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ABSTRACT This note studies an interesting phenomenon for stability conditions of discrete-time systems
with time-varying delay. The underlying reason behind this phenomenon is revealed, and thereafter some
conclusions are drawn: (i) Stability conditions of discrete-time systemswith time-varying delay are generally
divided into two types: those obtained by summation inequalities with free-matrix variables and those
obtained by the combination of summation inequalities without free-matrix variables and the reciprocally
convex lemma; (ii) The conservatism between the two types of stability conditions can not be theoretically
compared. To clearly demonstrate this interesting phenomenon and meanwhile, to further verify these
conclusions, several bounded real lemmas are obtained via different bounding-inequality methods and
applied to a numerical example.

INDEX TERMS Discrete-time system, Lyapunov functional, stability, summation inequality, time-varying
delay.

I. INTRODUCTION
Since time delay is often encountered in the real world such
as network and mechanical engineering [1], [2], the stability
analysis for discrete-time systems with time-varying delay
has attracted considerable attention. Until now, many remark-
able results have been reported in the literature [1]–[39]
such as the free-matrix-weighting technique [3], the delay-
partitioning method [4], the bounding-equality method [1],
[5]–[7]. Compared with other techniques, the bounding-
inequality method, owing to its effectiveness and straightfor-
wardness, has been widely used in the Lyapunov–Krasovskii
(L–K) functional method.

When the L–K functional is constructed, the double sum-
mation term

∑−h1−1
i=−h2

∑
−1
j=i y

T
k (j)Ryk (j) is commonly con-

tained (see (9) below) since it could lead to a delay-dependent
stability condition. Then, to estimate the summation term

δ(k) :=
−h1−1∑
i=−h2

yTk (i)Ryk (i) (1)
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arising in the forward difference of the L–K functional
becomes an essential point in achieving less conserva-
tive stability conditions in terms of linear matrix inequal-
ities (LMIs). When bounding δ(k), it is usually split into
two parts: δ1(k) :=

∑−h1−1
i=−h(k) y

T
k (i)Ryk (i) and δ2(k) :=∑−h(k)−1

i=−h2
yTk (i)Ryk (i) to take full advantage of structural

information.
As far as the authors know, three bounding-inequality

methods have been established to estimate the summation
term δ(k). Owing to the conservatism of Jensen inequal-
ity [1], the Wirtinger-based summation inequality (WBSI)
was proposed [8]–[10]. Combined with the reciprocally con-
vex lemma (RCL) [7], a more relaxed stability condition
was obtained in [9]. This method is called WBSI + RCL
method. Thereafter, a free-matrix-based summation inequal-
ity (FMBSI) was proposed by introducing some free matrix
variables [11]. Based on FMBSI, a new stability condition
was obtained in [11]. This method is called FMBSI method.

Recently, an improved summation inequality was pro-
posed in [12] by considering both δ1(k) and δ2(k) together.
In fact, this inequality can be directly obtained by combining
WBSI and the improved RCL (see (5) below). For simplicity,
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this inequality is called CWBSI and the method is called
WBSI + IRCL method. It is seen that WBSI + RCL and
WBSI + IRCL methods belong to the same type: the com-
bination of WBSI and RCL. As shown in [12], the max-
imum allowable upper bounds (MAUBs) obtained by the
WBSI + IRCL method-based stability condition are larger
than or equal to those obtained by the FMBSI method-based
stability condition. However, it should be pointed out FMBSI
provides a tighter bound of δ(k) than what CWBSI does.
In this case, an interesting phenomenon arises: based on the
same L–K functional, MAUBs obtained by FMBSI method
are not larger than but even smaller than those obtained by
WBSI + IRCL method while the inequality used in FMBSI
method is more accurate than the one used in WBSI + IRCL
method. This phenomenon is contrary to what we usually
think. Why does this happen? To find the underlying reason
can help us eliminate confusions about this phenomenon
and deeply understand the formations of LMI-based stability
conditions, which is the first motivation of this study.

With the help of more orthogonal polynomials, various
kinds of accurate summation inequalities were recently devel-
oped, such as the auxiliary function-based inequalities [13],
[14]. In general, existing summation inequalities reported in
the literature could be classified into two types [6], [15]: those
with free matrix variables and those without free matrix vari-
ables. Jensen inequality and WBSI belong to the former and
FMBSI belongs to the latter. Since summation inequalities
with free matrix variables transform the summation interval
from the denominator to the numerator, RCL is no longer
required when bounding δ(k). The relationship between these
two types of summation inequalities was studied in [5]. It was
pointed out that the two types of corresponding summation
inequalities are actually equivalent in conservatism, that is,
they produce the same tight bound of δ(k). However, what
is the relationship between stability conditions, respectively,
obtained by applying the two types of summation inequal-
ities? To the best of authors’ knowledge, this problem has
not been studied in the literature. To answer this problem
can help us better understand the roles of the two kinds of
bounding-inequality methods in reducing the conservatism of
stability conditions, which is the second motivation of this
study.

In this note, we first present the interesting phenomenon
via three numerical examples. Second, the underlying reason
is revealed through careful study. Based on the phenomenon
and the underlying reason, some conclusions are drawn:
(i) according to the method applied to bound δ(k), stability
conditions of discrete-time systems with time-varying can be
divided into two types: RCL-based stability conditions and
FM-based stability conditions; (ii) the conservatism between
these two types can not be compared in theory. To further
verify these conclusions, we apply several bounded real lem-
mas obtained by different bound-inequality methods to a
numerical example.
Notations. Throughout this note, sym{X} denotes X + XT

for any square real matrix X . Rn and Rn×m stands for the

n-dimensional Euclidean space and the set of all n × m real
matrices, respectively. The notation Sn+ represents the set of
symmetric positive definite matrices of Rn×n.

II. THE MAIN RESULT
In this section, three typical stability conditions are firstly
recalled, which are, respectively, obtained by WBSI + RCL,
WBSI + IRCL and FMBSI methods. Secondly, the interest-
ing phenomenon is presented by applying the three stability
conditions to numerical examples. Finally, the underlying
reason is revealed and some conclusions are drawn.

A. WBSI, FMBSI AND RCLS
The following notations are defined for simplicity of
presentation:

M :=
[
M0 M1

]
, N :=

[
N0 N1

]
,

50 :=
[
I −I 0

]
, 51 :=

[
I I −2I

]
,

5 := col{50,51}, ba := b− a,

R̃ := diag{R, 3R}, R̃1 := diag{R1, 3R1}.

Lemma 1 (WBSI [9], FMBSI [11]): For integers a and b
satisfying a < b, matrices R ∈ Sn+, M0,M1 ∈ R3n×n

and a vector function {x(i) ∈ Rn
|i ∈ [a, b]}, the following

inequalities

b−1∑
i=a

yT (i)Ry(i) ≥
1
ba
ϑT5T R̃5ϑ (2)

b−1∑
i=a

yT (i)Ry(i) ≥ −ϑTϒ(ba,M )ϑ (3)

hold, where

ϑ := col

{
x(b), x(a),

1
ba + 1

b∑
i=a

x(i)

}
,

y(i) := x(i+ 1)− x(i),

ϒ(ba,M ) := baMR̃−1MT
+ sym{M5}.

Remark 1: Ineq. (3) is a simplified version of FMBSI
proposed in [11] by setting Zij = MiR−1MT

j , i ≤ j ∈
{0, 1}. In this case, the constraint inequality (9) in [11] obvi-
ously holds from the Schur complement. By setting Mi =

−
2i+1
ba
5T
i R, i ∈ {0, 1}, FMBSI (3) is reduced to WBSI (2).

Actually, WBSI (2) and FMBSI (3) are equivalent, i.e., the
two inequalities produce the same tight bounds [15]. How-
ever, compared with WBSI (2), FMBSI (3) moves the sum-
mation interval ba from the denominator to the numerator,
which makes RCL no longer required.
Lemma 2 (RCLs [7], [16], [17]): For matrices R ∈ Sn+

and X ,X1,X2 ∈ Rn×n, the following matrix inequalities 1
α
R 0

0
1

1− α
R

 ≥ [ R X
XT R

]
(4)
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 1
α
R 0

0
1

1− α
R

 ≥ [R+ (1− α)T1 X
XT R+ αT2

]
(5)

 1
α
R 0

0
1

1− α
R

 ≥ [R+ (1− α)Y1 Y (α)
Y (α)T R+ αY2

]
(6)

hold for ∀α ∈ (0, 1), where (4) is constrained by[
R X
XT R

]
≥ 0, and

T1 := R− XR−1XT , T2 := R− XTR−1X ,

Y1 := R− X1R−1XT1 , Y2 := R− XT2 R
−1X2,

Y (α) := αX1 + (1− α)X2.

Remark 2: The matrix inequality (4) is the matrix version
of RCL [7]. The improved RCLs (5) and (6) are no longer

constrained by
[
R X
XT R

]
≥ 0. Obviously, if the constraint is

added, RCL (5) is more accurate than RCL (4). Additionally,
if letting X1 = X2 = X , RCL (6) is reduced to RCL (5).
Therefore, RCL (6) is more accurate than RCL (5). Notice
that a novel RCL was proposed in [18] which is equivalent to
RCL (6) in conservatism.

B. THREE TYPICAL STABILITY CONDITIONS
Consider the following linear discrete-time system with a
time-varying delay:{
x(k + 1) = Ax(k)+ Adx(k − h(k)), k ≥ 0
x(k) = φ(k), −h2 ≤ k ≤ 0

(7)

where x(k) ∈ Rn is the state vector; A and Ad are constant
system matrices; φ(k) is the initial condition; with given
integers h1 and h2, h(k) is the time-varying delay satisfying

1 ≤ h1 ≤ h(k) ≤ h2, k ≥ 0. (8)

Before proceeding, the following notations are defined for
simplicity:

hk := h(k), hk1 := hk − h1, h2k := h2 − hk ,

h21 := h2 − h1, xk (i) := x(k + i),

yk (i) := xk (i+ 1)− xk (i),

η(k) := col

xk (0),
−1∑

i=−h1

xk (i),
−h1−1∑
i=−h2

xk (i)

 .
Based on the following L–K functional [9]:

V (k) = ηT (k)Pη(k)+
−1∑

i=−h1

xTk (i)Q1xk (i)

+

−h1−1∑
i=−h2

xTk (i)Q2xk (i)

+ h1
−1∑

i=−h1

−1∑
j=i

yTk (j)R1yk (j)

+ h21

−h1−1∑
i=−h2

−1∑
j=i

yTk (j)Ryk (j), (9)

where matrices P,Q1,Q2,R1,R ∈ Sn+ are to be determined,
three stability conditions were, respectively, obtained in [9],
[11] and [12].
Lemma 3: For given integers h1 and h2 satisfying (8),

system (7) is asymptotically stable if there exist matrices P ∈
S3n+ , Q1,Q2,R1,R ∈ Sn+, S ∈ R2n×2n and M0,M1,N0,N1 ∈

R3n×n such that one of the following conditions holds:
Condition 1 (C1) (WBSI + RCL [9]):

R̃S :=
[
R̃ S
ST R̃

]
≥ 0, (10)

9(hk )− E(R̃S ) < 0, hk ∈ {h1, h2}, (11)

Condition 2 (C2) (CWBSI [12]):[
9(h1)− ϒ5,1 ET1 S

∗ −R̃

]
< 0, (12)[

9(h2)− ϒ5,2 ET2 S
T

∗ −R̃

]
< 0, (13)

Condition 3 (C3) (FMBSI [11]):[
9(h1)+ h214 h21FT2 N

∗ −R̃

]
1 < 0, (14)[

9(h2)+ h214 h21FT1 M
∗ −R̃

]
< 0, (15)

where

9(hk ) = ϒ1(hk )+ ϒ2 + ϒ3 − ϒ4, (16)

ϒ1(hk ) = sym{0T (hk )P012} + 0T1 P01 − 0
T
2 P02,

ϒ2 = eT1Q1e1 − eT2Q1e2 + eT2Q2e2 − eT4Q2e4,

ϒ3 = eTs (h
2
1R1 + h

2
21R)es, ϒ4 = ET0 R̃1 E0,

0(hk ) = col{e1, (h1 + 1)e5, (hk1 + 1)e6 + (h2k + 1)e7},

01 = col{es,−e2,−e3 − e4}, 012 = 01 − 02,

02 = col{e0,−e1,−e2 − e3},

E0 = col{e1 − e2, e1 + e2 − 2e5},

E1 = col{e2 − e3, e2 + e3 − 2e6},

E2 = col{e3 − e4, e3 + e4 − 2e7},

E = col{E1,E2},

e0 = 0n×7n, es = (A− I )e1 + Ade3
ei =

[
0n×(i−1)n In×n 0n×(7−i)n

]
, i ∈ {1, . . . , 7},

4 = FT1 sym{M5}F1 + F
T
2 sym{N5}F2

F1 = col{e2, e3, e6}, F2 = col{e3, e4, e7},

ϒ5,1 = E
([

2R̃ S
ST R̃

])
, ϒ5,2 = E

([
R̃ S
ST 2R̃

])
,

and where E(W ) means ETWE for an appropriate dimension
matrix W .

Proof: Along the trajectory of system (7), the forward
difference of V (k) defined in (9) is computed:

1V (k) ≤ ζ T (k)9(hk )ζ (k)− h21δ(k), (17)
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where 9(hk ) is defined in (16), δ(k) is defined in (1) and

ζ (k) := col
{
xk (0), xk (−h1), xk (−hk ), xk (−h2),

0∑
i=−h1

xk (i)
h1 + 1

,

−h1∑
i=−hk

xk (i)
hk1 + 1

,

−hk∑
i=−h2

xk (i)
h2k + 1

}
.

Applying FMBSI (3) to δ(k) yields:

δ(k) = δ1(k)+ δ2(k) ≥ ζ T (k)δFMB(hk )ζ (k), (18)

where

δFMB(hk ) = −FT1 ϒ(hk1,M )F1 − FT2 ϒ(h2k ,N )F2.

Then, combining (17) with (18) leads to C3.
Letting Mi = −

2i+1
hk1

5T
i R and Ni = − 2i+1

h2k
5T
i R, i ∈ {0, 1}

and applying RCL (5) to (18) leads to:

δFMB(hk ) =
1
hk1

ET1 R̃E1 +
1
h2k

ET2 R̃E2

=
1
h21

E
([ 1

α
R̃ 0
0 1

1−α R̃

])
≥

1
h21

E
( [ R̃+ (1− α)T1 S

ST R̃+ αT2

] )
:= δR2(hk ) (19)

where α = hk1/h21, T1 = R̃ − SR̃−1ST and T2 =
R̃ − ST R̃−1S. Then, combining (17) with Ineq. δ(k) ≥
ζ T (k)δR2(hk )ζ (k) leads to C2.
With R̃S ≥ 0, it follows from Remark 2 that

δR2(hk ) ≥
1
h21

E(R̃S ) := δR1. (20)

Then, combining (17) with Ineq. δ(k) ≥ ζ T (k)δR1ζ (k) leads
to C1. This completes the proof. �
Remark 3: Based on the same L–K functional (9), three

conditions are derived in Lemma 3 by employing WBSI +
RCL, WBSI + IRCL and FMBSI methods, respectively. It is
seen from the process that the bounding-inequality method
plays an important role in deriving stability conditions for
time-delay systems. Since a more accurate inequality usually
leads to a more relaxed stability, developing more accurate
summation inequalities is a hot topic in the research field of
time-delay systems. Generally speaking, there are two main
ways to reduce the conservatism of summation inequalities.
One way is to take more summation information of the state
into account when developing a new summation inequality.
The other way is to introduce more free matrix variables so
that more freedom is achieved to estimate δ(k).

C. AN INTERESTING PHENOMENON
From the proof of Lemma 3, we have

δ(k) ≥ ζ T (k)δFMB(hk )ζ (k)

≥ ζ T (k)δR2(hk )ζ (k) ≥ ζ T (k)δR1ζ (k),

in which δ(k) ≥ ζ T (k)δR2(hk )ζ (k) is just the improved
summation inequality (CWBSI) proposed in [12]. Obviously,

Ineq. δ(k) ≥ ζ T (k)δFMB(hk )ζ (k) is more accurate than
CWBSI. Therefore, it seems that C3 should be less conser-
vative than C2. In other words, the MAUBs obtained by C3
should be larger than, or at least equal to those obtained by
C2. But that is not the case. This is clearly shown in the
following three examples.
Example 1: Consider system (7) with

A =
[
0.6480 0.0400
0.1200 0.6540

]
, Ad =

[
−0.1512 − 0.0518
0.0259 − 0.1091

]
.

(21)

MAUBs obtained by C1, C2 and C3 are, respectively, listed
in Table 1. It is seen from Table 1 that MAUBs obtained by
C2 are larger than or equal to those obtained by C1. This
finding verifies some conclusions made before. However, it is
also found that MAUBs obtained by C3 are not always larger
than those obtained by C2. Especially, when h1 takes large
values such as 13, 20 or 25, MAUBs obtained by C3 are even
smaller.

TABLE 1. MAUBs h2 for different h1 in Example 1.

Example 2: Consider system (7) with

A =
[
0.8 0
0.05 0.9

]
, Ad =

[
−0.1 0
−0.2 −0.1

]
. (22)

MAUBs obtained byC1,C2 andC3 are listed in Table 2. It is
easily seen that the MAUBs obtained by C2 are larger than or
at least equal to those obtained byC1 whileMAUBs obtained
by C3 are not always larger than but even smaller than those
obtained by C2 when h1 takes values such as 3 or 11.

TABLE 2. MAUBs h2 for different h1 in Example 2.

Example 3: Consider system (7) with

A =
[

1 0.01
−0.1 0.99

]
, Ad =

[
0.003 0.001
0.01 0.005

]
. (23)

MAUBs obtained by C1, C2 and C3 are listed in Table 3.
As expected, MAUBs obtained by C2 are larger than or equal
to those obtained by C1. However, except the case of h1 = 1,
MAUBs obtained by C3 are all larger than those obtained by
C1 or C2 when h1 takes other values.
Combining Examples 1, 2 and 3, we find an unusual but

interesting phenomenon. That is, MAUBs obtained by C3
may be larger than those obtained byC2 for one systemwhile
smaller for another system. Even for one same system such
as shown in Example 1, MAUBs obtained by C3 might be
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TABLE 3. MAUBs h2 for different h1 in Example 3.

larger than those obtained by C2 when h1 takes some values
while become smaller when h1 takes other values. It is worth
noting that, for the three conditions, the same L–K func-
tional is employed and meanwhile, the summation inequality
employed in C3 is more general than those employed in C1
and C2. This interesting phenomenon attracts our attention
and motivates us to find the underlying reason.

D. THE UNDERLYING REASON
Let us consider the three terms:

δFMB(hk ) = −FT1 ϒ(hk1,M )F1 − FT2 ϒ(h2k ,N )F2,

δR2(hk ) =
1
h21

E
([

R̃+ (1− α)T1 S
ST R̃+ αT2

])
,

δR1 =
1
h21

E
(
R̃S
)
.

It is known that RCLs (4), (5) and (6) hold only for α ∈ (0, 1),
exclusive of α = 0 and α = 1. Therefore, the inequality (19)

δFMB(hk ) ≥ δR2(hk )

holds only for hk ∈ {h1+1, . . . , h2−1}, exclusive of hk = h1
and hk = h2. So any of the inequalities

δFMB(h1) ≥ δR2(h1)

δFMB(h2) ≥ δR2(h2)

does not definitely hold. In other words, there is no relation-
ship between the sizes of δFMB(h1) and δR2(h1) or between the
sizes of δFMB(h2) and δR2(h2) in theory. As a result, the con-
servatism between Ineq. (12) and Ineq. (14) or between
Ineq. (13) and Ineq. (15) can not be compared in theory.
The end-point problem of RCL results in this interesting
phenomenon. This is the underlying reason.

Additionally, if the constraint R̃S ≥ 0 is considered,
the inequality

δR2(hk ) ≥ δR1

obviously holds for any hk ∈ [h1, h2]. In other words, the two
inequalities δR2(h1) ≥ δR1 and δR2(h2) ≥ δR1 do hold.
Therefore, C2 is always less conservative than C1, which is
verified by previous numerical examples.

The above discussions are made on stability conditions that
are derived from the L–K functional (9) and WBSI (2) or
FMBSI (3). In fact, for stability conditions derived from the
auxiliary function-based summation inequality [14] and its
corresponding free-matrix-based summation inequality [13],
the interesting phenomenon can also be observed and similar
conclusions can also be made. In this case, the corresponding
more complex L–K functional should be employed [8], [13].

According to the above discussions, we have the following
general conclusions:
(i) Based on the methods employed to bound δ(k), sta-

bility conditions obtained for discrete-time systems with a
time-varying delay can be divided into two types: FM-based
stability conditions which are obtained by applying summa-
tion inequalities with free matrix variables and RCL-based
stability conditions which are obtained by applying the
combination of summation inequalities without free matrix
variables and RCL.

(ii) The conservatism between these two types of stability
conditions can not be compared theoretically even though
corresponding summation inequalities are equivalent in con-
servatism and even though the same L–K functional is used.

(iii) As for RCL-based stability conditions with the
same L–K functional considered, the more accurate RCL is
employed, the more relaxed stability condition is obtained.
Remark 4: When checking the stability of time-delay sys-

tems, C3 is usually the first choice since MAUBs obtained
by C3 are larger than or equal to those obtained by C1 or
C2 for most cases. However, aside from the conservatism,
the computation complexity is another important factor when
choosing stability conditions. It is noted that the computation
complexity is mainly reflected by the number of decision
variables involved in stability conditions. Through compu-
tations, it is found that the numbers of decision variables
involved in C1 and C2 are equal while the number involved
in C3 is the largest. To be specific, the three numbers are,
respectively, 10.5n2+3.5n, 10.5n2+3.5n and 18.5n2+3.5n.
Therefore, if the computation complexity is more concerned,
C2 is the most suitable.

III. FURTHER VERIFICATION WITH BRLS
To clearly illustrate the interesting phenomenon and
to further verify the above-drawn conclusions, several
bounded real lemmas (BRLs) are obtained via different
bounding-inequality methods in this section. The optimal
H∞ performance indexes (OHPIs) are calculated by applying
BRLs to a numerical example, which could reflect the con-
servatism of BRLs. Smaller OHPI means less conservatism.

A. BRLS OBTAINED VIA DIFFERENT
BOUNDING-INEQUALITY METHODS
Consider the following linear discrete-time system with a
time-varying delay:
x(k + 1) = Ax(k)+ Adx(k − h(k))

+Bω(k), k ≥ 0
x(k) = φ(k), −h2 ≤ k ≤ 0
z(k) = Cx(k)

(24)

where x(k), z(k), ω(k) and φ(k) are the system state, the con-
trolled output, the disturbance and the initial condition,
respectively; A,Ad ,B,C are system matrices; h(k) is the
time-varying delay satisfying (8). Based on H∞ performance
analysis of system (24), we further investigate the interesting
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phenomenon. The definition of H∞ performance index is
firstly presented. Secondly, with similar lines in [19], we have
RCLs by applying WBSI + RCL, WBSI + IRCL and FMBI
methods.
Definition 1 ( [19]): For a given γ > 0, system (24) has

H∞ performance index γ if two conditions are satisfied:
i) system (24) is asymptotically stable for ω(k) = 0; and
ii) the controlled output z(k) satisfies ‖z(k)‖ < γ ‖ω(k)‖ for
zero initial condition.
Lemma 4: For given integers h1 and h2 satisfying (8), sys-

tem (24) has H∞ performance index γ if there exist matrices
P ∈ S3n+ , Q1,Q2,R1,R ∈ Sn+, S,X1,X2 ∈ R2n×2n and
M0,M1,N0,N1 ∈ R3n×n such that one of the following
conditions holds:

BRL 1 (WBSI (2) + RCL (4)): Ineq. (10) and (11) hold;
BRL 2 (WBSI (2) + RCL (5)): Ineq. (12) and (13) hold;
BRL 3 (WBSI (2) + RCL (6)):[

9(h1)− ϒ6,1 ET1 X1
∗ −R̃

]
< 0 (25)[

9(h2)− ϒ6,2 ET2 X
T
2

∗ −R̃

]
< 0 (26)

BRL 4 (FMBSI (3)): Ineq. (14) and (15) hold;
where

9(hk ) = ϒ1(hk )+ ϒ2 + ϒ3 − ϒ4 + ϒ5,

ϒ5 = eT1C
TCe1 − γ 2eT8 e8,

e0 = 0n×8n, es = (A− I )e1 + Ade3 + Be8,

ei =
[
0n×(i−1)n In×n 0n×(8−i)n

]
, i ∈ {1, . . . , 8},

ϒ6,1 = E
([

2R̃ X2
XT2 R̃

])
,

ϒ6,2 = E
([

R̃ X1
XT1 2R̃

])
,

and other terms such asϒ1(hk ),ϒ2,ϒ3 andϒ4 are defined in
Lemma 3.

B. A NUMERICAL EXAMPLE
Example 4: Consider system (24) with

B =
[
1 0
0 1

]
, C =

[
1 0

]
,

and A and Ad are shown in (21). OHPIs obtained by BRLs 1,
2, 3 and 4 are listed in Table 4with h1 = 1 and different values
of h2 and in Table 5 with h1 = 3 and different values of h2.
From Tables 4 and 5, it is seen that OHPIs obtained by BRL 3
are always less than or equal to those obtained by BRL 2
and that OHPIs obtained by BRL 2 are always less than or
equal to those obtained by BRL 1. This further verifies Con-
clusion (iii). Meanwhile, it is also seen that OHPIs obtained
by BRL 4 are larger than those obtained by BRLs 1, 2 and
3 when h2 takes smaller values (e.g., 5 and 7) but smaller
than those obtained by BRLs 1, 2 and 3 when h2 takes bigger
values (e.g., 13 and 15). This further verifies Conclusion (ii).

TABLE 4. OHPIs for system (24) with h1 = 1.

TABLE 5. OHPIs for system (24) with h1 = 3.

IV. CONCLUSION
This note has presented an interesting phenomenon for stabil-
ity conditions of discrete-time systems with a time-varying
delay. By closely studying this phenomenon, the underly-
ing reason has been revealed and several useful conclusions
have been drawn, which can help us deeply understand the
construction of LMI-based stability conditions and the roles
of different bounding-inequality methods in reducing the
conservatism of stability conditions. Finally, several bounded
real lemmas have been obtained to further verify some
conclusions.

The conclusions made in this note are general, which
can be applied to other research fields, such as T-S time-
delay systems and neural time-delay networks, as long as
the bounding-inequality methods are used when deriving
stability conditions.
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