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ABSTRACT In this research, an important topic of cooperative search for multi-dynamic targets in unknown
sea area by unmanned aerial vehicle (UAV) is studied based on improved multi-ant colony theory (IMAC).
A specialized multi-UAV sea area search map is established, in which a novel target probability map (TPM)
was designed to reduce the impact of uncertainties caused by dynamics targets. Then, the transfer rules of
the cell were determined for multi-UAV by improving the behavior criterion of the ant colony algorithm and
the updating principle of the pheromone map. Finally, the performance of the proposed method is tested in
several search scenarios with different features, and the statistical comparison with the traditional algorithm
shows the superiority of the new method.

INDEX TERMS Multi-UAV, ant colony optimization, cooperative search, TPM updating, pheromone.

I. INTRODUCTION
In recent years, due to the rapid development of sensors,
microprocessors and information processing technologies,
the functions of unmanned cluster system are increas-
ing rapidly, and its application scope is also expanding.
Because of its flexibility, expansibility and strong cooper-
ative operation ability, the research on collaborative the-
ory and application of unmanned cluster has attracted more
and more attention from academia, industry and national
defense [1]–[3]. The multi-UAV cooperative search system
can effectively improve the search efficiency, especially in
complex sea conditions such as uncertainties and strong inter-
ference. Therefore, the multi-UAV cooperative search in sea
area is one of the important directions of the research of UAV
cluster system [4]–[6].

The cooperative search mission can be formulated as
a probabilistic exploration mission [7], [8]. The uncertain
probability map is updated every time when a UAV makes
an observation, which probabilistically described the target
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location and helps the multi-UAV to make more precise deci-
sions for finding the targets [9]. Up to now, cooperative search
for multi-UAVs has been investigated in different aspects and
from different viewpoints [10], [11]. To name just a few,
Zhen et al. [12] proposed an intelligent self-organized algo-
rithm (ISOA) to solve a cooperative search-attack mission
planning problem for multi-UAV. In [13], conducting coop-
erative area search based on Ant Colony (AC) Theory is pro-
posed, which is not considered the environment information.
For multi-UAV search problem, environment information is
stored in the form of target probability map, and the online
trajectory of UAV is calculated by adaptive model predictive
control algorithm give in [14]. In [15], a statistical framework
is proposed for predicting the amount of time an agent should
spend in a cell to increase the target detection confidence in
that cell. The probability associated with each cell is updated
based on the detection result, which is 0 (no target detected)
or 1 (target detected). In [16] based on the target probability
map, the probability map is adopted to search the target,
and a discrete time stochastic decision model for cooperative
search of multi-UAV is established to maximize the number
of targets found. In [17] proposed a method of opportunities
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to learn solve cooperative search, based on prior knowledge
of the target location establish the TPM, and collaborative
search goal is to reduce the uncertainty of the environment.
In [18] in order to reduce the uncertainty of target motion,
a target transition probability density function based onGaus-
sian distribution is proposed, and the maximum discovery
probability and maximum coverage are adopted as search
strategies to improve the search efficiency, but continuous
integral operation is needed to increase the computational
burden.

In this research, we proposed a novel cooperative search
algorithm for multi-UAV in an unknown environment. The
main contributions are listed as follows. Firstly, a new TPM
model according to the initial target position is established,
where the target initial position is known before search. Then,
TPM updating mechanism is proposed, especially, for the
unknown direction of the target motion, and known direc-
tion of the target motion update process is shown. Sec-
ondly, in order to know the target search performance of
the strategies comprehensively, we established the objective
function include target search revenue, information entropy
to measure the search efficiency of the algorithm, Finally,
a novel IMAC algorithm is designed for autonomous target
search by a group of UAVs, which includes initialization of
pheromone, waypoint select strategy pheromone updating,
and its performance is analyzed for both search static target
and dynamic target, which further highlights the complete-
ness of the result. As will be shown in numerical simulations,
the proposed algorithm can serve as an effective method for
practical application.

The rest of this paper is organized as follows. Section 2 is
devoted to problem description of cooperative search, which
including the TPM model, updating mechanism and objec-
tive. The detailed presentation of initial path obtained by the
IMAC algorithm and the coordination strategy are illustrated
in Section 3. Simulation results are presented in Section 4.
The last section offers conclusions and future work.

II. PROBLEM FORMULATION
In this paper, for a sea area E , there are Nv homogenous
UAVs enter the sea area where the mission needs to be
carried out. After that, each UAV uses its own detection
sensors to search the unknown targets independently. It is
expected that multiple UAVs can find as many targets as
possible through cooperative search in the shortest time at
the least cost. In this research, we assumed that all UAVs
could communicate through pheromone to ensure that the
communication between the UAVs was normal. In what fol-
lows, we provide detailed descriptions of our environmental
model, target probability map and our objective one by one.

A. ENVIRONMENTAL MODEL
The environment E is represented as an Lx × Ly sea area,
as shown in Fig1, Pi(k) ∈ [0, 1] represents the target exis-
tence probability in a cell i at time k , and the index of the cell
i is defined as i = nx + (ny − 1) × Ny where nx = 1 . . .Nx ,

FIGURE 1. Search area division.

ny = 1 . . .Ny with Nx = Lx/Rs, Ny = Ly/Rs, respectively,
and the number of the cell is N = Nx × Ny. The speed of
each UAV is v, and the path of each UAV depends on the
heading angle. Path planning is performed every1T to select
the heading deflection angle of the next interval. Constraints
by the dynamic characteristics of the UAV, cannot turn in any
direction. As shown in Fig 1, the UAV can only choose one
direction from (−α, 0, α) at time k .

B. TARGET PROBABILITY MAP
TPM model: When Multi-UAV cooperative search targets in
an unknown environment, the uncertainty of the target status
makes the search process to be reduced as a probabilistic
problem. Therefore, the probability function was adopted to
describe the targets model. By using the initial target position
is (x0m, y

0
m), the joint probability density function of the target

can be expressed as:

f (x0m, y
0
m) =

1
2πσ0xσ0y

e
−( (x0m)2

2πσ2ox
+

(y0m)2

2πσ2oy
)

(1)

where Pi, (i = 1, 2 . . .N ) denotes the possibility that a target
exists in cell i, and Pi =

∫∫
S f (·)dxdy with S as the region

where cell i is located. Assume that the position of target is
independent in the x and y directions, then σ0x = σ0y = σ0.

TPM updating based on detection information: As the
search task proceeds, the TPM are updating based on the
information detected by the onboard sensor of UAVs. In order
to avoid repeated detection of multiple UAVs during the
subsequent search process, the updating method of the TPM
is classified three types as follows.
(1) UAV not search the cell i

Pi(k) = Pi(k − 1) (2)

(2) UAV search the cell i without find any target

Pi(k) =
Pf Pi(k − 1)

(1− Pd )Pi(k − 1)+ (1− Pf )
(3)
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FIGURE 2. TPM diffusion direction.

(3) UAV search the cell i and find a target

Pi(k) =
PdPi(k − 1)

PdPi(k − 1)+ Pf (1− Pi(k − 1))
(4)

where Pd ∈ [0, 1] is the detection probability indicating the
probability of UAV finding a target when the target is within
the current cell. Pf ∈ [0, 1] Is the false alarm probability
indicating the probability of UAVfinding a target but no target
is actually in the current cell.

TPM updating based on target motion prediction: By using
the cellular automat model in [20], and combined with the
initial distribution characteristics of the target, a new mecha-
nism for TPM updating based on target motion prediction is
proposed as follows,

Pi(k + 1) = Pi(k)+ δd
∑
n∈Nm

d(j)(Pj(k)− Pi(k))

= Pi(k)(1−
∑
j∈Ni

δdd(j))+ δd
∑
j∈Ni

d(j)Pj(k) (5)

where Ni is the number of cells around i, δd and d(j) =
(d1(j), d2(j), d3(j), d4(j), d5(j), d6(j), d7(j), d8(j)) are constant
which denotes the speed and direction of the TPM diffusion
in cell i, and the TPM diffusion direction as show in Fig 2,
respectively. Noting that by using the above TPM diffusion
mechanism and the initial target distribution characteristics,
we can predict the probability distribution of the target after
a period of time, which guides UAV cooperative search.

C. OBJECTIVE FUNCTION
The main goal was to find as many targets as possible in an
unknown sea area. Therefore, the optimization function J (k)
is composed by two terms, and designed as follows.

J (k) = ω1JT (k)+ ω2JE (k) (6)

where ω1 and ω2 are weighting coefficient, JT (k) is target
search revenue, JE (k) is environment search revenue.

The target search revenue: As the search proceeds, the sum
of the target discovery probability in the sea area is defined
as target search revenue, and written in the following form,

JT (k) =
∑
(i∈E)

(1− bi(k))pi(k) (7)

where pi(k) is the probability of the target in the cell i, when
the UAV passes through the cell i, which is only related to

TABLE 1. Relationship between multi-UAV search and ant colony
foraging behavior.

the position of UAV; bi(k) denotes the possible of found the
target, and given by

bi(k) =

{
1 if pi(k) ≥ δp
0 otherwise

(8)

where δp represents the threshold, which means that the target
can be found only when the target probability at the search
cell i is greater than the threshold δp.

Environmental search revenue: Using airborne sensors to
search an area, the UAV will gradually understand the search
area over time, and the change of the environment entropy
represents the revenue of the environment search, as follows,

JE (k) =
N∑
i=1

[ei(k + 1)− ei(k)] (9)

where ei(k) is the information entropy, which represents the
uncertainty degree in the cell at time k , and described as,

ei(k) = −
N∑
i=1

(1− pi(k)) ln(pi(k)) (10)

III. DESIGEN OF IMPROVED MULTI-ANT COLONY
SEARCH ALGORITHM
The problems of searching targets of multi-UAV have the
same characteristics as the foraging behavior of ant colony,
as shown in Table 1, an improved multi-ant colony algo-
rithm for collaborative path optimization for multi-UAV was
proposed in this section Ants can be divided into Nv pop-
ulation, AC = {ACv, v = 1, 2 . . .Nv}, each ant subgroup
correspond a UAV and construct a search path for UAV meet
the requirements, ACv = {antvm,m = 1, 2 . . .M}, where
antvm is the member of population ACv, M is the size of
the ant subgroup. Multi-ant colony algorithm structure is
shown in Fig3, each subgroup of every ant has an independent
computing unit, according to the design state transition rules
of search, interact with other ants in the same subgroup
and different subgroup communicates through pheromones
information. In what follows, the initialization pheromone,
the state transition and pheromone update for multi-UAV
cooperative path optimization is obtained one by one

A. INITIALIZATION OF PHEROMONE
In order to make full use of the existing target probability
information and improve the search efficient of ants in each
ant colony, the following pheromone initialization function is
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FIGURE 3. Structure of the IMAC algorithm.

proposed:

τi0 = Piτ0(i = 1, . . . ,N ) (11)

where τ0 is the pheromone concentration in the cell i, pi is
the target probability value in cell i, τ0 is a constant, and
this initial function effectively associates the initial value of
pheromone with the target probability map in the search area.

B. CELL SELECT STRATEGY
Each ant selects the next cell from the current cell according
to the state transition rule. At tth iteration, the state transition
rule of the ant m from cell i to cell j can be designed as
follows:

pvmij (t) =


[τ vmj (t)]α[ηvmj (t)]β [ϕ

−
v m
j (t)]−γ∑

j∈UK
[τ vmj (t)]α[ηvmj (t)]β [ϕ

−
v m
j (t)]

−γ
j ∈ UK

0 otherwise.
(12)

where α is the relative importance factor of the pheromone, β
is the relative importance factor of the heuristic function, γ is
the relative importance factor of other ant colony pheromone,
and indicating the influence of pheromones of other popu-
lations on route point selection, which can avoid repeated
route point selection between different UAV. UK is the set
of cell, where UK = N − T abuk with Tabuk represents the
cell that ant m have visited, τ vmj (k) is the pheromone of ant
m of colony v concentration in cell j at time k , and ηvmj (k)
is a heuristic function of the target occupy probability in

cell j, where ηvmj (k) =

{
k1 ∗ pj heading angle change
k2 ∗ pj go straight

,

ϕ
−
v m
j is concentration pheromones expect ant colony v of other

ant colony pheromones in cell j.

C. PHEROMONE UPDATING
After selecting cell j, the ant deposits pheromones in this cell
and the pheromone concentration in this cell is increased.
On the other hand, pheromones are volatile and evaporate
over time. In this way, the quantity of pheromone in other
cells will be much lower than that in most selected cells.
After each round, the pheromone concentration is updated as
follows,

τ vmj (t + 1) = (1− ρ)τ vmj (t)+ ρ1τ vmj (t + 1) (13)

where ρ is evaporation rate; τ vmj (t) denote the pheromone of
the population v in the cell j; 1τ vmj (t + 1) is the increase
value of the pheromone, then the pheromone is updated by
following formula,

1τ vmj (t + 1) =
M∑
m=1

1τ vmj (t, t + 1) (14)

where 1τ vmj (t, t + 1) is the pheromone left by the ant m of
colony v in the cell j after the tth iteration, which can be
written as,

1τ vmj (t, t + 1) =

{
k1ωvmJvmQ if m ∈ [1, u]
−k2ωvmJvmQ if m ∈ [u+ 1,M ]

(15)

where ωvm = uvm/v−v m
is the overlap degree between the

path of population v and the path of other ant populations,
uvm denotes the total amount of pheromone of ant m in
population v after searching for the iteration t; v−

v m
represents

the total amount of other population pheromones (the larger
v−
v m

, the less overlap with other population in cell j); Jvm
is the search cost of the ant m in the population v after
completing a search, and rank the objective value of all ants
in the this ant colony; Q represents enhancement coefficient
of pheromone; k1 and k2 are the profit weight coefficients
of search, respectively. When m ∈ [1, u] the pheromone
concentration of ant m was increased. When m ∈ [u+ 1,M ],
the pheromone concentration of ant m was decreased.

Furthermore, in order to avoid the algorithm falling into
local optimum, the pheromone concentration of each pop-
ulation in the cell is limited to [τmin, τmax], which ensures
the fast convergence speed of the algorithm while increasing
the search space, and integrates local and global pheromone
updating rules as follows,

τ vmj (t + 1) =


τmin τ vmj (t + 1) < τmin

τ (t) τmin ≤ τ
vm
j (t + 1) ≤ τmax

τmax τ vmj (t + 1) > τmax

(16)

IV. SIMULATION
In order to verify the effectiveness of the proposed method,
a multi-UAV cooperative search simulation environment was
established in MATLAB. The information in the search area
was completely unknown and the purpose of the search was
to find all targets in the sea area. Firstly, we compare with
random, parallel and ant colony algorithm [19] in static target
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TABLE 2. Procedures of multiple UAV cooperative search using IMAC.

scenario to verify the effectiveness of the proposed algorithm.
Finally, we test that the probability of find target in dynamic
target scenario can be improved by the TPM predictionmech-
anism. The relevant parameters in simulation are set as: the
environment parameters: the size of search area is 50km ×
50km and divided into 50× 50 cells with the same width and
length Rs = 1km; the weighting parameters: Nv = 3, M =
100, α = 1, Q = 100, β = 4, γ = 2, ρ = 0.25.

A. SCENE1: STATIC TARGETS
In order to demonstrate the performance of different search
strategies, several Monte-Carlo simulation experiments were
carried out. 3 UAVs are cooperative search 10 targets that
randomly distributed in the sea area. Fig. 4 shows UAVs
search trajectories at the simulation steps k = 300 by using
different search strategies, respectively.

As can be seen in Fig. 4, these 4 search strategies have
different characteristics: the Parallel search strategy has fixed
search path, and can cover the whole region if time is enough;
and the search trajectories in random strategy can be seen
that trajectories are many duplicate search paths and highly
random, because the method is a blind search. Although the
method of ant colony decrease the path overlap, heading angle
change frequently. Trajectories that UAVs have visited have
less overlap and less heading change by the guidance of the
improved ant colony algorithm proposed in this paper.

Fig. 5 shows the target search revenue in different strate-
gies. We can see that, at the end of simulation, the target
search revenue in random search strategy is 0.6, and the
target search revenue in parallel search strategy is 0.68,
ant colony and our method are 0.75 and 0.86 respectively.

FIGURE 4. Snapshots of 3 UAVs search simulation in different strategies
at step k = 300. (a) Shows the UAVs search trajectories under IMAC, and
(b) (c) (d) are ant colony, and random search, Parallel strategy.
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FIGURE 5. Comparison of the target search revenue in different
strategies.

FIGURE 6. Comparison of the information entropy in different strategies.

Therefore, the parallel search is indeed a complete area cover-
age search method, and our method is better than the random
search and ant colony search in the search efficiency.

Fig. 6 shows the target search revenue with increasing
time in different search strategies. As can be seen, the ini-
tial information entropy started at 7.4201, at 400 simulation
steps, the information entropy in the random search strategy
dropped to 0.8934, declined by 87.96%; and in parallel search
strategy, information entropy dropped to 0.4313, declined by
94.19%; in ant colony search strategy information entropy
was 0.2695, declined by 96.37%. While in IMAC strategy,
the information entropy was 0.1614, declined by 97.82%.
From the entropy descending process can be seen: before
600 simulation steps of simulation, the information entropy
fall at fastest rate in our method, which shows that the
proposed search strategy can result in the faster detection
of the unknown regions, so as to obtain the more effective
information.

Fig. 7 describes the objective function in different strate-
gies. We can find that the objective function of the parallel
search and ant colony search are almost the same of the
search, and random search is lower than the two methods and
the objective function based on the improvedmulti-ant colony

FIGURE 7. Comparison of the objective function in different strategies.

FIGURE 8. Number of found in static target scenario.

algorithm is slightly higher than other threemethods.With the
increase of the time, when the algorithm runs to 600 steps,
the objective function of the improved ant colony algorithm
proposed in this paper is 847.8; the advantage of the improved
multi-ant colony algorithm is more obvious in this stage.

Furthermore, in order to measure the ability of target
found in different search strategies, 100 times of simulations
are respectively carried out in different search strategies,
in which are the static conditions for the 10 fixed randomly
distributed targets. The results are shown in Figure.8. It can
be seen that at the end of simulation, the number of tar-
get found in parallel search is 6.2, which is high on ant
colony found of the number 6. However, the random search
is actually a blindness search method, it has the minimum
number of target found with only 4; Our method shows better
ability than parallel search random search and ant colony
method, the number is 7.2. It can be seen that the improved
ant colony algorithm proposed in this paper is the highest
all the time, Whereas the efficiency of the parallel search
method linearly increases with time, As for the random search
method, the search efficiency is the lowest in the whole
process, and there is increasing trend is lower in the later
period.
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FIGURE 9. TPM updating process with unknown direction of the target.

B. SCENE 2: DYNAMICS TARGETS
According to the probability diffusion equation (3) and
the initial target probability map is known before the
search. It can predict the probability distribution of the target
after a period of time, the unknown direction of the target
is shown in Fig. 9, and known direction of the target update
process is shown in Fig. 10.

FIGURE 10. TPM updating process with known direction of the target.

TPM initial distribution is show in Fig. 9(a), and the initial
target position is (25, 25). Fig 9 (b) (c) show TPM updating
process with unknown direction of the target at simulation
steps k = 400, k = 600, respectively, and δd = 0.1,
dn=(0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2)
Fig. 10 (a) (b) and (c) show the predicted diffusion

process of the TPM with known direction of the target
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FIGURE 11. TPM updating process with known direction of the
multi-target.

at the simulation steps k = 200, k = 400, k = 600,
δd = 0.1 dn=(0.2,3,0.2,0.2,0.2,0.2,0.2,0.2), and the move-
ment direction of the target is 45◦.
Furthermore, in order to test the diffusion mecha-

nism of dynamic target scenario. Now there are sev-
eral dynamic targets using different diffusion mechanisms

FIGURE 12. Search trajectories of 3 UAVs under IMAC corresponding to
case1, case2 case3 and at step k = 300.

according to different priori information. As shown in Fig. 11,
(a) Case 1: the velocity and direction of the moving tar-
get is unknown; (b) Case 2: according prior information
the speed of the target is known but don’t know the direc-
tion. (c) Case 3: according prior information velocity and
the direction of the target is known. The IMAC algorithm
is applied to search path planning for the above three
case.
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FIGURE 13. Number of found in dynamic target scenario.

As show in Fig. 12 (a) (b) and (c), according to the different
diffusion mechanism, the IMAC is used to realize the search
path planning and ensure the maximum discovery of the
targets. And the number of the found targets shown in Fig. 13.

In order to measure the performance of the diffusion mech-
anism of dynamic target scenario, 100 times of simulations
are respectively carried out in different prior information
corresponding to Fig11 (a)–(c), in which are the dynamic
conditions for the 10 move targets,The results are shown
in Figure 13.It can be seen that the at the end of simulation,
the number of target found in case3 is most, the number is 3.8;
the number of target found in case 2 is most, the number is
2.6; the number of target found in case 1 ismost, the number is
2.2; and further explanation IMAC could applied to dynamic
target scenario and diffusion mechanism proposed in this
paper is the highest improve the number of found in dynamic
scenario.

V. CONCLUSION AND FUTURE WORK
This paper focuses on an improved multi-ant colony method
for themulti-UAVs cooperative search in static target scenario
and dynamic target scenario. Through the several compari-
son simulations with random search, parallel search and Ant
Colony search method, the simulation results show that: the
proposed search strategy is an effective one; it can guide
the multi UAV to realize better target searching in static
scenario. Then, a TPM diffusion mechanism based on the
prior information was further proposed for dynamic target.
The simulation results showed that the improved Multi-Ant
colony could apply in dynamic target search and adopted the
diffusion mechanism improved search efficiency obviously.

Future work will focus on combining reinforcement learn-
ing method with multi-ant colony algorithm and improving

search strategies through online learning of human-computer
game, more effective and practical search methods are
expected to be obtained.
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