was
9◦C∼19◦C, the risk of human infection with the influenza
A(H7N9) virus was high; 0◦C∼9◦C and 19◦C∼25◦C, repre-
sented moderate risk and the temperature range below 0◦C or
above 25◦C, indicated low infection risk.

These results provide meaningful suggestions for the pre-
vention and control of A(H7N9) avian influenza infection.
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TABLE 5. Average out-degree of poultry farms and average in-degree of
live poultry markets in the network for different distances of poultry
farms to live poultry markets.

FIGURE 17. The out-degree distribution of poultry farm nodes, in the
network within different distances from poultry farm to live poultry
market. (a) Within 80 kilometers from poultry farm to live poultry market.
(b) Within 100 kilometers from poultry farm to live poultry market.
(c) Within 120 kilometers from poultry farm to live poultry market.
(d) Within 150 kilometers from poultry farm to live poultry market.

However, some deficiencies exist in our study. For instance,
we constructed edges to the networks according to the spher-
ical distance between different nodes, ignoring the real live
poultry transport paths along the actual roads, due to the
difficulty of acquiring data. Moreover, we did not take into
account the change in the infection rate with spatiotemporal
changes in temperature, and humidity. Research into a more
perfectly representative transmission model on a constructed
real network is a difficult challenge, requiring more sophis-
ticated data mining technology and a more comprehensive
concept of the necessary mathematical modeling. Our work
may shed some light on future studies into infectious diseases
within real and complex networks.

APPENDIX A
THE REASON B) FOR THE DISTANCE DETERMINATION
FROM POULTRY FARM TO LIVE POULTRY MARKET
We determined the maximum distance between poultry farms
and live poultry market by comparing the average degree and
degree distributions, in the network within different distances
(80km, 100km, 120km, 150km) from poultry farm to live
poultry market. In the directed network G = (V ,E) with N
nodes, where V is the set of nodes and E is the set of edges.
Each node (individual) v has a certain out-degree koutv and

FIGURE 18. The constructed live poultry transport network of Zhejiang
Province.

FIGURE 19. The constructed live poultry transport network of Guangdong
Province.

in-degree k inv . k
out
v represents the number of edges connected

from node v to other nodes, k inv represents the number of
edges connected from other nodes to node i [50]. The average
out-degree 〈kout 〉 and average in-degree 〈k in〉 are denoted as

〈kout 〉 =

∑
vεV

koutv

N
, 〈k in〉 =

∑
vεV

k inv

N
. (14)

In our study, we are concerned about the average
out-degree of poultry farm 〈koutp 〉 and the average in-degree
of live poultry market 〈k inl 〉. That is:

〈koutp 〉 =

∑
iεVp

kouti

Np
, 〈k inl 〉 =

∑
jεVl

k inj

Nl
. (15)

where Vp is the set of poultry farm nodes, Np is the number of
poultry farm nodes, Vl is the set of live poultry market nodes,
Nl is the number of live poultry market nodes.
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FIGURE 20. The constructed live poultry transport network of Guangxi
Province.

FIGURE 21. The constructed live poultry transport network of Guizhou
Province.

FIGURE 22. The constructed live poultry transport network of Sichuan
Province.

According to Eq.(15), we calculated the average
out-degree of the poultry farms and average in-degree of the

FIGURE 23. The constructed live poultry transport network of Henan
Province.

FIGURE 24. The constructed live poultry transport network of Hebei
Province.

live poultry market, in the network within different distances
(80km, 100km, 120km, 150km) from poultry farm to live
poultry market in Table 5. We found that the number of
average live poultry market neighbors of poultry farms 〈koutp 〉

and the poultry farm neighbors of live poultry market 〈k inl 〉
were too dense, when the distance between the poultry farm
and live poultry market was more than 100 kilometers. This
is more consistent with the present situation in China, where
the distance between poultry farm and live poultry market is
less than 100 kilometers.

In addition, we verified the reasonableness of distance
selection by comparing the degree distribution of the network
within different distances. p(koutp ) is the out-degree distribu-
tion of poultry farm nodes in the network, which represents
the probability that out-degree is k of a arbitrarily poultry

VOLUME 7, 2019 155775



X. Pei et al.: Detection of Infection Sources for Avian Influenza A(H7N9) in Live Poultry Transport Network

TABLE 6. Characteristics of most likely infection sources of H7N9 human
cases in different areas.

TABLE 7. Characteristics of most likely infection sources of H7N9 human
cases in different areas.

TABLE 8. Characteristics of residences of H7N9 human cases among five
waves.

TABLE 9. Characteristics of most likely infection sources of H7N9 human
cases among different provinces.

farm node [51]. That is:

p(koutp ) =
Np(k)
Np

. (16)

where Np(k) is the number of poultry farm nodes whose
out-degree is k .

The simulation results show that the out-degree distribu-
tion of poultry farm nodes are all power law distributions [52],
in the network within different distances from poultry farm to
live poultry market in Fig 17.

APPENDIX B
THE CONSTRUCTED LIVE POULTRY TRANSPORT
NETWORKS
See Figs. 18–24.

APPENDIX C
STATISTICAL ANALYSIS
See Tables 6–9.
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